
Discrete Applied Mathematics 96–97 (1999) 127–138

The complexity of the falsi�ability problem for pure
implicational formulas

Peter Heusch ∗

Institut fur Informatik, Universit�at zu K�oln, Pohligstr.1, D-50969 K�oln, Germany

Received 1 May 1997; revised 1 June 1998; accepted 5 October 1998

Abstract

We consider Boolean formulas where logical implication (→) is the only operator and all
variables, except at most one (denoted z), occur at most twice. We show that the problem
of determining falsi�ability for formulas of this class is NP-complete but if the number of
occurrences of z is restricted to be at most k then there is an O(|F |k) algorithm for certifying
falsi�ability. We show this hierarchy of formulas, indexed on k, is interesting because even
lower levels (e.g., k = 2) are not subsumed by several well-known polynomial time solvable
classes of formulas. ? 1999 Elsevier Science B.V. All rights reserved.

Keywords: Algorithms and data structures; Logic in computer science

1. Introduction

The satis�ability problem (SAT) for Boolean formulas in conjunctive normal form
(CNF) was the �rst problem that was shown to be NP-complete, [1]. Its complexity
has been the subject of quite a number of studies.
Unfortunately, CNF-SAT does not induce a simple natural hierarchy of polynomially

solvable subproblems like, e.g. CLIQUE, where for every �xed k the question whether
a CLIQUE of size k exists in some given graph is polynomially solvable. The natural
subproblems of CNF-SAT instead can be grouped into two classes: those which are
solvable within time O(n) or O(n2), and those which are NP-complete. Examples of
this behaviour are the classes 2-SAT and 3-SAT (see [3] for de�nition), for inputs
from the �rst class the SAT-problem is solvable in linear time, for inputs from the
second class the satis�ability problem becomes NP-complete.
There are also classes Ci of formulas where for any F ∈ Ci the satis�ability problem

is solvable in time O(|F |i), |F | denoting the number of occurrences of variables in the

∗ Fax: (0221) 4-70-53-87.
E-mail address: heusch@informatik.uni-koeln.de (P. Heusch)

0166-218X/99/$ - see front matter ? 1999 Elsevier Science B.V. All rights reserved.
PII: S0166 -218X(99)00036 -0

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82249902?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

128 P. Heusch /Discrete Applied Mathematics 96–97 (1999) 127–138

formula, for example the classes Ci where every formula in Ci is satis�able by setting
at most i variables to true, but this classi�cation is quite unsatisfactory in the sense
that the test whether an input F belongs to some class Ck may need up to O(|F |k)
steps. Important classes showing this behaviour are the classes �i de�ned by Gallo and
Scutella [2].
We will present a new hierarchy S1⊆ S2⊆ · · · with the property that for every F ∈ Si

the falsi�ability problem, i.e. the question whether an assignment to the variables exist
such that the formula evaluates to false can be solved in time O(i|F |i−1), while the
test whether F ∈ Si can be solved in linear time. The proof of the runtime bound is
constructive; we analyze an algorithm that outputs a set Z of variables with the property
that assigning false to all variables in Z and true to all other variables yields a solution.
The algorithm uses backtracking to compute its result, contrary to other backtracking
algorithms it always performs one-sided decisions by never requiring explicitly that
true be assigned to some variable.
Furthermore, we will prove that every SAT-problem is polynomially reducible to

some problem in
⋃
i Si, hence the falsi�ability problem for

⋃
i Si is NP-complete.

Lukasiewicz [6] showed the existence of a single short axiom such that all true
implicational statements are derivable from this axiom. Nevertheless, the class also
contains formulas that represent hard inputs for combinatorial optimization problems,
and also the “easy” subclasses are unrelated to some commonly known classes of
“easy” inputs for the satis�ability problem. This is shown in the last section by proving
that the commonly known “easy” subclasses of SAT are neither sub- nor superclasses
of S2.
The remaining part of this paper is organized in the following way: the next sec-

tion contains the de�nitions needed, in Section 3 we prepare our main result which is
presented in Section 4. In the last section we give a relationship between the class of
formulas solvable in linear time by our algorithm and other classes for which satis�a-
bility is solvable in linear time.

