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Pin1 is a phosphorylation-dependent peptidyl-prolyl isomerase that plays a critical role inmediating protein con-
formational changes involved in signaling processes related to cell cycle control. Pin1 has also been implicated as
being neuroprotective in aging-related neurodegenerative disorders including Alzheimer's disease where Pin1
activity is diminished. Notably, recent proteomic analysis of brain samples from patients withmild cognitive im-
pairment revealed that Pin1 is oxidized and also displays reduced activity. Since the Pin1 active site contains a
functionally critical cysteine residue (Cys113)with a low predicted pKa, we hypothesized that Cys113 is sensitive
to oxidation. Consistentwith this hypothesis, we observed that treatment of Pin1with hydrogen peroxide results
in a 32 Damass increase, likely resulting from the oxidation of Cys113 to sulfinic acid (Cys-SO2H). This modifica-
tion results in loss of peptidyl-prolyl isomerase activity. Notably, Pin1 with Cys113 substituted by aspartic acid
retains activity and is no longer sensitive to oxidation. Structural studies by X-ray crystallography revealed in-
creased electron density surrounding Cys113 following hydrogen peroxide treatment. At lower concentrations
of hydrogen peroxide, oxidative inhibition of Pin1 can be partially reversed by treatmentwith dithiothreitol, sug-
gesting that oxidation could be a reversiblemodificationwith a regulatory role.We conclude that the loss of Pin1
activity upon oxidation results from oxidative modification of the Cys113 sulfhydryl to sulfenic (Cys-SOH) or
sulfinic acid (Cys-SO2H). Given the involvement of Pin1 in pathological processes related to neurodegenerative
diseases and to cancer, these findings could have implications for the prevention or treatment of disease.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Proline is unique among the amino acids in that the peptide bond
found on the amino side of the proline can exist in both cis and trans
configurations. Not surprisingly, the cis–trans isomerization of X-Pro
bonds can have dramatic implications for the overall protein structure.
In some cases, the cis–trans conversion occurs spontaneously, as a rela-
tively slow event during protein folding [13]. The conversion can also be
catalyzed by peptidyl-prolyl cis–trans isomerases that are members of
three enzyme families: cyclophilins, FK506 binding proteins (FKBPs),
and parvulins [11]. The former two families are well characterized as
the target of the immunosuppressive drugs cyclosporine-A and FK506,
respectively. The parvulin family includes Pin1, which is unique in
steine sulfinic acid; DNPH,
,4′-mild cognitive impairment;
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that it is the only known phosphorylation-directed peptidyl-prolyl
isomerase (K. P. [23,34,49]). Pin1 is comprised of two domains, namely
an N-terminal WW domain and the catalytic peptidyl-prolyl isomerase
(PPIase) domain. The WW domain binds to pSer/pThr–Pro motifs with
high affinity, and is thought to play a role in substrate recruitment.
The PPIase domain catalyzes the cis–trans interconversion of the pSer/
pThr–Pro peptide bond.

Proline-directed phosphorylation has evolved as an important
signaling mechanism in a variety of cellular processes (K. P. [25]).
Given the ability of Pin1 to bind and isomerize pSer/pThr–Pro peptide
bonds, it is envisaged that this enzyme plays a critical role in mediating
protein conformational changes involved in these signaling events. The
importance of Pin1 is evident from its involvement in human disease.
Particularly relevant to this study, loss of Pin1 activity is implicated in
neurodegeneration [7,36]. The extent of Ser/Thr–Pro phosphorylation
increases in a number of neurodegenerative disorders including
Alzheimer's disease (AD), where Tau structure and function are dramat-
ically affected (K. P. [24]). Increased Pin1 expression reverses the delete-
rious properties of phosphorylated Tau (P.-J. [26,27,52]) and decreased
Pin1 expression correlates with AD [21,40]. Consistent with a role in
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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maintenance of neuronal function, Pin1-null mice do not display devel-
opmental phenotypes but exhibit age-dependent behavioral and motor
abnormalities, Tau filament formation, and signs of neuronal degenera-
tion [21,30]. In addition, redox proteomic analysis of hippocampal sam-
ples from patients with either mild cognitive impairment (MCI) or AD
shows increased levels of oxidative stress. Importantly, Pin1 was identi-
fied as a target of oxidation [4,12,43]. Interestingly, Pin1 also modulates
the phosphorylation of neurofilament proteins in cortical neurons in
response to oxidative stress [37] and has been implicated in neuronal
apoptosis [2].

