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Abstract

The category of modules over an S-algebra (4 or Eo ring spectrum) has many of the good
properties of the category of spectra. When the homotopy groups of the S-algebra in question
form a sufficiently nice ring, it is possible to see the deviation of the category of modules over
an S-algebra from the corresponding algebraic module category. In particular, many algebraic
modules are realized as homotopy groups of topological modules over S-algebras. Examples
studied include real and complex K-theory, both connective and periodic. Further, Bousfield
localization by a smashing spectrum is shown to yield a category of modules over the localized
sphere. For periodic K-theory, these methods yield an algebraic criterion to determine when a
local spectrum is a module over the K-theory S-algebra, real or complex. © 1998 Elsevier
Science B.V.

AMS Classification: Primary: 55P42, 55N15, 19L41, 55T99; secondary: 55P60, 16E10

1. Introduction

The stable category of spectra is known to have good algebraic properties; this has
been expanded and made more precise by Elmendorf et al. [13]. Any strict commutative
(Ex ) ring spectrum is essentially a commutative S-algebra, for which the appropri-
ate diagrams commute on the point-set level. Here, all S-algebras are assumed to be
commutative.

Let R be an S-algebra. An R-module is defined in terms of diagrams that commute
on the point-set level. The classical definition of module spectrum requires that the
diagrams which define the module merely commute up to homotopy; here, such a
spectrum will be called a naive module spectrum.

The category of R-modules has all the standard constructions used in stable homotopy
theory, yielding many stable homotopy theories. The sphere spectrum S is one example
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of an S-algebra, and the classical stable homotopy category is equivalent to the derived
category of S-modules. The algebra in other examples often involves (known) rings
simpler than mxS.

Working in the derived category, %, of R-modules (weak equivalences inverted),
we will not distinguish between an object or map and its weak homotopy type. The
derived category is equivalent to the homotopy category of cell modules and cellular
maps, so we could alternately assume that all objects are cell modules and all maps
are cellular maps. There is a smash product of R-modules, Ag, which is analogous to
the derived tensor product of Ryx-modules. In the context of S-modules, A denotes Ag,
the smash product over S.

Modules over an S-algebra R can be closely related to algebraic modules over the
ring R« of homotopy groups of R. For example, the derived category of a discrete
commutative ring is equivalent to the derived category of modules over the Eilenberg—
MacLane spectrum of the ring.

Given an Rsx-module Mx, M™* denotes the R* module obtained by regrading: M" =
M_,,. Note that, for any naive R-module spectrum X, n«X has a canonical Rx-module
structure. Realization of an Rx-module refers to finding an R-module with homotopy
isomorphic to the given module.

This paper investigates the algebraic classification of modules in these stable homo-
topy categories of R-modules. The main classification results follow Bousfield
[7, 8].

Theorem 6. Let R be an S-algebra. Then every Ry-module of projective dimension at
most two can be realized as the module of homotopy groups of some R-module. Such
an R-module is unique up to homotopy if the Rx-module has projective or injective
dimension at most one. When My is an Ry-module of projective dimension two, there
is an equivalence relation finer than homotopy equivalence so that equivalence classes
of R-modules with homotopy My are in bijective correspondence with the elements of
Extyy (M, M*).

Thus, any two modules in a given equivalence class are (weakly) homotopy equiv-
alent, but modules in two distinct classes may also be equivalent. So, isomorphism
classes of objects in P& with homotopy M™ correspond to elements of a quotient of
Exti’;l(M*,M*).

Ext is relevant since the main tool used to prove this theorem is a spectral sequence
ES'(M,N) = Ext2, (M*,N*) = [M,N]%,_, converging from algebraic Ext groups to
homotopy classes of R-module maps. In the dimension one case, the spectral sequence
reduces to a short exact sequence describing the homotopy classes of maps of R-
modules. Complex periodic K-theory, KU, is an example of an S-algebra over which
this is true.

