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We classify all cyclotomic matrices over real quadratic integer rings

and we show that this classification is the same as classifying cy-

clotomic matrices over the compositum all real quadratic integer

rings, R. Moreover, we enumerate a related class of symmetric R-

matrices; thoseR-matrices whose eigenvalues are contained inside

the interval [−2, 2] but whose characteristic polynomials are not in
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1. Introduction

Let A be an n × n Hermitian matrix with its characteristic polynomial χA(x) = det(xI − A) having
integer coefficients. If A also has all its eigenvalues in the interval [−2, 2] then we call it a cyclotomic

matrix. Cyclotomic matrices were first studied explicitly by McKee and Smyth who classified all cy-

clotomic matrices over the integers [14]. They are so named since, by a theorem of Kronecker [11],

for a cyclotomic matrix A, the polynomial znχA(z + 1/z) is the product of some cyclotomic polyno-

mials. Over imaginary quadratic integer rings, cyclotomic matrices have been classified [8,19]. In this

paper, we use themethods from the author’s earlier paper [8] to classify cyclotomic matrices over real

quadratic integer rings, thereby completing the classification of cyclotomic matrices over quadratic

integer rings. We focus on the complication one encounters when studying cyclotomic matrices over

the real quadratic integers, namely, the question of the integrality of the characteristic polynomial.We

also take advantage of a feature of the real quadratic integers, i.e., the ordering, and classify cyclotomic

matrices over the compositum of all real quadratic integer rings.
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Part of the reason for the study of cyclotomic matrices stems from a conjecture of Lehmer [12]. Let

f (x) = (x − α1) . . . (x − αn) be a monic polynomial with integer coefficients. Its Mahler measure

[13] is defined as

M(f ) =
n∏

j=1

max(1, |αj|).

Lehmer’sproblemisoneoffindingamonic integerpolynomial f withsmallestpossibleMahlermeasure

M(f ) such thatM(f ) > 1. The polynomial

L(z) = z10 + z9 − z7 − z6 − z5 − z4 − z3 + z + 1,

whose larger real zero is� = 1.176280818 . . . , is knownas Lehmer’s polynomial. TheMahlermeasure

M(L) = � of Lehmer’s polynomial is the smallest known for amonic integer polynomial and Lehmer’s

conjecture states that this is in fact the smallest possible; see Smyth’s expository article [18] for a

discussion of the conjecture. Using cyclotomic matrices, Lehmer’s conjecture has been verified for

classes of polynomials coming from Hermitian matrices over certain rings of integers [15,20].

Cyclotomic matrices have been implicitly studied in spectral graph theory. In 1970, Smith [17]

obtained a classification of all graphs (whose adjacency matrices are symmetric {0, 1}-matrices with

only zeros on the diagonal) having largest eigenvalue atmost 2. Effectively, Smith classified cyclotomic

{0, 1}-matrices by showing that each one is a principal submatrix of an adjacency matrix of one of

the graphs Ãn, D̃n, Ẽ6, Ẽ7, and Ẽ8. These ADE graphs are the ubiquitous simply-laced affine Dynkin

diagrams, see Bourbaki’s book [1] for their description. These graphs turned out to have importance in

the study of graphs with bounded spectra, see the survey by Cvetković and Rowlinson [4]. Hence, the

classification of cyclotomic matrices over larger sets containing {0, 1} can be seen as a generalisation

of some of this work. Cameron et al. [3] classified all graphs having smallest eigenvalue −2; they

showed that one can obtain any such graph by searching inside the root systems An, Dn, E6, E7, and E8.

This idea of searching inside root systems was then used later by McKee and Smyth as a part of the

classification of cyclotomic integer symmetric matrices.

Let Ri be an imaginary quadratic integer ring OQ(
√

d) where d < 0. For Hermitian Ri-matrices A,

the integrality of the characteristic polynomial is automatic. The nontrivial Galois automorphism σ of

Q(
√

d) over Q is simply complex conjugation. Applying σ to the coefficients of χA gives σ(χA(x)) =
det(xI − σ(A)) = det(xI − A�) = χA(x). Hence, the coefficients of χA are rational, and since they

are also algebraic integers, they must be in Z. Therefore all Hermitian Ri-matrices whose eigenvalues

are contained inside the interval [−2, 2] are cyclotomic. However, over real quadratic integer rings,

things are not so simple. For example, the matrix
⎛
⎝
√

2 1

1 0

⎞
⎠

has all its eigenvalues lying in the interval [−2, 2] but its characteristic polynomial does not have

integral coefficients, hence it is not cyclotomic. This complication of having to worry about whether

or not the characteristic polynomial is integral is the reason we treat real quadratic integer rings

separately to the imaginary quadratic integer rings. There is, though, a redeeming feature of working

over subrings of the real numbers; here we have a notion of nonnegativity and we can therefore make

use of Perron–Frobenius theory.