A key residue in catalysis by the PPIase domain is an active-site cys-
teine, Cys113, which appears to have an unusually low pKa and is there-
fore ionized at cellular pH [3]. While substitution of Cys113 to alanine
results in a complete loss of activity, considerable activity (approxi-
mately 30%) is retained when Cys113 is converted to aspartic acid. On
this basis, and given its position in the active site, Cys113 may function
to reduce the partial negative charge on the carbonyl oxygen of the sub-
strate, and thereby reduce the peptidyl-prolyl double-bond character to
facilitate cis–trans isomerization [3]. The low pKa and catalytic impor-
tance of Cys113 are similar to the active site cysteine of protein tyrosine
phosphatase PTP1b, which is regulated by oxidation [39]. In particular,
oxidation of that residue by hydrogen peroxide results in the formation
of a reversible sulphenyl-amide bond with the backbone amine of the
following residue and consequent inhibition of phosphatase activity.
More recently, redox regulation of the family of ovarian tumor (OTU)
deubiquitinases has been identified [16]. These cysteine proteases are
inhibited by hydrogen peroxide, which reversibly oxidizes the low pKa

catalytic cysteine to cysteine sulfenic acid. Analogous to PTP1b and the
OTU deubiquitinase, we demonstrate in this work that wild-type Pin1,
but not Pin1 harboring a Cys113Asp mutation, is sensitive to oxidation
by hydrogen peroxide. This effect can be partially reversed by treatment
with the reducing agent dithiothreitol (DTT). Using both biochemical
and structural approaches we identify Cys113 as the site of oxidation.
Taken together, these observations suggest that modulating the oxida-
tion state of Pin1 could have important implications for the prevention
of neurodegenerative disease.

2. Materials and methods

2.1. Protein expression and purification

The recombinant Pin1 used in biochemical and structural analyses
contained a mutation of Arg14 to Ala, a substitution previously shown
to enable crystallization [32]. A second derivative, Pin1Cys113Asp,
contained an additional mutation of Cys113 to Asp [3]. Both derivatives
were expressed as hexa-histidine tagged fusions in E. coli strain BL21
from pProEX-HTA plasmids (Invitrogen). Single colonies were grown
to an optical density of 0.6 at 600 nm in LB media at 37°, followed by
overnight induction with 0.6 mM isopropylthio-α-D-β-galactoside at
18 °C. Bacteria were pelleted and resuspended in 50 mM sodium phos-
phate, 500 mM NaCl, 25 mM imidazole, pH 7.8 (buffer A) and the cell
suspension frozen at −80°. Cells were thawed and supplemented
with protease inhibitors (1 mM phenylmethylsulfonyl fluoride,
10 μg/mL pepstatin A, and 10 μg/mL leupeptin) followed by lysis using
a French press. The cell lysate was clarified by ultracentrifugation
(100,000g) and applied to a 5 mL column of Ni-NTA Sepharose (GE
Healthcare Life Sciences). The affinity resinwaswashedwith 20 column
volumes of buffer A and Pin1 was eluted using buffer A supplemented
with 250 mM imidazole. To remove the affinity tag, TEV protease was
added at a weight ratio of 1:25, along with 5 mM DTT, and the solution
mixed gently at 20 °C for 2 hours; this was followed by a second
addition of TEV protease and DTT. In preparation for cation-exchange
chromatography, the solutionwas dialyzed against 5mM sodiumphos-
phate, 5 mMDTT, 1 mM EDTA, 20% glycerol, pH 7.0 (buffer B). The dia-
lyzed Pin1 was applied to a 1.6 × 15 cm column of S-Sepharose HP (GE
Healthcare) that was pre-equilibrated with buffer B, and eluted with a
300mL gradient from0 to 600mMNaCl in buffer B. Fractions containing
Pin1were identified by SDS–PAGE, pooled, and concentrated by ultrafil-
tration to 15 to 20 mg/mL, and then dialyzed against 10 mM Hepes,
100mMNaCl, 5mMNaN3, pH7.4. Aliquotswere flash frozen and stored
at−80°.

2.2. Oxidation of Pin1

Hydrogen peroxide was added to a final concentration of either
500 μMor 1.0mMto a 20 μMsolution of Pin1. Incubationwas continued
as indicated (between 30 minutes and 4 hours) at 4° before performing
subsequent assays or analysis.Where indicated, hydrogen peroxidewas
decomposed by adding 400 U of catalase (Sigma-Aldrich) at room tem-
perature for 15minutes, followed by incubationwith 10mMDTT for 30
minutes.