Further, when R has global dimension at most two and is sufficiently sparse, the
category of R-modules can be described completely algebraically. One example is com-
plex connective K-theory, ku.
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For real K-theory, the classification is more complex: the relevant ring has infinite
cohomological dimension; however, generalizing the concept of ring allows construction
of an algebraic category with dimension two. Note that, as ko-modules, ku ~ ko AC(#).
We also use k¢, defined here as ko A C(y4?), which is a connective version of self-
conjugate K-theory [2, 8].

Let crt be the category with objects ko, ku, and k¢ and maps all maps of ko-modules.
The category of additive functors from cr? into the category of abelian groups has many
of the properties of a module category: we call this the category of united modules or
crt-modules. Any ko-module X gives a crt-module 75*(X) by smashing with S, C(),
and C(n*?) respectively, and taking homotopy. When the image of a crt-module fits into
certain exact sequences, it is called crf-acyclic. The exactness condition is motivated
by the topology and is necessary for realizability.

Theorem 17. The category of crt-acyclic crt-modules has enough projectives and all
objects have projective dimension at most two. Any crt-acyclic crt-module can be
realized as n§'(X) for some ko-module X. This ko-module is unique up to homotopy
if the crt-module has projective or injective dimension at most one. For a fixed crt-
module M of projective dimension two, there is an equivalence relation finer than
homotopy equivalence so that equivalence classes of ko-modules X with n{'(X)=M
are in bijective correspondence with the elements of Exta; (M, M).

Again, the main tool used to prove the theorem is a spectral sequence £ (M, N)=
Exti’;* (M*,N*) = [M,N]*°_, converging from a generalization of Ext for united
modules to homotopy classes of maps of ko-modules.

A similar result holds for the periodic theory, which has dimension one and is thus
stmpler. The periodic version of cr¢ is called CRT.

The algebraic description of Zxp and Py given by the above theorems, together
with Bousfield’s description of the category of Kx-local spectra in terms of objects
called ACRT-modules, yields an algebraic criterion for when a K«-local spectrum can
be given the structure of a KO- or KU-module. The notation for localization with
respect to periodic K-theory is not ambiguous, since both KO and KU give the same
localization functor.

Let U be the right adjoint to the forgetful functor from 4CRT-modules to CRT-
modules. Note that the complexification map ¢: KO — KU is a map of S-algebras, so
that any KU-module is a KO-module.

Theorem 18. Ler X be a Ky-local spectrum. Then X is equivalent to a KO-module
if and only if KSRT(X) = UnSRT(X), where nSRT (X)) must be a CRT-acyclic CRT-
module. Further, X is a KU-module if, in addition, Xx can be given the structure of
a KUx-module.

The above criterion gives the following corollary, where the derived category of a
category of spectra or modules is formed by inverting all weak homotopy equivalences.
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Corollary 19. Any naive module spectrum over KO or KU is homotopic to a KO- or
KU-module, respectively. Further, the derived category of naive KO- or KU-module
spectra is equivalent to the derived category of KO- or KU-modules.

In fact, Bousfield localization at any smashing spectrum (defined in Section 2) is
closely related to topological module categories.

Theorem 2. Given a smashing R-module E, the derived category Gg[E~'] of Ex-local
R-modules is equivalent to the derived category %g, of Rg-modules.

In particular, this holds for R=S and £E=KU.
Returning to ko, we show that any kox-module Mx can be realized as the homotopy
of some ko-module.

Theorem 20. Given any kox-module Mx, it is possible to construct a crt-acyclic crt-
module with ko part Mx. Thus, by the classification theorem for ko-modules, Mx can
be realized as the homotopy of some ko-module.

In fact, we can define a general notion of a united theory. The result generalizes to
any united theory all of whose acyclic objects have dimension at most two.

Theorem 21. Let R be an S-algebra with a united theory RF. Then given any Rx-
module My it is possible to construct an acyclic united module M such that the R-part
of M is My. Thus, by the classification theorem, when the united theory RF is of
dimension at most two, any Rx-module can be realized as the homotopy of some
R-module.

In particular, this can also be done for KO.

In order to use these united theories for calculations, it is useful to understand how
to compute Ext in these functor categories. The following is a change of rings theorem.

Let p and A denote the left and right adjoints to the forgetful functor from cri-
modules to [ku, ku]l;o-modules. For a crt-module M, MY denotes the ku-part of M;
MP©, the ko-part.