2. De�nitions

A Boolean formula F = C1 ∧ C2 ∧ · · · ∧ Cr in conjunctive normal form (CNF) over
n variables v1; : : : ; vn is a conjunction of clauses C1; : : : ; Cr , where each clause Cl is a
disjunction of literals xi1 ; : : : ; xil , a literal either stands for a variable (positive literal)
or its complement (negative literal). A Boolean formula is in pure implicational form
(PIF), i� it contains only positive literals and the only connective being used is the
logical implication. For any implication A → B we call A the implicant and B the
consequence of the implication. Since the implication is a nonassociative connective,
we de�ne A→ B→ C to be read as A→ (B→ C). An assignment t : {v1; : : : ; vn} 7→
{true; false} satis�es a Boolean formula F , i� F evaluates to true when every variable
v is replaced by t(v) and the usual evaluation rules for Boolean operators are applied, t
falsi�es F i� F evaluates to false. A partial assignment is a function t : {v1; : : : ; vn} 7→

P. Heusch /Discrete Applied Mathematics 96–97 (1999) 127–138 129

{true; false; undef }, a (partial) assignment t′ extends a partial assignment t, i�
t(v) 6= undef ⇒ t′(v) = t(v):

An assignment t′ is called 1-extension of a partial assignment t, if t′ extends t and
t(v) = undef implies t′(v) = true.
For any Boolean formula F = F1 → F2 and for any occurrence of a subformula F ′

of F we de�ne

Dl(F ′; F) = 0 if F = F ′;
Dl(F ′; F) = 1 +Dl(F ′; F1) if F ′ lies in the implicant of F;
Dl(F ′; F) =Dl(F ′; F2) if F ′ lies in the consequence of F:

If F is represented by a tree then Dl(F ′; F) denotes the number of left edges we have
to pass on the path from the root of F to the root of F ′. A literal v in F is positive, i�
Dl(v; F) is even, else v is called a negative literal. A variable v is called pure, i� either
all its corresponding literals are positive or all its corresponding literals are negative.
The set

B(F) = {F ′ |F ′ is subformula of F; Dl(F ′; F) = 0}
is called the backbone of F , those subformulas F ′ of F that have Dl(F ′; F)=1 are called
the backbone implicants of F . The backbone of F contains exactly one subformula that
is a variable, this variable is the rightmost variable Vr(F) of F . The set of Boolean
formulas in PIF where every variable except the rightmost variable occurs at most twice
is called 2-PIF. We call a formula in 2-PIF normalized, if no variable occurs more than
once as rightmost literal of a subformula F ′ with Dl(F ′; F) even. A backbone implicant
F ′ of F is called a critical subformula, w.r.t a partial assignment t, i� t(Vr(F ′)) =
false; the reason behind this is that all other backbone implicants are satis�ed by the
1-extension of t and hence do not touch the falsi�ability of F . We will see that the
number of subformulas that are possibly or actually critical plays an important role in
the analysis of the falsifying algorithm. If a subformula F ′ of F is critical and F ′′ is a
backbone implicant of F ′, we call F ′′ compensating (w.r.t a partial assignment t), if t
falsi�es F ′′. This is due to the fact that a formula F in PIF can be satis�ed by setting
Vr(F) to true or by falsifying at least one of the backbone implicants, hence to falsify
F , Vr(F) must be set to false and all backbone implicants have to be satis�ed.

3. A hierarchy for pure implicational formulas

We will now de�ne the formula subsets that subdivide 2-PIF and prove some results
about them as well as about 2-PIF itself. We de�ne Si to contain all those formulas F
in normalized 2-PIF, such that Vr(F) occurs at most i times in F , i.e. i− 1 times with
odd left distance.
The de�nition of these sets immediately implies the following lemma, whose proof

is obvious:

130 P. Heusch /Discrete Applied Mathematics 96–97 (1999) 127–138

Lemma 1. For any Boolean formula F in 2-PIF; the membership problem whether F
belongs to Si can be determined in linear time.

