
 

  

 

 

 

 

 

 

 
 
 
 

 
Introduction 
 

Liquid chromatography-tandem mass spectrometry (LC-
MS/MS) based un-targeted metabolomics is a challenging activity in 
the characterization of detectable metabolites. The description of 
metabolite accumulation patterns is desirable in many fields of 
research; e.g. fuel, lead chemicals for pharmaceuticals, safety 
assessment, and breeding [1-12]. Using the LC-MS/MS strategy, a 
few hundreds to thousands of metabolites can be detected in an 
organism [13]. In model organisms, gene annotations in whole 
genome sequence are assigned to representative biosynthesis enzyme 
classes (hydroxylation, methylation, glycosylation, acetylation, etc.), 
and these modification reactions generate a huge number of 
derivatives from a core structure, which has diverse chemical 
properties and specific bioactivities [14-17]. Plants are the largest 
producer of phytochemicals— metabolites that play essential roles in 
the interactions between plant and other organisms. Moreover, when 
ingested, phytochemicals are metabolized in the body of the predator 
and it undergoes further changes [18,19]. Thus, massive extended 
metabolite detection is quite important for elucidating the complex 
metabolic systems among organisms. Recent advances in hardware and 
software enable the comprehensive analysis of these biological 
samples. 

In general, the isolation and complete identification of a 
detectable metabolite is the first step in metabolic systems research. 
However, classical instrumental analyses (MS, MS/MS, UV, and 
NMR) can be used for investigating very few metabolites in model 
organisms [20] that have established research infrastructures (e.g. 
genomics,  transcriptomics,  and  proteomics).  Metabolomics can be  

 
 
 
 
 
 

 
 

 
  

integrated with other omics approaches based on metabolic pathways 
[21-42], but the connections between metabolites and gene functions 
have too large gaps for interpreting the un-targeted data [43]. This is 
because metabolite levels in an organism are dynamically changed by 
the effects of multiple levels (e.g., genome, transcript, protein, and 
metabolite). 

In this mini review, we focus on recent advances in LC-MS/MS 
based un-targeted metabolomics by characterizing detectable 
metabolites and by multi-type MS integration for practical 
quantification and qualification of metabolites in a few hundred 
bioresources. As previous research, electron ionization (EI), used in 
gas chromatography (GC)-MS are highly reproducible, and standard 
mass spectrum databases of GC-MS data have reported [44]. 

 
Characterization of un-targeted data 

 
Identification of metabolites depends on authentic compounds 

and isolation, as described above. MS-based un-targeted detection of 
metabolites is an innovative methodology that does not depend on the 
following classical identification process: prepared biological samples, 
acquisition of extracted samples, data alignment, and generation of a 
data matrix (samples versus metabolites), multivariate analysis, and 
characterization of significantly changed metabolite structure. The 
description of all detectable metabolite candidates in an organism is 
likely to include novel biological findings, and the goal is the 
elucidation of complex metabolic systems for biosynthesis and 
metabolite structure-activity relationships. To identify the structure of 
detectable metabolite, the un-targeted methodology should integrate 
with classical validation. In the characterization of metabolite 
structure, the Metabolomics Standards Initiative (MSI, http://msi-
workgroups.sourceforge.net/) has defined the compliance for 
validation of non-novel compounds [45,46]. 

Validation of the isolated metabolites by using multiple 
instruments is the most reliable evidence, but this time-intensive 
process is a major bottleneck in the interpretation of un-targeted 
metabolomics data. LC-MS, combined with solid phase extraction-
NMR, will be an efficient tool in de novo structural narrowing down 
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[47,48]. Using accurate high-resolution m/z values, detectable 
metabolites can be annotated as elemental compositions by using a 
metabolites database [21,49,50]. However, the monoisotopic mass of 
the metabolite cannot be assigned its elemental composition, even at 
less than 1 ppm of mass error of FT-MS data [51]. Thus, accurate 
mass data combined with the natural abundance of the isotopic ion 
are used for elemental composition analysis [52], and stable isotope 
labeling is also effective for elemental composition analysis [53,54]. 