Let R be the compositum of all real quadratic integer rings OQ(
√

d) where d > 1 is squarefree.

Given a symmetricR-matrix A, let LA denote the smallest normal extension of Q that contains all the

entries of A. We define S′
n to be the set of n × n symmetric R-matrices A such that the spectrum of

σ(A) is contained in [−2, 2] for all σ ∈ Gal(LA/Q). We also define a finer set Sn as the set of matrices

from S′
n having integral characteristic polynomials. It is clear from the above example that S′

2 strictly

containsS2. Notice thatSn is precisely the set of n×n cyclotomicR-matrices. In Section 4.3, we show

that for n > 6 the two sets Sn and S′
n are equal.
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The article is organised as follows. In Section 2 we set up the notion of equivalence used in the

classification and reduce the problem to considering only indecomposable matrices. Our results are

then stated in Section 3, and proved in Section 4. Note that the bulk of the classification of cyclotomic

matrices over real quadratic integer rings follows from the author’s previous paper [8] and we merely

allude to the proof of Theorem 3.2 in Section 3.

2. Equivalence and interlacing

In this section, we describe the equivalence classes that are used in the classification. Our definition

of equivalence is a natural extension of that used in the classification of cyclotomic Z-matrices [14].

LetR be the compositum of real quadratic integer rings and let R′ be some finite subset ofR. Let R be

the ring generated by the elements of R′ over Z and let K be the normal closure of the field generated

by the elements of R′ over Q. We write Mn(R) for the ring of n × n matrices over the ring R. Denote

by On(Z) the orthogonal group of matrices Q in Mn(Z) which satisfy QQ� = Q�Q = I, where Q�
is the transpose of Q . Let M be a matrix from Mn(R). Conjugation by a matrix in On(Z) preserves the
eigenvalues and the resulting matrix remains inMn(R).

If χM(x) ∈ Z[x] then, since they are rational integers, the coefficients of the characteristic polyno-

mial of M are invariant under the action of Gal(K/Q). For A and B in Mn(R), we say that A is strongly

equivalent to B if A = σ(QBQ�) for some Q ∈ On(Z) and some σ ∈ Gal(K/Q), where σ is applied

componentwise toQBQ�. Thematrices A and B aremerely called equivalent if A is strongly equivalent

to±B. Note that, given amatrixM ∈ S′
n\Sn all the elements of its equivalence class are also inS′

n\Sn.

Also, any two strongly equivalent matrices from Sn have the same set of eigenvalues.

We use graphs as a convenient representation of an equivalence class of matrices. An R-graph G is

an undirected weighted graph (G,w) whose weight function w maps pairs of vertices to elements of

R and satisfiesw(u, v) = w(v, u) for all vertices u, v ∈ V(G). The adjacencymatrix A = (auv) of G has

auv = w(u, v). If G is a triangle/cycle/tree/path/etc. then we call G an R-triangle/cycle/tree/path/etc.

For every vertex v, the charge of v is just the number w(v, v). A vertex with nonzero charge is called

charged, those with zero charge are called uncharged. By simply saying “G is a graph,” we mean that

G is a T-graph where T is some unspecified subset of the real numbers.

Now, On(Z) is generated by permutation matrices and diagonal matrices of the form

diag(1, . . . , 1, −1, 1, . . . , 1).

Let D be such a diagonal matrix having −1 in the jth position. Conjugation by D is called a switching

at vertex j. A switching at vertex j has the effect of multiplying all the incident edge-weights of j by

−1. This notion of switching has been seen before as Seidel switching [5]. The effect of conjugation

by permutation matrices is just a relabelling of the vertices of the corresponding graph. Since all

possible vertex-labellings of a graph are strongly equivalent, we do not have cause to label the vertices

of our graphs. The notions of equivalence and strong equivalence carry through to graphs naturally.

Throughout this paper we will interchangeably speak of both graphs and their adjacency matrices.

Next, we state a theorem of Cauchy [2,6,10] which we refer to as interlacing.