2.3. Peptidyl-prolyl isomerase assays

Peptidyl-prolyl isomerase assays were performed using Pin1 at a
concentration of 0.5 μM. A 10 mM stock solution of the substrate was
prepared by dissolving succinyl–Ala–Glu–Pro–Phe–p-nitroanaline in a
water-free solution of 0.3 M LiCl in trifluoroethanol which maximizes
the proportion of substratewith the Pro–Phe bond in a cis conformation.
Chemical and Pin1-mediated cis–trans isomerase activitywasmeasured
by monitoring hydrolysis of the trans form of the substrate by chymo-
trypsin (50 mg/mL) as previously described [3,15].

2.4. Protein thiol determination assay

Determination of the thiol content of Pin1 was performed by reac-
tion with 4,4′ dithiodipyrimidine (DTDP) using the protocol of Riener
[35]. Absorbance readings were taken at 324 nm. For each experiment,
background absorbance was determined with 120 μL of 20 μM Pin1 in
Hepes buffer (50 mM Hepes, 150 mM NaCl, pH 7.0) followed by addi-
tion DTDP (5 μL of 4 mM DTDP in 12 mM HCl) with immediate mixing
to yield a final concentration of 160 μM. After incubating for 50 minutes
at 20 °C, the extent of the reaction was determined from the 4-
thiopyridone by-product of the reaction, which absorbs light at 324 nm.
The absorbance of a reagent control (A324r), consisting of 120 μL of the
Hepes buffer with 5 μL of 4 mM DTDP, was also measured. Solution was
determined by the following equation:

SH½ � ¼ A324−A324r

ε324 � l
;

where ε324 = 21,400/cm/M and l= 1 cm.

2.5. Crystal structure analysis of peroxide-treated Pin1

Pin1was crystallized byhangingdrop vapor diffusion at 4 °C in 2.0 to
2.4 M ammonium sulfate, 1% (v/v) poly(ethylene glycol) 400 (PEG400)
and 100 mM HEPES, pH 7.8. Oxidized crystals were grown as above,
with mother liquor containing 10 mM hydrogen peroxide. Diffraction
data were collected using X-rays at a wavelength of 1.5418 Å and proc-
essedwithMOSFLM [18] and Scala [9]. The structurewas determined by
molecular replacement with starting model 2ITK [51]. Both molecular
replacement and subsequent refinement were carried out with PHENIX
[1], and Coot [8] was used for manual adjustment of the model. To cal-
culate the isomorphous difference map in Fig. 4, data were collected
from a Pin1 crystal grown under the conditions described above, but
in the absence of peroxide (Table 1). To minimize differences due to
scaling and merging, the two data sets (oxidized Pin1 and untreated
native Pin1) were scaled together and then individually merged.
These data sets were then used to calculate an isomorphous difference
map (|Foox| − |Fonative|). The phases for the map were derived from a
Pin1 model refined against the data from the oxidized crystal, but



Table 1
Crystallographic data and refinement.

aPin1 — untreated aPin1 — oxidized

Space group P3121 P3121
Unit cell a = b = 68.66, c = 79.22 a = b = 68.53, c = 79.27
Resolution 17.16-2.03 (2.14-2.03) 27.79–1.86 (1.96–1.86)
Rmerge 0.083 (0.554) 0.048 (0.190)
I/σI 12.9 (2.5) 23.8 (7.5)
Completeness 94.5 (72.9) 98.4 (89.7)
Multiplicity 5.3 (4.6) 5.2 (4.8)
Refined model bn/a Residues 7 to 38 (WW domain)

and 51 to 163 (PPIase); 1 PEG
molecule; 4 sulfates; 201 waters

R/Rfree 0.1528/0.1851 (0.2348/0.2661)
cRamachandran (%)
Most favored 94.4
Allowed 5.6
Generously allowed 0
Disallowed 0
RMSD
Bond lengths (Å) 0.009
Bond angles (deg) 1.336
dAverage B-factor
Protein 24.8
Ligands 42.7
Solvent 35.7

a Values in parentheses refer to highest resolution shell.
b A molecular model was not refined against the untreated Pin1 data.
c Ramachandran statistics are from analysis with Procheck.
d B-factors were refined using 4 TLS groups, comprised of residues 7–62, 63–72, 73–98,

and 99–163.

Fig. 1. Pin1 is inhibited by hydrogen peroxide. Pin1 isomerase activity was determined by
a spectrophotometric assay using the peptide substrate succinyl–Ala–Glu–Pro–Phe–
p-nitroanaline [3]. Pin1 at a concentration of 20 μM was incubated with 500 μM or
1.0 mM hydrogen peroxide for 4 hours prior to the assay. ⁎⁎P ≤ 0.01, n = 3.
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lacking any modification to Cys113. The refined structure of peroxide-
treated Pin1 was deposited in the Protein Data Bank with ID 4QIB.