The coverage of annotation was improved by the establishment of 
large-scale reference MS and MS/MS databases, including a query 
data search algorithm [55-62]. In the search system, the m/z values of 
query data are compared with the reference data derived from the 
acquisition data of authentic compounds, and the matched data is 
returned within the user’s defined tolerance for unit and high 
resolution m/z values. The MS/MS search can use m/z values 
combined with intensities for scoring the probability between query 
and reference data. Un-targeted data have tolerance both in 
chromatographic retention time and m/z value, and these drifts are 
adjusted across measurements by using alignment software [63-68]. 
As advanced web-based platforms, automated workflows from 
processing to analysis have been established; e.g., peak alignment of 
row data, annotations, statistical analysis, and visualization [69-72]. 
These web applications can annotate thousands of MS data, and these 
tools are designed to enable easy access for a broad range of 
investigators, regardless of informatics expertise. 

MS/MS data derived from the literature are a very valuable data 
resource that are not dependent on available authentic compounds, 
and a few hundred metabolites can be collected from the literature 
each year. Using a hybrid MS/MS data resource, our acquisition data 
of authentic compounds and manually curated literature data, we 
successfully established an MS/MS web database and a new search 
algorithm. Confidence levels can be managed by MS/MS 
fragmentation association rules—an algorithm for discovering 
common fragmentations in MS/MS data (ReSpect: 
http://spectra.psc.riken.jp/) [73,74]. ReSpect is the first fully 
downloadable MS/MS data resource under a Creative Commons 
Attribution - Noncommercial 2.1 Japan License. However, the other 
public databases are presented as a showcase, which cannot be reused 
for the development of new methodology. We expect that users of 
bioinformatics and metabolomics will be able to develop novel 
algorithms and methodologies by using our reusable data resources. 

 

 
More than one-million un-targeted MS/MS tags (MS2T) can be 

collected by high-speed scanning by LC-Q-TOF-MS [43,73], but we 
only have a few thousand reference data. Given the sensitivity and 
extension of detectable metabolites in advanced MS instruments, the 

gap between detected and reference information will spread further. 
Because of the large gap between query and reference MS/MS, more 
than 90% of the detectable metabolites are unknown. Unfortunately, 
no de novo identification methodology for unknown metabolites 
exists in MS-based metabolomics, as described above. Thus, 
integrated omics approaches incorporating genomics and 
metabolomics are thought to possess great potential for effectively 
narrowing down the candidate structure of unknown metabolites 
[75]. As a genetic resource for the integrated omics approach, 
recombinant inbred lines (RILs) have been established in model and 
non-model plant species. In this review, we show recent 
methodologies for un-targeted metabolite quantitative trait locus 
(QTL) analysis by linkage mapping. 

 
A large-scale SRM assay system for biological validation 

 
The metabolite accumulation pattern in an organism is a 

quantitative phenotype, and the regulatory genes have been identified 
by QTL analysis [76,77]. To elucidate detectable phenotype QTL, a 
few hundred recombinant inbred lines, along with molecular marker 
information, have been distributed to bioresource projects [78]. Such 
QTL analyses require a few hundred to a thousand acquisitions; e.g., 
100 recombinant inbred lines × 3 replicates × 2 years × 2 mode 
acquisitions (positive ion mode/negative ion mode) = 1200 
acquisitions. Thus, targeted analysis is suitable for biological 
validations based on the statistically significant difference among 
metabolite accumulation patterns, because of the relatively small data 
size, high sensitivity detection, and high-speed data analysis (Table 1). 
A few thousand targeted analyses for amino acid and derived 
secondary metabolites using large scale gene knockout lines have been 
reported [79-82]. 