Theorem 26. For cri-acyclic crt-modules L and M with the operation n on M equal
to zero and A=1[ku,kul’, there are natural isomorphisms

MYy =M = pMY),
Ext5,}(M, L) = Ext;' (MY, LY),
Ext$(L,M) = Ext} (LY, MY).

Motivation beyond the desire to reduce all homotopy theory to algebra lies in various
places. The focus here is on connective topological K-theory: complex K-theory, for
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example, for its relation to C * algebras; real K-theory, for example, toward greater
understanding of the corresponding Adams spectral sequence.

2. Bousfield localization and modules over S-algebras

One method of studying stable homotopy theory is to study the category of spectra
through the eyes of a homology theory, smashing all objects with a fixed spectrum.
A more sophisticated method is to use Bousfield localization. Bousfield localization at
a spectrum £ constructs a category in which E-homology isomorphisms are inverted.
When Bousfield localization coincides with smashing all objects with the localization
of the sphere, E is called smashing.

We recall the basic definitions.

For a spectrum £, a map f: 4 — B which induces an isomorphism ExA4 — ExB is
called an Ex-equivalence. If ExA=0, then A is Ex-acyclic; X is Ex-local if X*4=0
for any Ex-acyclic 4, or equivalently, if any Ex equivalence f:A4 — B induces a
bijection f*:[B,X ]« — [4,X]x.

The Ex-localization of X, Xg, is the terminal Ex-equivalence out of X. In fact, each
spectrum X can be decomposed naturally into Ex-local and Ex-acyclic spectra Xz and
gX via the cofibration g X — X L X — Z(gX) in the stable category (of S-modules
or equivalently of spectra). The Ex-localization functor is sometimes denoted Lg.

There are analogous definitions and localizations in the category of modules over
any S-algebra. Bousfield’s methods to construct local spectra also generalize to this
context.

Note that any R-module X (or even a naive module spectrum over a naive ring
spectrum R more generally) is automatically R«-local since R«Y =0 implies XxY =
0 =X™*Y since any element of XyY factors through SAX AY — RAX AY via the
module structure map [1].

The Bousfield localization of an S-algebra is again an S-algebra [13]. In particular,
this is true of the sphere spectrum. If Ex-localization is equivalent to smashing with
the Ex-local sphere, then F is called smashing.

Theorem 1. If E is smashing, then the derived category of Ex-local spectra is equiv-
alent to the derived category of Sg-modules.

This comparison of categories is a nice observation, but not yet very useful for
calculations since Sg is usually quite nasty.

The same holds for localization in the category of R-modules for an arbitrary
S-algebra R. For an R-module E, we define E&(X) = [R,E Ng X]§ = nx(E N X).
Now, Lg is replaced by LZ, which denotes ER-localization. We denote the localization
LEX of an R-module X by Xg. E is smashing in Zg if Xg ~ X A Rg.

The notation Zz[E~'] denotes the category of Ex-local R-modules, which is equi-
valent to the category %y after inverting EX-equivalences.
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Theorem 2. Given a smashing R-module E, the derived category g[E~"] of ER-local
R-modules is equivalent to the derived category @g, of Rg-modules.

Proof. Let £ be a smashing R-module; the map X & RAg X — Rp Ag X gives the
localization functor, so that any EX-local R-module is homotopic to one of the form
Rp Ap X. Also, Rg Ar Rp — Rg is an isomorphism since the idempotent functor LE is
smashing: localization gives an inverse to the multiplication map.

Next we show that any Rg-module X has X ~ Rgp A X as Rg-modules. First note
that L8 :LIISE, that is, Rp.-isomorphisms are the same as Ex-isomorphisms: any Rg.,-
isomorphism has an Rg.-acyclic cofiber, but any Rg.-acyclic has trivial Ex-localization,
so it is Ex-acyclic. Thus, X has X ~ Rz Ag X as R-modules. The forgetful functor and
Rg Ag (—) are adjoint functors between % and %y, ; the counit Rg Ag X — X is by
definition a map of Rg-modules, giving the desired weak equivalence on the level of
Rp-modules.