2.6. Electrospray ionization mass spectrometry

Pin1 samples were analyzed using a Q-TOF Ultima API (Waters,
Milford, MA), with MassLynx V4.1 for analysis and data processing.
Analysis parameters were as follows: capillary voltage, 3 kV; cone volt-
age, 60 V; RF lens 1 voltage, 40 V; source temperature, 80°; desolvation
temperature, 250°. The cone and desolvation gas flow rateswere 50 and
500 L/hour, respectively. The instrument was coupled to aWaters HPLC
pump, using awater/acetonitrile gradient in the presence of 0.1% formic
acid at 200 μL/min, and a BEH300 C4 (1.7 μm, 2.1 mm × 50 mm)
reversed-phase column

2.7. Statistics

All statistics were computed in Prism6 (Graphpad Software), with
P values determined by one-way ANOVA and Tukey's multiple compar-
ison post-test using the indicated n-values. Clustering analysis of the
isomerase rescue data (i.e. measurement of the isomerase activity of
oxidized Pin1 following DTT treatment) was done using SciKit Learn, a
Python-based machine learning library [31]. The K-means algorithm
was initialized with three clusters, and fit to three factors: isomerase
activity, hydrogen peroxide concentration, and duration of treatment.

3. Results

3.1. Pin1 is inhibited by oxidation

Cys113 of Pin1 is located within the enzyme's active site and is of
prime importance for catalytic activity. This residue is thought to be
ionized at physiological pH due to its low predicted pKa [3]. This low
pKa in addition to other factors in the active site microenvironment
could render the Cys113 thiol susceptible to attack by reactive oxygen
species, including hydrogen peroxide [10,14], and oxidation of Cys113
would be expected to alter the activity of the enzyme. To assess the
extent towhich Pin1 activity is affected by oxidation in vitro, we purified
recombinant Pin1 and treated it with hydrogen peroxide. The peptidy-
prolyl isomerase activity of purified Pin1 was measured using the pep-
tide succinyl–Asp–Glu–Pro–Phe–pNA as substrate [3,15]. As shown in
Fig. 1, the kcat/KM of Pin1 was 340 ± 60/mM/s, consistent with the pre-
viously determined value for recombinant Pin1 [3]. Oxidation of Pin1
was performed in vitro by incubating 20 μM Pin1 with 500 μM or
1.0 mM hydrogen peroxide, corresponding to molar ratios of 25:1 or
50:1 of hydrogen peroxide to Pin1, for 4 hours at 4 °C. The activity of
oxidized Pin1was decreased by both treatments, with the catalytic effi-
ciency of oxidized Pin1 almost 100-fold lower than that of untreated
Pin1 (Fig. 1).

To determine the extent and potential site of peroxide-mediated
oxidation on Pin1, a cysteine-counting reagent, 4′4′-dithiodipyridine
(DTDP),was used tomonitor the loss of thiols [35]. Pin1 has two cysteine
residues, Cys57 and Cys113, but only one reacts with DTDP (Fig. 2A).
Pin1 with Cys113 substituted for aspartic acid (Pin1Cys113Asp; [3])
showed zero reactive thiol groups per protein molecule, indicating that
only Cys113 reacts with DTDP. Treating 20 μM Pin1 with either 500 μM
or 1.0 mM hydrogen peroxide for 4 hours partially or fully eliminated
the ability of Cys113 to react with DTDP, consistent with a peroxide-
mediated oxidation of Cys113 (Fig. 2A). To confirm that the loss of
Pin1 isomerase activity is due to oxidation of Cys113, the effect of oxida-
tion on the isomerase activity of Pin1Cys113Asp wasmeasured. Treatment
of Pin1Cys113Asp with either 500 μM or 1 mM H2O2 for 4 hours had no
significant effect on its catalytic activity (Fig. 2B). Taken together, these
results strongly suggest that Cys113 is oxidized during H2O2 exposure,
and this modification inhibits isomerase activity.

To assess the extent of Pin1 oxidation resulting from the in vitro
hydrogen peroxide treatment, Pin1 was oxidized by exposure to
1.0 mM hydrogen peroxide for 4 hours and analyzed using mass spec-
trometry (Fig. 3A). Untreated Pin1 yielded a mass of 17583.2 Da, close
to its theoretical value of 17582.6 Da, and this was increased by 32 Da
after peroxide treatment, consistent with the addition of two oxygen
atoms to Pin1. These findings are in agreement with recent top-down
mass spectrometry experiments on hydrogen peroxide-treated Pin1,
where Cys113 was oxidized to sulfinic acid (Cys-SO2H) [42].