Another interesting point that a hierarchy must ful�ll to be interesting is that it
must also be a real hierarchy, i.e. that it must not collapse beyond a certain class, as
in the case of CNF-SAT, where an increase of the number k of literals allowed in
one clause does not change the complexity of the problem substantially for k¿3, it
remains NP-complete. The following theorem based on a theorem by Kleine B�uning
et al. given in [4], however, gives a strong hint that this is indeed the case with the
hierarchy induced by the Si:

Theorem 1. The falsi�ability problem for formulas in 2-PIF is NP-complete.

Proof. We reduce the well-known NP-complete SAT-problem for Boolean formulas
in CNF where every variable occurs at most 3 times to the falsi�ability problem for
Boolean formulas in PIF. Let F be such a formula in CNF. W.l.o.g. we may assume that
every variable with three occurrences occurs exactly once positive and twice negative
in F . Let a be such a variable and let C1, C2 be the clauses such that C1 =@a ∨ C′

1

and C2 =@a ∨ C′
2. We then introduce new variables a′, a′′ and replace C1, C2 by

@a∨ (a′ ∧ a′′), @a′ ∨C′
1 and @a′′ ∨C′

2. By repeating this process for every variable
occurring three times in F we get a new formula F ′ s.t. every variable is contained at
most twice in F ′.
The next step is to eliminate the logical operations ∧; ∨ and @. Without changing

the number of variables this can be achieved by substitution of a → false for @a,
(a → false) → b for a ∨ b and (a → (b → false)) → false for a ∧ b. At this point
we may apply some simpli�cation rules, e.g. substituting a for a → false → false.
To eliminate the logical constant false, we replace every occurrence of false by a
new variable z, which will be forced to be set to false later on. Since every single
transformation increases the size of the formula at most by a constant factor, the size
of the resulting formula F ′′ is bounded polynomially by the size of F .
Clearly, F ′′ contains every variable at most twice and is satis�able by every as-

signment that satis�es the original formula F and sets z to false, thereby setting those
“variables” to false, where z was replaced for the constant value false. This immedi-
ately results in the formula F ′′ → z being falsi�able i� F was satis�able, hence the
falsi�ability problem for Boolean formulas in 2-PIF is NP-complete.

4. Main theorem

Theorem 1 showed that every instance of an NP-complete problem must be contained
in one of the set Si. In the next step we show that our hierarchy is indeed a poly-
nomial hierarchy, i.e. that the falsi�ability problem is polynomially solvable for every
�xed Si.

P. Heusch /Discrete Applied Mathematics 96–97 (1999) 127–138 131

We will prove this by the analysis of an algorithm called PIF solve, this algorithm
uses backtracking to determine a set Z of variables s.t. setting the variables from Z
to false and all other variables to true falsi�es the formula, if such a Z exists. To
show the correctness of PIF solve, we need some preparatory lemmas about Boolean
formulas in PIF.

Lemma 2. Let F be a formula in PIF. Then F is falsi�able i� an assignment t with
t(Vr(F))= false exists such that for every subformula F ′ of F that is critical w.r.t. t
there is a compensating subformula F ′′ of F ′.

Proof. To falsify F an assignment t must exist such that t(Vr(F)) = false and every
backbone implicant of F is satis�ed under t. If a backbone implicant F ′ is not critical, it
is satis�ed by t since t(Vr(F ′))=true. Otherwise it is satis�ed, i� w.r.t. t a compensating
subformlua F ′′ of F ′ exists, i.e. F ′′ is falsi�ed under t, for in this case F ′ evaluates
to true, too.
If, on the other hand, no such assignment exists, then for every assignment t there

is at least one critical backbone implicant F ′ such that F ′ does not contain any com-
pensating subformula F ′′, hence F ′ evaluates to false under t, thereby satisfying F . It
follows that F is a tautology.

By the last lemma it is su�cient to �nd an assignment t such that every critical
backbone implicant has a compensating subformula. The lemma is, however, not very
helpful in �nding such an assignment, testing all possible assignments leads to a run
time bound of 2n, n the number of variables in F . The following lemma shows how
to reduce an instance of a given falsi�ability problem to a set of smaller ones.