 

 
 
 
 
 
 
 

 

 

Figure 1. Workflow of integrated metabolomics by LC-Q-TOF-MS and LC-
TQ-MS. (A) LC-Q-TOF-MS can detect information of MS and MS/MS in all 
detectable chromatographic peaks. (B) LC-TQ-MS can optimize 
fragmentation conditions based on the LC-Q-TOF-MS data. The arrow 
shows the optimized collision energy in triplicate experiments. 
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In MS/MS-based targeted analysis, selected reaction monitoring 
(SRM) using tandem quadrupole MS (TQ-MS) has high sensitivity 
and a wide dynamic range. To extend detectable metabolites using 
SRM, we have established a new methodology: widely targeted 
analysis based on large-scale MS/MS data of authentic compounds 
[83]. Using this methodology, more than 500 SRM conditions and 
retention time sets can be managed, and the annotation rate of 
collected data is 100% [84-86]. To extend detectable targets without 
dependence on reference MS/MS data, we have tried to establish a 
large-scale SRM assay system for incorporation of un-targeted data. 
As shown in Fig. 1A, LC-QTOF-MS can detect all detectable 
chromatographic peaks at acquisition, and all peaks can be 
characterized by retention time, MS (precursor ion), and MS/MS 
(product ions) [43,87]. As shown in Fig. 2B, SRM conditions for 
metabolite candidates can be selected by an in silico predicted 
precursor ion and its product ion with MS peak intensity. Using LC-
TQ-MS, six steps collision energy (10–60 eV) can be used for 
optimization (Fig. 1B). The data size of few hundred SRM assays in a 
sample is less than 10 megabyte. 

 

 
This case study of a large-scale SRM assay system was introduced 

as follows. All data can be downloaded at DROP Met in our web site 
(http://prime.psc.riken.jp/). We collected 46,717 un-targeted 
MS/MS data for Glycine max: GMA01, GMA02 (MS2T viewer at 
http://prime.psc.riken.jp/); and then metabolite candidates were 
selected with MS peak intensity, and 384 SRM conditions were 
successfully optimized based on the threshold (relative standard 
deviation < 10% in triplicate experiments and peak area value > 
100). Using these SRM conditions, we carried out the mQTL 
analysis for G. max and G. soja as distributed in the LegumeBase 
(http://www.legumebase.brc.miyazaki-u.ac.jp). First, the 48 known 
and 60 unknown metabolite candidates were selected as significantly 

different between parent lines, and these SRMs were measured using 
279 samples (93 soybean RILs x 3 biological replicates). Using 288 
gene markers, we successfully identified significant associations 
between 4 mQTL and 17 SRM (Fig. 2). The 17 SRMs were derived 
from 4 standard compounds and 13 MS2Ts, and only one SRM was 
annotated using MS2T data and the ReSpect database in Table 2 and 
the Supplemental data in DROP Met at RIKEN PRIMe 
(http://prime.psc.riken.jp/). 

 
Concluding remarks 

 
In this review, we describe the characterization of MS-based un-

targeted data by analytical and biological methods. Using large-scale 
reference data derived from acquisition data for authentic compounds 
and reports in the literature, the coverage of annotations in un-
targeted data will be dramatically improved in future metabolomics 
activities. Web-based integration among databases is also effective, 
and can be achieved by the reuse of the fully downloadable data 
resource or the establishment of an application-programming interface 
in each database. The genomics guided characterization of un-targeted 
data (e.g., large-scale reverse genetics, linkage mapping, and 
association mapping) has proven to be a powerful tool for candidate 
structure selection and rejection. 

 

 
 
 
 
 

 
 
 
 
 

 

Figure 2. mQTL of TK780 (G. max) × B01167 (G. soja) RILs. The maximum logarithm of odds (LOD) score values obtained from triplicate experiments were 
plotted in each chromosome (Chr: 1–20). The major mQTLs were estimated based on the LOD scores (<10). 
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