In general, cysteine can be oxidized to cysteine sulfenic acid (Cys-
SOH) or to sulfinic acid (Cys-SO2H). Oxidation to cysteine sulfenic acid
can be reversed by reducing agents such as DTT, whereas oxidation to
cysteine sulfinic acid is irreversible [5]. To determinewhethermodifica-
tion to sulfenic acid or sulfinic acid is the cause of Pin1 inhibition, we



Fig. 2. Peroxide treatment of Pin1 leads to loss of the Cys113 thiol. (A) The effect of oxidation on thenumber of reactive thiol groupswas assessedwith 4,4′-dithiodipyridine (DTDP; [35]). A
20 μMsolution of Pin1 or Pin1Cys113Aspwas pre-incubatedwith 500 μMor 1.0mMhydrogen peroxide for 4 hours followed by incubationwith DTDP for 5minutes at 20 °C. Absorbancewas
measured at 324 nm, and after subtracting background controls, the concentration of thiopyridine-modified cysteinewas determined from the amount of 4-thiopyridone released during
the reaction. ⁎⁎⁎P ≤ 0.001 and ⁎⁎⁎⁎P ≤ 0.0001, n= 6. (B) The isomerase activity of Pin1Cys113Asp was measured using succinyl–Ala–Glu–Pro–Phe–p-nitroanaline as substrate after being
treatedwith hydrogen peroxide at concentrations of 500 μMor 1.0mM for 4 hours. Note that activity of Pin1Cys113Asp is typically 30% of the activity ofwild-type Pin1 [3]. ⁎⁎P≤ 0.01, n=3.
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assessed the ability of reducing agents to reverse the peroxide-
mediated loss in catalytic activity. Pin1 (20 μM) was incubated with
1.0 mM hydrogen peroxide for 4 hours at 4° and then catalase was
added to remove excess hydrogen peroxide. Treatment of the oxidized
Pin1 with DTT (10 mM over 30 minutes) recovered only a very small
amount of activity (Fig. 3B). Taken together, these results indicate that
treatment of Pin1 with 1 mM hydrogen peroxide over 4 hours leads to
almost complete conversion of Cys113 to sulfinic acid, with consequent
loss of catalytic activity.

3.2. Peroxide treatment of Pin1 specifically converts Cys113 to cysteine
sulfinic acid

X-ray crystallography was used to positively identify Cys113 as the
site of modification, and to assess structural changes attendant upon
peroxide treatment of Pin1. Crystals of Pin1were grown in the presence
A

mass (Da)

Fig. 3. Peroxide-mediated oxidation of Pin1 results in 32 Damass shift accompanying loss of act
mass spectra of untreated Pin1 (black trace) and Pin1 treated with 1.0 mM hydrogen peroxide
upon oxidation, this peak shifts 32 Da to 17615 Da, indicating the addition of two oxygen atom
subjected to the peroxide treatment leading to a 32Damass shift was tested for isomerase activi
hydrogen peroxide for 4 hours, and then quenched by adding 400 U of catalase for 15 minutes,
activity (P N 0.5), consistent with conversion of a thiol to sulfinic (Cys-SO2H) rather than sulfen
of 10mMperoxide and after 3 days crystallographic datawere collected
(Table 1). The structure was solved using native Pin1 (PDB ID: 2ITK;
[51]) as a starting model. Refinement proceeded essentially to comple-
tion (R/Rfree values of 0.1536/0.1848) without including peroxide-
mediated modifications to any side chains. At this point, the phases
from the model were used to calculate an isomorphous difference
map (|Foox| − |Fonative|) between data collected from a Pin1 crystal
grown in the presence of 10 mM peroxide, and data from another crys-
tal grown under identical conditions but in the absence of peroxide
(Table 1). The largest peaks in the resulting |Foox| − |Fonative| electron
density map were connected with Cys113, and when the |Foox| −
|Fonative| map was contoured at 5σ, the only electron density present
was associated with Cys113 (Fig. 4A). Additional Pin1 residues that
might be prone to peroxide oxidation are Met15, Met130, Met146,
and Cys57; of these, only Met15 showed a small peak of positive elec-
tron density when the |Foox| − |Fonative| map was contoured at 3σ.
B

ivity. (A) The effect of peroxide treatment on themolecular mass of Pin1. Deconvoluted ESI
for 4 hours (red trace) are shown. The Pin1 spectrum shows onemajor peak at 17583 Da;
s to Pin1. (B) Effect of peroxide treatment on Pin1 isomerase activity. Pin1 that had been
ty to assess the degree of reversibility. A 20 μMsolution of Pin1was incubatedwith 1.0mM
followed by 10mMDTT for 30 minutes. Treatment with DTT did not significantly increase
ic (Cys-SOH) acid. ⁎⁎P ≤ 0.01, n = 3.
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Met15 is highly solvent exposed and in the WW domain, and so any
oxidation of this residue is unlikely to affect the PPIase activity of Pin1.
Thus, differences in crystallographic data from crystals grown in the
presence and absence of peroxide indicate that Cys113 is the site of
oxidation.