Lemma 3. Let F = F1 → F2 → · · · → Fk → z be a Boolean formula in PIF with
backbone implicants F1; : : : ; Fk and let t be a partial assignment to the variables of
F with t(z) = false. Furthermore let Fj = G1 → G2 → · · · → Gh → z′ be a critical
backbone implicant w.r.t. t. Then F can be falsi�ed by an extension t′ of t i� for at
least one 16l6h the formula F̃ =F1 → F2 → · · · → Fj−1 → Fj+1 → · · · → Fk → Gl
is falsi�ed by t′.

Proof. Suppose that F is falsi�able by an extension t′ of t. Since Fj is critical, t′

must falsify at least one (e.g. Gl) of the subformulas G1; : : : ; Gh to satisfy Fj; at the
same time all other backbone implicants F1; : : : ; Fj−1; Fj+1; : : : ; Fk must also be satis�ed
by t.
Hence F̃ = F1 → F2 → · · · → Fj−1 → Fj+1 → · · · → Fk → Gl is falsi�ed by

t′. On the other hand, if F̃ is falsi�ed by an extension t′ of t, Gl is a compensating
subformula for Fj, hence t′ satis�es all backbone implicants of F and falsi�es z, so F
is falsi�ed, too.

132 P. Heusch /Discrete Applied Mathematics 96–97 (1999) 127–138

Fig. 1.

Fig. 2.

This can also be seen as a graph manipulation process: if the formula is interpreted
as a tree where the inner nodes correspond to operators and the outer nodes correspond
to variables, then we can falsify the formula from Fig. 1 i� for at least one l the
formula given in Fig. 2 is falsi�able.
Most algorithms solving the SAT-Problem check whether there are variables in the

input, such that all corresponding literals are positive or such that all corresponding
literals are negative. The following lemma shows that these variables are precisely the
pure variables in the sense of Section 2.

Lemma 4. Let F be a Boolean formula in 2-PIF and let v be a pure variable in F.
I� a falsifying assignment t to the variables of F exists; it can be transformed into
a falsifying assignment t′ such that

t′(v) = true if all occurrences of v have odd Dl;

t′(v) = false if all occurrences of v have even Dl:

Proof. The Boolean function that is de�ned by F is either positive or negative in v,
depending on whether all occurrences of v in F have even or odd Dl. This is easily
seen by transforming our 2-PIF formula into an equivalent with connectives ∧ and ∨,

P. Heusch /Discrete Applied Mathematics 96–97 (1999) 127–138 133

since literals with even Dl become positive literals and literals with odd Dl become
negative literals.
Since our aim is to falsify F , we may safely set t′(v) = false if all occurrences of

v have even Dl without satisfying F , the same holds vice versa if all occurrences of v
have odd Dl.

Corollary 1. Let F be a Boolean formula in 2-PIF. Then F can be transformed into
a new formula F ′ such that F ′ is normalized and not longer than F; furthermore F ′

is falsi�able i� F is.

Proof. With the exception of Vr(F) every variable occurs at most twice in F , hence
if some variable v 6= Vr(F) has two occurrences with even left distance, we simply
replace one of them by a new variable v′. If Vr(F) has other occurrences with even left
distance, we replace these other occurrences by new variables v′; v′′; : : : In either cases,
F ′ has the same length as F . Because of the preceeding lemma, i� F is falsi�able there
exists a falsifying solution such that all replaced occurrences evaluate to false. Hence
the same assignment extended by assigning false to all newly introduced variables will
also falsify F ′.

We are now able to formulate the algorithm PIF solve that computes the set Z of
literals such that an assignment evaluating every variable in Z to false and every other
variable to true falsi�es the formula. If no such Z exists, PIF does not produce any
output.