Further, for £R-local R-modules W ~ Rz Ay X and Z ~ Ry A Y,

W, Z1 2 [Re AR X, R A YR 2 [X,Re AR VIR

= [Rg N X, R Np YIRE = [, Z1%

where the second isomorphism is by X ~ Rg Ag X and the third follows from freeness.
The isomorphisms are all natural.

Therefore, the derived category of EZ-local R-modules is equivalent to that of Rg-
modules. Tl

This theorem is generalized in [13] to describe Ex-local R-modules for arbitrary E:
the categories Zx[E~'] and P, [(Rr Ar E)~!] are equivalent.

Although Bousfield localization does not require £ to be a ring spectrum or an
S-algebra, it would be interesting to know, for an S-algebra E, how E-modules and
Sg-modules are related. The example of £ = KU mentioned in the introduction is
discussed in the next section.

3. Categories related to the K-theory spectra

The connective complex K-theory spectrum ku is an S-algebra by infinite loop space
technology [19). As shown in [13], KU is an S-algebra by localization in the category
of ku-modules; Sk, the Kx-local sphere, is therefore an S-algebra, as noted above.

The K-local sphere, Sk, is closely related to the (periodic) Image of J spectrum.
Localized at a prime p, we have the cofibration (where r=3 if p=2 and r generates
the unitsmod p? for an odd prime) J(,) — k0" ko — ZJipy and the K(py.-local
sphere is the homotopy fiber of the map J(,, — X~ 'SQ which is a rational isomorphism
on 7_;. Thus it is possible to calculate m+Sx [6].
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Since localization of S- or ku-modules with respect to KU is smashing, Theorem 1
shows that each local category Zs[KU™ '] and @4, [KU'] is a module category,
D1, [KU™1] is actually the derived category of KU-modules.

We have the diagram of categories

5, »
Ps v KU ~ D,

1, i

D~ D[ KU '] & 2y

where each L is a localization functor and each F is a free functor. For an S-module
X, the free functor to ku-modules is given by ku Ag X; similarly, the free functor from
Sk-modules to KU-modules is given by KU Ag, X, which is equivalent to KU Ag X,
since KU is Kx-local. It is shown below that the categories Zs, Zs,, Pky, and Zgy
are all distinct.

We have four categories to compare: spectra (%s), Kx-local spectra (i.e., Sg-
modules), Kx-local ku-modules, and KU-modules, or K*¥-local ku-modules. Note that,
as one would expect, not all ku-modules are Kx-local: Lgku ~ S Asku # ku by direct
calculation.

Further, since they are not rationally periodic (see [6, Corollary 4.4]), the homotopy
groups of Lgku are not periodic; not all Kix-local ku-modules are KU-modules. This
is in sharp contrast to localization in the category of ku-modules, which is simply the
free functor from ku-modules to KU-modules.

To see that not all Sx-modules are ku-modules, we note that no element of mx(Sk)
of positive degree can be represented by a map of ku-modules. If Sy were a ku-module,
then consider any element

o € [Sk, Sk 15 22 Thu, Sk 1 2 [S,8k1, C[S,8Y, ¢ > 0.

The isomorphisms are given directly by freeness; the inclusion i1s a theorem relying on
the relation of Sx to the image of J. The element « would be represented by a map
a: Sk — Sk in Y, and also as a map b: S — § in %s. Since « is of positive degree,
b: S — § gives the zero map ku — ku after smashing with ku, so the same is true for
a, and 1, A 2 is null. Now the commutative diagram

SAS, — s kuh Sy — e kun S,

l action l action

)

n

would guarantee that o itself be null; but Sk, has non-trivial elements in positive
degree, so Sk cannot be a ku-module.
A similar result involving real K-theory holds as well.
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4. A spectral sequence for R-modules

All algebraic maps from the homotopy of a free R-module to that of any R-module
can be realized as the homotopy of some map of naive module spectra. The theory of
R-modules actually allows the realization of many more maps. The method is to use
a spectral sequence to show that maps with certain algebraic properties exist.