The identity of Cys113 as the site of oxidationwas further supported
by a difference densitymap, |Fo|− |Fc|, derived using the observed am-
plitudes from the oxidized Pin1 crystal, along with amplitudes and
phases calculated from the refined Pin1 structure outlined above. In
this case, the two highest electron density peaks in the map (11.8σ
and 9.5σ) were 1.5 Å from the γ-S atom of Cys113 (Fig. 4B); these
peaks represent electron density that is contributing to the diffraction,
but is not present in the partially refined model. There was no signifi-
cant electron density associated with any other sulfur atoms in the
structure, even when contoured at relatively low level of 2σ. The posi-
tions of the two electron density peaks observed in the |Fo| − |Fc|
map were fully consistent with the pyramidal geometry expected for
cysteine sulfinic acid, and therefore structure refinement was complet-
ed with a cysteine sulfinic acid residue (Csd instead of Cys) at position
113. The final structure and electron density map (2|Fo| − |Fc|) are
shown in Fig. 4C. There are only small changes in the overall structure
of oxidized Pin1, with an average distance between α-carbon (CA)
positions of 0.526 Å. Therefore, peroxide-mediated oxidation of Pin1
specifically converts Cys113 to cysteine sulfinic acid, and produces
only a local structural change in the protein. For the crystallographic
studies, the treatment with hydrogen peroxide was relatively harsh
(10mMH2O2 over several days) compared to that used to produce cat-
alytically inactive Pin1 (1 mM H2O2 over several hours). On this basis,
A

C

Cys113

Asp112

Ser114

Ser115 S

Csd113
Ser115

Leu122

Met130
Phe134

His157

Arg68

Arg69

His59

Fig. 4. Peroxide-mediated structural changes in Pin1. In panels A and B, difference electron den
maps indicate an increase in electron density associated with the γ-sulfur of Cys113 for crystal
(|Fooxidized|− |Fonative|, bluemesh, contoured at 5σ) was calculated from differences in crystallog
peroxide. Phases were derived from the partially refined Pin1 structure. (B) A difference electro
between crystallographic data collected from Pin1 crystals grown in the presence of peroxide, a
viewof the active site of peroxide-treated Pin1, inwhichCys113has been converted to cysteine
The electron density map (2|Fo| − |Fc|) is derived from the final refined structure of peroxide
created using the PyMOL Molecular Graphics System, Version 1.6.0.0 Schrödinger, LLC.
the crystallographic analysis indicates that Cys113 is uniquely suscepti-
ble to oxidation (since no other residues were modified under these
conditions), but that oxidation of Cys113 does not proceed to the fully
oxidized sulfonic acid (Cys-SO3H; [48]).

Oxidation of Pin1 is partially reversible. Peroxide-mediated oxida-
tion proceeds first with the formation of sulfenic acid (Cys SOH) that
can be followed by oxidation to sulfinic acid (Cys-SO2H). Wewere curi-
ous as towhether the less stable sulfenic acid form could be observed by
milder treatment with hydrogen peroxide, which would open the pos-
sibility that Pin1 isomerase activity is reversibly regulated by physiolog-
ical redox mechanisms [5]. Pin1 was treated with either 500 μM or
1 mM peroxide for various times, after which the reaction was stopped
by adding catalase to consume any additional peroxide. Isomerase
assays were performed on samples after oxidation or following an addi-
tional treatment for 30 minutes with 10 mM DTT (Fig. 5A). The least
harsh oxidation conditions (500 μM peroxide for 30 minutes) resulted
in 85% loss of activity that could be partially reversed by DTT treatment.
More extensive exposure to hydrogen peroxide resulted in almost com-
plete inhibition of Pin1 activity, but with 30 to 40% recovered after the
DTT treatment. These results show that a significant proportion of
Pin1 is oxidized only to the sulfenic acid (Cys SOH) form under mild
oxidizing conditions, and that this form, like the sulfinic acid form, has
a much lower catalytic activity than native Pin1.