(1) program PIF;

(2) var F :PIF;
(3) procedure PIF solve(F :PIF,Z :set);
(4) begin
(5) let F = F1 → · · · → Fj → · · · → Fk → z;
(6) if Z ∩⋃

i Vr(Fi) = ∅ then begin
(7) print solution Z ; exit;
(8) end
(9) �nd the smallest j such that Vr(Fj) ∈ Z ;
(10) let Fj = G1 → · · · → Gh → z′;
(11) for l= 1 to h do begin
(12) F ′ = F1 → · · ·Fj−1 → Fj+1 → · · · → Gl; Z ′ = Z ∪ {Vr(Gl)};
(13) PIF solve(F ′; Z ′);
(14) end
(15) end
(16) begin {Main program}
(17) Read(F);
(18) PIF solve(F; {Vr(F)});
(19) end.

134 P. Heusch /Discrete Applied Mathematics 96–97 (1999) 127–138

To analyze the runtime behaviour of PIF solve, we count the number of sets Z that
are possibly constructed during the computation performed by PIF solve. It will turn
out that only a small fraction of all possible 2n sets is ever constructed by the di�erent
instances of PIF solve.
Furthermore, we will show that no two di�erent instances of PIF solve share

the same set Z , hence the runtime of PIF solve is bounded by the number of
sets Z times the number of elementary steps that are executed by every instance of
PIF solve.
The important idea to reduce the number of di�erent sets Z is the observation that

there is a predecessor–successor relationship ≺ among the variables in F such that
whenever a variable v is inserted into Z , then all of its predecessors are already con-
tained in Z . We say that v≺ v′, i� an occurrence of v is rightmost literal of a subformula
F ′ of F , Dl(F ′; F) is odd and an occurrence of v′ is rightmost literal of a backbone
implicant of F ′. We say that v is predecessor of v′ w.r.t. F , or equivalently that v′ is
successor of v w.r.t. F , i� v ≺ v′.
It is evident that for F in normalized 2-PIF every variable v has at most one pre-

decessor, if no variable occurs more than once at even left distance, since there is
a uniquely de�ned subformula F such that v is rightmost literal of some backbone
implicant of F . However, there are variables without predecessors like Vr(F) and all
variables that occur at odd left distance only.
We de�ne a variable v ∈ Z that occurs l times in F with odd left distance as active,

if there are less than l successors of v in Z ; we de�ne v ∈ Z as blocking, if it does not
have any successor w.r.t. F . The fact that reduces the number of possible sets Z is that
Z can be fully described by a constant-sized subset of itself, the set of all variables
in Z that are either active or blocking. Furthermore, we assign a weight w to every
variable v ∈ Z as follows:

w(v) = i − l if v is active; occurs i times with odd left distance in F and
l of its successors are contained in Z;

w(v) = 1 if v is blocked;
w(v) = 0 else:

Lemma 5. Let F be a Boolean formula in normalized 2-PIF; with F ∈ Si+1. Then
every recursive call of PIF solve with input F preserves the following invariant:

∑

v∈Z
w(v) = i:

Proof. First note that performing a recursive call of PIF solve may result in some
literals disappearing from the formula. A literal that remains in the formula, however,
cannot change its left distance from odd to even or vice versa, since its left distance
remains either unchanged or decreases by 2. Hence in line (12) we have z′ ≺ Vr(Gl),
since z′ must have had an odd left distance w.r.t. the original F .

P. Heusch /Discrete Applied Mathematics 96–97 (1999) 127–138 135

To prove the lemma, we use an induction on the depth of the calling stack:

• PIF solve is called from line 18: Vr(F) is the only variable in Z and since w(v)= i
by de�nition of w the lemma holds in this case.

• PIF solve is called recursively from PIF solve. Then by induction hypothesis the
equation

∑
v∈Z w(v) = i was satis�ed when the calling instance of PIF solve was

entered. Since the variable Vr(Gl) is a successor of z′, w(z′) decreases by 1. The
variable Vr(Gl) may be either blocking or active in F . Since it occurs at most
once with odd left distance by assumption, w(Vr(Gl)) = 1 in both cases. Therefore∑

v∈Z w(v) = i also holds immediately before entering the next recursive call.
This completes the proof.