Adjoint to the smash product X Ag Y is a function spectrum Fz(.X,Y), which for
cellular X satisfies m«(Fr(X,Y)) = [X,Y]%. As noted above, we are only concerned
with weak homotopy type, and we continue to assume all R-modules are cellular R-
modules.

There is a spectral sequence [13] (EKMMSS)

E (X, Y)=Ext;i (X*,Y™) = (i (Fr(X, V),

with differentials d’ : E}' — E;*»~"*!. Here, Ext;L(P, Q)zExt;’?k(E‘P,Q), (Z'L)x
= Ly_,. The filtration on nx(Fr(X,Y)), is given by letting F*ni(Fr(X,Y)) be the
image of mx(Fr(X;,Y)) — nx(Fr(X,Y)), where the X; are constructed from an Rx-
free resolution of Xx. Thus, the (s, £)th term of the associated bigraded group of the
filtration is

E3 ma(Fr(X, Y)) = F*ni_ o (FROG Y )Pt (FR(GY)),

One can define Extg(X,Y)=n_x(Fr(X,Y)).

Composition pairings are also discussed in [13]. The pairing Fr(Y,Z) Az Fr(X,Y) —
Fr(X,Z) induces a pairing of spectral sequences of differential Rx-modules that coin-
cides with the algebraic Yoneda pairing on the E,-level and converges to the pair-
ing induced by composition. This is proven by taking free resolutions of X and
Y in the contravariant side of each function spectrum: Fr(Y;,Z) Az Fr(X;,Y) —
Fr(Y,Z) Ag Fr(X,,Y) — Fr(X;,Z). For a € Ext*'(Y*,Z*) and b € Ext*"(X*,Y™),
d,(ab) = (d,a)b + (—1) " a(d,b). The EKMMSS is always conditionally convergent;
with additional information, it is often strongly convergent, for example, when X has
a finite length cellular resolution as an R-module.

This spectral sequence is essential to understanding the difference between R-modules
and Ri-modules. When an Ry-module — for example, the homotopy of an R-module
— is placed in the E, term of this spectral sequence, we regrade it as an R*-module.

5. Realization of projective and injective modules
5.1. Projective modules

Any projective module P over any ring A is the direct summand of a free module
F=Pg&Q = QaqP. Thus, Eilenberg’s swindle gives us a two step free resolution
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of P:
0-POQOFP™ - PaQOF®™ - P -0,

where the map between free modules moves each copy of P to the next P-coordinate
to the right.

See [18, 21] for a discussion of modules over graded rings.

When A is the ring of homotopy groups R« for an S-algebra R, any free module
is easily realized as the wedge of copies of R (up to suspensions). The EKMMSS
(Section 4) shows that any map between free modules can be realized in topology; the
cofiber of the realization of this map is the realization of our projective module.

Proposition 3. Let R be an S-algebra. Then any projective Rx-module Px can be
realized as the R«-module of homotopy groups of some R-module X : nx(X)=X«=
Px«. For any other R-module Y, [X,Y1% = Homx(P*,Y™).

Proof. The vanishing of higher Ext groups shows that any map from a projective
module is uniquely realizable. [J

5.2. Injective modules

For a Noetherian ring A4, the direct sum of injective modules is injective, and we
can decompose any injective module as the direct sum of certain indecomposables.

Recall that the injective hull of a module is the minimal injective extension of the
module; it is unique up to non-canonical isomorphism.

Proposition 4 (Matlis [16], Matsumura [17], Néstdsescu and van Oystaeyen [21]). Ler
A be a graded commutative Noetherian ring, p a prime ideal in A. Then the injective
hull of Ajp is indecomposable with respect to direct sum. Further, any indecomposable
injective A-module is the injective hull of A/p for some prime p.

Thus, when all elementary injectives can be obtained by a sequence of quotient
by regular sequences and localization procedures, the techniques of [13] allow such
procedures on the spectrum level and all injectives can be realized.

More generally, obstruction theory similar to that of Costenoble and Waner [11] for
equivariant Moore spectra can be used to realize any injective uniquely up to homotopy.
This is done in [26].