From the graph in Fig. 5A, it appears as though the efficacy of rescue
dropped in a stepwise rather than linear manner as concentration and
duration of peroxide treatment was increased. To assess whether
there are discrete differences in the response of Pin1 to varying treat-
ments of hydrogen peroxide, rather than a continuous linear trend,
B

Cys113

Asp112

Ser114

er115

Leu122

Met130
Phe134

Ser115
Arg69

Arg68

His157
His59

Csd113

sity maps show the effect of peroxide treatment on the structure of Pin1. In both cases, the
s grown in the presence of peroxide. (A) An isomorphous difference electron density map
raphic data collected from Pin1 crystals grown in either the presence or absence of 10mM
n density map (|Fo|− |Fc|, green mesh, contoured at 5σ) was derived from the difference
nd calculated amplitudes and phases from the partially refined Pin1 structure. (C) A stereo
sulfinic acid (Csd113) on the basis of the difference electron densitymaps inpanelsA andB.
-treated Pin1, which was deposited in the Protein Data Bank with ID 4QID. Images were



Fig. 5. Inhibition of Pin1 by oxidation can be partially reversed. (A) Isomerase activity of Pin1 after oxidation and DTT treatment is shown. A 20 μM solution of Pin1 was incubated with
500 μM or 1.0 mM hydrogen peroxide for up to 4 hours, and then quenched by adding 400 U of catalase for 15 minutes, followed by 10 mM DTT for 30 minutes. Effect of H2O2 and
DTT treatments were measured by ordinary two-way ANOVA, corrected for multiple comparison by the Holm–Sidak method. Effect of DTT was significant at ⁎⁎P ≤ 0.01 and ⁎P ≤ 0.05
for intermediate H2O2 treatments. Simple effects of H2O2 treatments + DTT were significant at ⁎P ≤ 0.05, ⁎⁎⁎P ≤ 0.001, and ⁎⁎⁎⁎P ≤ 0.0001 (n = 3 for each group) when compared to
the most extreme treatment (4 hours × 1 mM). Similarly, comparing the effect of H2O2 treatments to the no treatment positive control was significant at P ≤ 0.0001 for all treatments
(not shown). (B) K-means clustering analysis of the above data. Samples were plotted as dot and whiskers representing mean and range respectively. Each cluster is circled in the
color in which it appears in the inset. The inset illustrates that the clusters identified had significantly different isomerase activity. ⁎⁎⁎⁎P ≤ 0.0001.
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K-means clustering analysis was used (Fig. 5B). K-means clustering of
the data from Fig. 5A was carried out using three factors: isomerase
activity, peroxide concentration, and duration of treatment. This analy-
sis separated the data into three groups: fully active, partially active
(approximately 30% activity), and inactive. The untreated samples
were both classified as fully active, while all samples treated with
hydrogen peroxide, but not DTT, were classified as inactive. All samples
treated with both peroxide and DTT, except those treated with 1.0 mM
peroxide for 2 or 4 hours, clustered together as partially active, meaning
that their activities were nearer to each other than the activities of the
fully active or inactive samples. In order for the isomerase activity of
oxidized Pin1 to be rescued by DTT-mediated reduction, Cys113 must
have been modified to the less stable sulfenic acid (Cys SOH) rather
than sulfinic acid (Cys-SO2H). The fact that 30–45% of isomerase activity
is rescued over a range of treatments suggests that a distinct and persis-
tent subset of Pin1 molecules are able to maintain the unstable sulfenic
acid moiety at Cys113, while the remaining molecules are further oxi-
dized to sulfinic acid. At this point, a mechanism by which the sulfenic
acid form of Cys113 may be stabilized in Pin1 is not known.