The following corollary now states what is really important for our proof, namely
that Z can be described by a subset of itself with constant size, and that therefore the
number of di�erent sets is polynomially bounded in the size of the formula:

Corollary 2. Let F be a Boolean formula in normalized 2-PIF; with F ∈ Si+1. Then
for every instance of PIF solve which is (recursively) called the corresponding pa-
rameter Z is completely determined by those variables whose weight is strictly positive
and the number of di�erent sets Z is limited by ni; n the number of variables in F.

Proof. As we have seen in the proof of Lemma 5, all variables v ∈ Z either have
w(v)¿ 0 or there exists some other variable v′ ∈ Z with v ≺ v′. It follows that Z is
completely described by those variables in Z with w(v)¿ 0. The number of di�erent
sets Z is now limited by the number of di�erent possible weights w. Since w(·)¿0
this number is

∑i

l=0
n−1
l

, for su�ciently large n (compared to i), this is less than
ni.

Unfortunately, the number of sets Z by itself is not su�cient to limit the runtime of
PIF solve, since a lot of di�erent instances of PIF solve might possibly share the
same set Z . This, however, is not the case as the following lemma shows:

Lemma 6. Let F be a Boolean formula in normalized 2-PIF. Then no two instances
of PIF solve share the same set Z.

Proof. Assume that two di�erent instances IA and IB of PIF solve share the same
set Z ′ as second parameter. IA and IB must have a least common ancestor instance
C of PIF solve with parameters FC , ZC . Let us denote the two immediately called
instances that are ancestors of IA and IB by CA and CB furthermore let FA, FB, ZA and
ZB, be their resp. parameters.
Concerning the way PIF solve works we must have ZA = ZC ∪ {Vr(Ga)} and ZB =

ZC ∪ {Vr(Gb)}; since the input was in normalized 2-PIF, we have Vr(Ga) 6= Vr(Gb).
Moreover, FA does not contain any occurrence of Vr(Gb) with even left distance and

136 P. Heusch /Discrete Applied Mathematics 96–97 (1999) 127–138

vice versa FB does not contain any occurrence of Vr(Ga) with even left distance, since
the recursive call eliminates the resp. subformula from FC . Hence no descendant of
CA can ever insert Vr(Gb) into ZA and no descendant of CB can ever insert Vr(Ga)
into ZB.
During recursive calls the set Z is only enlarged, so Z ′ must be a superset of both

ZA and ZB. Since by the argument given above no set can contain both Vr(Ga) and
Vr(Gb) at the same time, the assumption that IA and IB can share the same set Z ′ must
be false, thereby proving the lemma.

Now we state our main result, whose correctness, after the preceeding lemmas is
almost obvious:

Theorem 2. Let F be a Boolean formula in normalized 2-PIF with n variables and
i+1 occurrences of Vr(F); then PIF solve �nds a falsifying assignment for F i� one
exists; furthermore the runtime of PIF solve is bounded by O(i ∗ ni).

Proof. Since F is in normalized 2-PIF, at most ni di�erent instances of PIF solve

must be called to �nd a falsifying assignment to the variables of F . If suitable data
structures are applied, the only time consuming operation in PIF solve is the check
whether a critical backbone implicant exists. At most i variables must be checked out
to �nd such a critical backbone implicant. Since the check for one variable can be
done in constant time, we get the runtime bound O(i ∗ ni).

5. Relationships to other input classes

Since CNF-SAT is NP-complete, several input restrictions have been developed that
permit to test a formula for satis�ability in polynomial time. The most common of
these restrictions are restrictions for formulas in CNF, they are de�ned as follows:

• 2-SAT: Clauses contain at most two literals.
• Horn formulas: Clauses may contain at most one positive literal.
• Nested SAT: An ordering of the clauses must exist with the property that if a clause
C preceeds another clause C′ then no variable from C except from the �rst and the
last (w.r.t. an ordering of the variables) may be contained in C′.

• READ-2: No variable may occur more than twice in a formula.
It is well known that for inputs from these classes the satis�ability problem is solv-
able in linear time, see [4,5]. The following theorem relates S2 with the four classes
mentioned above.