Theorem 2.1 (Interlacing). Let A be an n × n real symmetric matrix with eigenvalues λ1 � · · · � λn. Let B

be an (n−1) × (n−1) principal submatrix of A with eigenvaluesμ1 � · · · � μn−1. Then the eigenvalues

of A and B interlace. Namely,

λ1 � μ1 � λ2 � μ2 � · · · � μn−1 � λn.

Define the degree of a vertex v ∈ V(G) as

∑

u∈V(G)

w(u, v)2.
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Lemma 2.2. Let G be a graph with a vertex v of degree d > 4. Then G does not correspond to any matrix

in S′
n.

Proof. Let A be an adjacency matrix of G with v corresponding to the first row. The first entry of the

first row of A2 is d. Therefore, by interlacing, the largest eigenvalue of A2 is at least d, and so the largest

modulus of the eigenvalues of A is at least |√d| > 2. �

This lemma also restricts the possible entries of matrices in S′
n; any entry of such a matrix must

square to at most 4.

A matrix that is equivalent to a block diagonal matrix of more than one block is called decompos-

able, otherwise it is called indecomposable. A matrix A = (aij) is indecomposable if and only if its

underlying graph (whose vertices u and v are adjacent if and only if auv is nonzero) is connected. The

eigenvalues of a decomposable matrix are found by pooling together the eigenvalues of its blocks. It

is therefore sufficient to restrict our classification of cyclotomic matrices to indecomposable matri-

ces. Hence we redefine S′
n and Sn to consist only of indecomposable matrices. An indecomposable

cyclotomic matrix that is not a principal submatrix of any other indecomposable cyclotomic matrix

is called amaximal indecomposable cyclotomic matrix. The corresponding graph is called a maximal

connected cyclotomic graph.

We briefly return to the problem of whether or not a matrix has an integral characteristic polyno-

mial. It is possible to ensure the integrality of amatrixbygiving its associatedgrapha certain symmetry.

Let K be a Galois extension of Q with R its ring of integers. We say that a Hermitian R-matrix is Galois

invariant if it is strongly equivalent to itself under Galois conjugation, i.e., for all σ ∈ Gal(K/Q), G is

strongly equivalent to σ(G).

Proposition 2.3. Let A be a Galois-invariant symmetric R-matrix. Then its characteristic polynomial χA

has integer coefficients.

Proof. For all σ ∈ Gal(K/Q), applying σ to the coefficients of χA gives

σ(χA(x)) = det(xI − σ(A)) = det(xI − A) = χA(x).

Hence, the characteristic polynomial χA must have rational coefficients. And since the entries of A are

algebraic integers, so too are the coefficients of χA. �

We observed earlier that all Hermitian matrices over imaginary quadratic integer rings are Galois

invariant. It can be readily seen below, in the classification of R-matrices, that the converse of the

proposition does not hold. For example, the maximal cyclotomic R-graph S
(2,ϕ)
4 of Fig. 7 is not Ga-

lois invariant, in fact, it is the only such example; all other maximal cyclotomic R-graphs are Galois

invariant.

3. Results

Before stating our results, we outline our graph drawing conventions. We draw edges with edge-

weightw as and edges of weight−w as . Ifw = 1, we simply draw a solid line and

a dashed line respectively. A vertex with charge c for some c > 0 is drawn as and a vertex

with charge −c is drawn as . And if a vertex is uncharged, we simply draw . By a subgraph H of G

wemean an induced subgraph: a subgraph obtained by deleting vertices and their incident edges. We

say that G contains H and that G is a supergraph of H. A graph is called charged if it contains at least

one charged vertex, otherwise it is called uncharged.

Theorem 3.1 [14]. Let A be a maximal indecomposable cyclotomic matrix over the ring Z. Then A is

equivalent to an adjacency matrix of one of the graphs T2k (for k > 2), C
++
2k (for k > 1), C

+−
2k (for k > 1),

S1, S2, S7, S8, S
′
8, S14, and S16 in Figs. 1, 3, 5, 6, 7, and 8.

Moreover, every indecomposable cyclotomic Z-matrix is contained in a maximal one.
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Fig. 1. The family T2k of 2k-vertex maximal connected cyclotomic Z-graphs, for k � 3. (The two copies of vertices A and B should be

identified to give a toral tessellation.)

Fig. 2. The family of 2k-vertex maximal connected cyclotomic Z[√2]-graphs C2k for k � 2.