4. Discussion

4.1. Pin1 is inhibited by oxidation of the catalytic Cys113

The current investigationwas initiated because two oxidative prote-
omics studies of brain tissue from individuals with mild cognitive im-
pairment (MCI) or Alzheimer's disease (AD) demonstrated that Pin1 is
significantly oxidized, and Pin1 activity reduced, compared to tissue
from individuals not suffering from MCI or AD [4,43]. The exact nature
of the oxidation was not clear, since the reagent used to detect oxidized
proteins, dinitrophenylhydrazine (DNPH), reacts with aldehydes,
ketones, and also cysteine sulfenic acid [6]. We have extended this
work to show that Pin1 activity is lost upon treatment with hydrogen
peroxide in vitro, and determined the site of oxidation to be the catalytic
cysteine, Cys113. Hydrogen bonding in the Pin1 active site is predicted
to lower the pKa of Cys113 to approximately 6.5 [19], which would
increase the concentration of the reactive thiolate anion at neutral pH;
however, as with other redox-sensitive active site cysteines, there
must be additional factors in the Pin1 active site that make Cys113
unusually susceptible to oxidation [10].
With gentle peroxide treatment, Cys113 undergoes partial oxidation
to the reversible sulfenic acid. Thus, in vitro, the active site cysteine of
Pin1, Cys113, is sensitive to oxidation, can be reversibly oxidized to
cysteine sulfenic acid, and is irreversibly oxidized to cysteine sulfinic
acid. The redox proteomics studies of the hippocampus of patients
with MCI and AD identified oxidized proteins based on the presence
of peptide carbonyl derivatives that would react with DNPH [4,43,44].
The generation of peptide carbonyl derivatives, or carbonylation, is gen-
erally the result of metal-catalyzed oxidation or severe oxidation and
can occur at most amino acids [33]. Our in vitro studies show that
Cys113 is by far the most redox sensitive residue in Pin1, and, since ox-
idation of cysteine to sulfenic or sulfinic acid requires less oxidative
stress than the generation of peptide carbonyl derivatives, it follows
that Pin1 identified as carbonylated in hippocampal samples of patients
with MCI and AD would contain Pin1 that is oxidized at Cys113. In this
regard, it should be noted that the reagent used to detect the oxidative
modifications in brain tissues (DNPH) does not react with cysteine
sulfinic acid [6], and so the actual formdetectedwasmost likely restrict-
ed to Cys113 reversibly oxidized to the sulfenic acid. In summary, com-
bining the results of the current study with the previous oxidative
proteomics studies [4,43], oxidation of Pin1 in vivo is most likely occur-
ring on Cys113 to yield cysteine sulfenic acid, with possibly some irre-
versible oxidation to sulfinic acid, and both modifications result in loss
of Pin1 activity.

Why is a redox-sensitive cysteine present in the active site of Pin1? A
partial or full negative charge on Cys113 is thought to contribute to the
catalyticmechanism [3]. Consistentwith this idea is the fact that Cys113
can be substituted with aspartic acid, which is found in the active site of
related parvulins [41], and Pin1Cys113Asp retains 25 to 30% of its activity
and fully supports viability in yeast [3]. Pin1Cys113Asp is not only func-
tional, but also resistant to oxidation, which raises the question as to
whether cysteine in the active site has been selected for because it
allows Pin1 to be modulated by oxidative signaling mechanisms. Pin1
is a phospho-specific peptidyl-prolyl isomerase and as such has been
implicated in kinase-mediated signaling pathways [38,50]. In fact, a
number of both phosphatases and kinases have redox-sensitive cysteine
residues that modulate enzyme activity when oxidized [5]. The pres-
ence of a redox-sensitive cysteine in the active site of Pin1 therefore
raises the possibility that it is normally subject to redox regulation in
cells.
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4.2. The relationship between oxidation of Pin1 and neurodegenerative
pathologies

Given its potential roles in kinase-mediated signaling, it is expected
that Pin1 will have diverse roles in a number of cellular processes. Pin1
knockout mice display accelerated neurodegeneration and a variety of
other symptoms associated with premature aging [17,21,22]. Given
that Pin1 could be neuroprotective (K. P. [25]), an effort has been
made to understand why it does not effectively perform that role in
neurodegenerative diseases. While there is little evidence to suggest
that there is a genetic link, or that Pin1 expression changes in AD, Pin1
availability and subcellular localization is negatively affected in AD
pathologies [27–29,40,47]. Pin1 associates with both neurofibrillary
tangles and amyloid plaques in neurons from AD patients [36]. This
causes a reduction in the soluble fraction of Pin1, and a change in local-
ization from the nucleus to cytoplasm ([21]; P.-J. [26,45,46]). Since Pin1
prevents or reverses both of these pathologies, there may be a relation-
ship between the loss of Pin1 activity and AD [20,30]. These studies sug-
gest a role for Pin1 in the progression of AD with the neuroprotective
functions of Pin1 being lost as age-related oxidative stress inhibits
Pin1, presumably allowing the formation of neurofibrillary tangles and
β-amyloid deposits. In turn this could further promote the loss of Pin1
function by sequestering it to the insoluble fraction and thereby
enhancing the disease pathology.

Overall, this work has revealed that Pin1, a phosphorylation-
dependent peptidyl-prolyl isomerase, undergoes oxidation at Cys113,
a residue with a critical role in catalysis. Given the apparent involve-
ment of Pin1 in pathological processes related to neurological disorders,
this finding could have important implications for the development
of strategies for the prevention or treatment of neurodegenerative
diseases. Furthermore, in light of its functions related to the control of
cell division, it is conceivable that oxidation of Pin1 could be exploited
for therapeutic intervention in proliferative disorders such as cancer.
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