Theorem 3. For every one of the classes 2-SAT; HORN; nested SAT and READ-2
there is a Boolean function function that can be expressed in S2 but that cannot be
expressed in 2-SAT; HORN; etc; and vice versa.

P. Heusch /Discrete Applied Mathematics 96–97 (1999) 127–138 137

Proof. “⇒” It is possible to encode unsatis�able formulas as well as tautologies in
2-SAT, HORN, nested SAT and READ-2. Since every formula F ∈ S2 is satis�able
by assigning true to Vr(F), contradictions cannot be represented by those formulas,
therefore S2 does not contain 2-SAT, HORN, nested SAT and READ-2.
“⇐” To prove our claim, we present two Boolean functions that can be expressed

by formulas from S2 but not by CNF-formulas from 2-SAT, HORN, etc. W.l.o.g. we
consider only formulas without logical constants since clauses containing them can ei-
ther be shortened or eliminated without changing the function. We use Karnaugh-Maps
to show that every possible CNF-formula realizing the given function must violate at
least one of the given input restrictions.
Karnaugh-Maps are used to �nd shortest implicants for Boolean functions in DNF,

but they can also be used to construct shortest anti-implicants for Boolean functions
in CNF (i.e. clauses s.t. the function evaluates to false, whenever the clause evaluates
to false for some input vector). To achieve this, we must, for any input vector whose
output is false, insert the disjunction of the negated values. E.g. if the output shall
be false for the input a = true, b = false and c = true, we must insert the clause
@a ∨ b ∨@c into the formula. In the same way as for the DNF-algorithm, we can
construct a consensus from two clauses, thereby shortening the anti-implicants. Note
that we use the equivalences false=0 and true=1 in our Karnaugh-Maps in accordance
with the usual representation.
We use the Boolean functions represented by the following formulas from S2:
(i) (a→ b)→ (b→ a)→ z has the following Karnaugh-Map:

Any CNF-formula equivalent to (a → b) → (b → a) → z must contain the clauses
@a∨@b∨ z and a∨b∨ z. Both clauses together violate the input restriction for nested
SAT, furthermore the second clause by itself violates the input restrictions for 2-SAT
and HORN.
(ii) (a→ b→ c→ z)→ z has the following Karnaugh-Map:

138 P. Heusch /Discrete Applied Mathematics 96–97 (1999) 127–138

From the Karnaugh-Map we see that any CNF-formula equivalent to (a→ b→ c→
z) → z must contain at least three anti-implicants. Since setting z = true satis�es the
formula, any anti-implicant must contain z, thereby violating the input restriction for
READ-2.
Since all clauses are shortest anti-implicants and for every clause there is an input

vector that is covered by this clause exclusively, all CNF-formulas are shortest possible.
Because the input restrictions have the property that the restriction cannot hold for a
formula F if it is violated for some subformula F ′, it follows that every CNF-formula
representing one of the given Boolean functions must also violate the corresponding
input restrictions.
Since all given Boolean functions can be represented by formulas from S2, the

direction “⇐” follows, so the theorem is proved.

Acknowledgements

Thanks to the unknown referees for their helpful hints.

References

[1] S. Cook, The complexity of theorem proving procedures, Proceedings of the third Annual ACM
Symposium on Theory of Computing, 1971, pp. 151–158.

[2] G. Gallo, M.G. Scutella, Polynomially solvable satis�ability problems, Inform. Process. Lett. 29 (5)
(1988) 221–227.

[3] M.R. Garey, D.S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness,
W.H. Freeman and Company, San Francisco, 1979.

[4] H. Kleine B�uning, T. Lettman, Aussagenlogik: Deduktion und Algorithmen, B.G. Teubner, Stuttgart,
1994.

[5] D.E. Knuth, Nested satis�ability, Acta Inform. 28 (1990) 1–6.
[6] J. Lukasiewicz, The shortest axiom of the implicational calculus of propositions, Proc. Irish Acad. 52

(1948) 25–33.