Fig. 3. The families of 2k-vertex maximal connected cyclotomic Z-graphs C
++
2k and C

+−
2k for k � 2.

Fig. 4. The family of (2k + 1)-vertex maximal connected cyclotomic Z[√2]-graphs C2k+1 for k � 1.

Fig. 5. The sporadic maximal connected cyclotomic Z-graph S14 of order 14.

Theorem 3.2 (Cyclotomic matrices over Z[√2]). Let A be a maximal indecomposable cyclotomic matrix

over the ringZ[√2] that is not aZ-matrix. Then A is equivalent to an adjacencymatrix of one of the graphs

C2k (for k > 1), C2k+1 (for k > 0), S
‡
2, S

(1,
√

2)
4 , S

(2,
√

2)
4 , S

(3,
√

2)
4 , and S

†
8 in Figs. 2, 4, 7, and 8.

Moreover, every indecomposable cyclotomic Z[√2]-matrix is contained in a maximal one.
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Fig. 6. The sporadic maximal connected cyclotomic Z-hypercube S16.

Fig. 7. The sporadic maximal connected cyclotomicR-graphs of orders 1, 2, 3 and 4.

Let ϕ denote the golden ratio, 1/2+ √
5/2, so that Z[ϕ] is the ring of integers of Q(

√
5). We let ϕ

denote the conjugate of the golden ratio, 1/2 − √
5/2.

Theorem 3.3 (Cyclotomic matrices over Z[ϕ]). Let A be a maximal indecomposable cyclotomic matrix

over the ring Z[ϕ] that is not a Z-matrix. Then A is equivalent to an adjacency matrix of one of the graphs

S3, S
(1,ϕ)
4 , S

(2,ϕ)
4 , S

(3,ϕ)
4 , S6, S

††
8 , and S

‡
8 in Figs. 7 and 8.

Moreover, every indecomposable cyclotomic Z[ϕ]-matrix is contained in a maximal one.

Theorem 3.4 (Cyclotomic matrices over Z[√3]). Let A be a maximal indecomposable cyclotomic matrix

over the ringZ[√3] that is not aZ-matrix. Then A is equivalent to an adjacencymatrix of one of the graphs

S′
2, S

†
2, and S

(
√

3)
4 in Fig. 7.

Moreover, every indecomposable cyclotomic Z[√3]-matrix is contained in a maximal one.

Theorem 3.3 can be proved by computation of Z[ϕ]-matrices up to degree 8 and for Theorem 3.4

it suffices to compute Z[√3]-matrices up to degree 4. By interlacing, for all k � 2, each matrix in

S′
k contains at least one matrix from S′

k−1. From our computations, we have that there are no Z[ϕ]-
matrices inS′

9, andhence, by interlacing, neither are thereZ[ϕ]-matrices inS′
k for k > 9 and similarly,

there are no Z[√3]-matrices in S′
k for k > 4. Theorem 3.2 follows from the technique in the author’s

paper [8], in particular, the proof technique strongly resembles Section 7 of that paper. See the author’s

thesis for full details.

Let R be the compositum of all real quadratic integer rings OQ(
√

d) where d > 1 is squarefree.
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Fig. 8. The sporadic maximal connected cyclotomic R-graphs of orders 6, 7, and 8.

Theorem 3.5 (Cyclotomic matrices overR). Let A be an indecomposable cyclotomic matrix over the ring

R. Then A is a symmetric matrix over Z, Z[√2], Z[ϕ], or Z[√3].
Corollary 3.6. For n > 6 we have Sn = S′

n.

In Section 4, after stating the Perron–Frobenius Theorem, we prove Theorem 3.5 and Corollary 3.6.

4. Applying Perron–Frobenius theory

As opposed to imaginary quadratic integer rings, by working with Hermitian matrices over real

quadratic integer rings we do not possess the nice property of having a guaranteed integral charac-

teristic polynomial, but we are able to make use of the Perron–Frobenius Theorem which we state

below.

4.1. The Perron–Frobenius Theorem

The spectral radius ρ(A) of a square matrix A is the maximum of the moduli of its eigenvalues.

We define the spectral radius ρ(G) of the graph G corresponding to A to be the spectral radius of A. A

real matrix is called nonnegative if all its entries are nonnegative and a graph is called nonnegative

if it has a nonnegative adjacency matrix. Let A and B be real symmetric matrices of dimension n and

m respectively with n�m. We write A� B if A contains a principal submatrix such that A − B is

nonnegative; the inequality is strict unless A = B. For the graphs G and H corresponding to A and B

respectively, we write G �H.

Theorem 4.1 (Perron–Frobenius Theorem [7, Theorem 8.8.1]). Suppose A is an indecomposable non-

negative n × n matrix. Then:

(a) The spectral radius ρ = ρ(A) is a simple eigenvalue of A and an eigenvector x is an eigenvector for

ρ if and only if no entries of x are zero, and all have the same sign.
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Fig. 9. Four infinite families of nonnegative cyclotomic Z[√2]-graphs each having spectral radius 2. The numbers on the vertices

correspond to an eigenvector with largest eigenvalue 2. The subscript is the number of vertices.

(b) Suppose A′ is a nonnegative n × n matrix such that A − A′ is nonnegative. Then ρ(A′) � ρ(A) with

equality if and only if A = A′.

Remark. Suppose G is a connected graph and H is a nonnegative graph. An implication of Perron–

Frobenius together with interlacing is that if G > H then ρ(G) > ρ(H). The nonnegative graphs

P
(1)
n (for n� 3), P

(2)
n (for n� 2), P

(3)
n (for n� 2), and Qn (for n� 3) in Fig. 9 have an eigenvalue of 2

corresponding to an eigenvector given by the numbers beneath their vertices. By Theorem 4.1, since

the eigenvectors given are positive, the graphs P
(1)
n (for n� 3), P

(2)
n (for n� 2), P

(3)
n (for n� 2), and Qn

(for n� 3) all have spectral radius 2.

4.2. Cyclotomic matrices over the compositum of real quadratic integer rings

In this section, we prove that all matrices in S′
n are necessarily symmetric matrices over one of the

rings Z, Z[√2], Z[ϕ], or Z[√3]. Set R = R, the compositum of all real quadratic integer rings, and

let K be the Galois closure of the field generated by elements of R over Q. Let A be an R-matrix in S′
n

and let G be its corresponding R-graph. By Lemma 2.2, we need only consider entries of A from the

set R′ = {0, ±1, ±√
2, ±ϕ, ±ϕ, ±√

3, ±2}; these are the only real algebraic integers from Rwhose

conjugates all square to at most 4. Otherwise, we can apply some automorphism σ ∈ Gal(K/Q) to A

so that some entry squares to more than 4. Therefore, without loss of generality, we can take R to be

the ring generated by R′ over Z and we can set K = Q(
√

2,
√

3,
√

5).
First we deal with the possibility of G containing a subgraph equivalent to the following graphs:

We have exhaustively checked all R-supergraphs of X1, X2, X3, X4, and X5 that are in S′
n for each n ∈ N.

These supergraphs are all equivalent to subgraphs of either S
†
2, C

+−
4 , S

(1,ϕ)
4 , S

(3,ϕ)
4 , S

(1,
√

2)
4 , S7, S8, or

S′
8 (see Figs. 3, 7, and 8) and hence are all either Z[√2]-graphs, Z[√3]-graphs, or Z[ϕ]-graphs. This
computation can be checked with little effort; we used PARI/GP [16] to implement the following

algorithm. Start with a seed graph X (one of X1, X2, X3, X4, and X5). Consider all possible ways of

attaching a vertex to X so that the matrix corresponding to the resulting graph is in S′
3. For each of
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Table 1

Up to equivalence, the number of elements of the set S ′
n\Sn for n� 6.

n |S ′
n\Sn| Z[ϕ] Z[√2] Z[√3]

1 3 1 1 1

2 7 6 1 0

3 4 3 1 0

4 6 6 0 0

5 4 4 0 0

6 1 1 0 0

the resulting graphs, on (say) k vertices, repeat the process so that the matrices corresponding to the

resulting graphs are in S′
k+1. This process terminates, and we obtain the list of all R-supergraphs of

the Xj that are in S′
n for each n ∈ N. Henceforth we assume that X1, X2, X3, X4, and X5 are not equiv-

alent to any subgraph of G. We can also exclude ±2 from being an entry of our matrix A since, by

Lemma 2.2, any connected graph strictly containing either S1 or S2 does not correspond to a matrix in

S′
n for any n.

Let A′ be a smallest principal submatrix of A with respect to having at least two irrational entries

α and β such that its corresponding R-graph G′ is connected. Suppose α is not conjugate to ±β , i.e.,

α and ±β do not have the same minimal polynomial. We will show that this supposition violates the

condition thatA is inS′
n.Wecanassumethat at least oneofα andβ (sayα) isnot equal to±√

2.Observe

that, by a combination of switching and Galois conjugation (using automorphisms from Gal(K/Q)),
we canmake all the edge-weights of G′ positive and hence we assume that all the off-diagonal entries

of A′ are nonnegative.

If G′ is a triangle then, since we have excluded the subgraphs X1, X2, X3, X4, and X5, we can find a

graphH equivalent toG′ that satisfiesH > Q3. By the Perron–Frobenius Theorem, the spectral radius of

H is strictly greater than 2; hence, by interlacing, A is equivalent to amatrix that is not inS′
n. Therefore

A is not in S′
n. Otherwise, if G′ is not a triangle then G′ must be a path. Since A′ is minimal with respect

to the condition of containing both α and β as entries, any induced subpath p1p2 . . . pk of G′ must

have w(pi, pi+1) = 1 when i is equal to neither 1 nor k − 1. Moreover, the minimality also implies

that the charge of pj for j ∈ {2, . . . , k − 1} is either 0 or ±1.

We consider two cases for G′: the casewhere G′ is uncharged and the casewhere G′ has a charge. In
the first case we have H > P

(1)
n for some n and in the second, we have either H > P

(2)
n or H > P

(3)
n for

some nwhere, in each case,H is an R-graph that is equivalent to G′. By the Perron–Frobenius Theorem,

the spectral radius of H is strictly greater than 2 and hence, by interlacing, A is not in S′
n. Therefore,

we have established the following result.

Proposition 4.2. Let A be an indecomposableR-matrix having as entries two irrational integers α and β
with α not conjugate to ±β . Then A is not in S′

n.

Theorem 3.5 follows immediately.

4.3. Elements of S′
n\Sn

Here we give a proof of Corollary 3.6 and enumerate all elements in S′
n\Sn for n� 6. In Table 1

we have tabulated the number of elements of the set S′
n\Sn for n� 6, these are given working up to

equivalence. With respect to Theorem 3.5, we have also recorded the number of elements in S′
n\Sn

that lie in each OQ(
√

d)-matrix ring for d > 1. We remark that each element of S′
n is contained in a

maximal cyclotomicmatrix. Since all subgraphs of the infinite families ofmaximal cyclotomicmatrices

are in Sn, one can find elements S′
n\Sn by checking subgraphs of the sporadic maximal cyclotomic

matrices.

Now we give a lemma resembling the crystallographic criterion for a Coxeter graph, see

Humphreys [9, Proposition 6.6].
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Lemma 4.3. Let A ∈ S′
n be a Z[√2]-matrix having all its charges in Z and let G be its associated graph.

Then every cycle of G has an even number of edges of weight ±√
2. Hence A is in Sn.

Proof. Let σ be the nontrivial automorphism of Z[√2] which sends
√

2 to −√
2. Suppose for a

contradiction that G contains a cycle having an odd number of edges with weight ±√
2 and let C be a

smallest such cycle.

Case 1. C is uncharged. In this case we can switch either C or σ(C) in such a way that the resulting

nonnegative cycle C′ has C′ > Qk for some k. Hence, ρ(C′) > ρ(Qk) = 2 and so, by interlacing, we

have ρ(A) � ρ(C′) > ρ(Qk) = 2.

Case 2. C is charged. As in the previous section we can exclude X2 and X5 as subgraphs of G. In the case

when C is a triangle, one can find an equivalent cycle C′ satisfying C′ > Q3. Otherwise, C contains a

subpath equivalent to a path C′ where either C′ > P
(2)
k or C′ > P

(3)
k for some k. Therefore, in each

case, A �∈ S′
n which is a contradiction.

On the other hand, it can be readily seen that if all the cycles of G have an even number of edges of

weight ±√
2, then G is Galois invariant. �

Finally, we give a proof of Corollary 3.6.

Proof of Corollary 3.6. We have computed all the sets S′
n and Sn for n� 8. We have that S′

7 = S7

and S′
8 = S8. By computation and Proposition 4.2, we know that all matrices in S′

n for n > 8 are

Z[√2]-matrices. Thus, it suffices to consider only Z[√2]-matrices. From our computation we know

that all Z[√2]-matrices in S′
5 have all their charges in Z, hence, by interlacing, the samemust be true

for the sets S′
k for all k > 5. The result then follows from Lemma 4.3. �
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