6. Realization of modules of dimension at most one
Given an Rx-module My of projective dimension one, there is a projective resolution

0 P, % Py — My — 0 and My can be realized as the homotopy cofiber of the
(unique) realization of «. Given an R«-module My, let [M«| denote an R-module with
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homotopy Msx. In this case, the realization |[M| is unique up to homotopy since the
identity map on M lifts to a comparison of resolutions

0—P —Py—M— 0

|l

0— P — Py — Mx — 0.

Since the two maps from P; to P} are the same in algebra, their realizations in topology
are the same in homotopy and we get an equivalence between the two realizations
of M. X

When Ry is a Noetherian ring with all primes generated by regular sequences, we
can use the dual construction to realize, uniquely up to homotopy, any module of
injective dimension at most one.

Note that, without further hypotheses, we can describe the Hom set between two
R-modules of dimension at most one only up to extension:

0— Ext;’;l(X*, Y*) — [X, Y18 — Homps (X*,Y*) — 0.

The difference of any two maps X — Y with the same effect in homotopy is measured
by an element of Ext}e’; Y(X*,Y*). Of course, only one module need be of (projective
or injective, depending on the variable) dimension at most one.

Composition is given by the naturality of the EKMMSS and the fact that the product
in Ext corresponds to the composition product on the associated graded of the Hom
sets in the derived module spectrum category.

In the case where R« is of global dimension at most one, this is an almost com-
plete algebraic description of the category, including the corollary that an R-module is
determined by its homotopy groups as an Rx-module. One example, mentioned above,
is periodic K-theory.

Let R be an S-algebra with R« of global dimension at most one and concentrated
in even degrees. Since realizations of R«-modules are unique up to homotopy, any
R-module X is the wedge of its even and odd pieces: X = Xeyen V Xoaa. Let ¥ be
another R-module. By additivity, we can assume X and Y are each concentrated in
either even or in odd degrees. The group [X, Y]§ depends on the relative parities of X
and Y. Using the suspension functor, it suffices to calculate [X, Y&

If X and Y are both even (or both odd), then note that Ext" "' (X*,Y*) is zero. If
the parities of X and Y differ, then Homg« (X*,Y*)=0 and [X, Y]§ = Ext}la’;l(X*, Y*).
More generally, we have the following theorem.

Theorem 5. For an S-algebra R of global dimension at most one with Rx concentrated
in degrees congruent to zeromodk, k > 1, each R-module X splits as the wedge of
k pieces X :\/leXj such that X, is concentrated in degrees congruent 10 j mod k.
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For two R-modules X and Y,
Homx (X", ¥")  i=],
G106 = ¢ Bxt MO YY) i+ 1=,

0 otherwise.

Proof. There are no non-trivial maps between two modules X and Y if X is concen-
trated in degrees congruent to m mod &, ¥ in nmodk, m # n. Similarly, there are no
non-trivial extensions 0 — Yx — M — X7 Xyx — 0 when m+ 1 #n. O

7. Classification of R-modules of projective dimension at most two

The purpose of this section is to prove the following theorem.

Theorem 6. Let R be an S-algebra. Then every Ry-module of projective dimension at
most two can be realized as the module of homotopy groups of some R-module. Such
an R-module is unique up to homotopy if the Rx-module has projective or injective
dimension at most one. When My is an Rs-module of projective dimension two, there
is an equivalence relation finer than homotopy equivalence so that equivalence classes
of R-modules with homotopy My are in bijective correspondence with the elements of
Exti’; HM*,M™).

7.1. Realization

The previous sections showed how to realize any R«-module of projective dimension
at most one as the homotopy of an R-module. When the projective dimension of Msx
is two, Mx has a projective resolution 0 — P, — P| — Py — Mx — 0, which can be
split into two short exact sequences

0—>P2-—>P1—>K—>O,
0—>K-—Py— My —0,

where K = ker (Py — My). Using the EKMMSS, any R«-module of projective dimen-
sion two can be realized as the homotopy of some R-module: the modules K and Py,
as well as the map whose cokernel is My, can be realized as in the above section.
One realization of My is the cofiber of the realization of the map K — Py.

Now, when R« has global dimension at most 2, Ext;’fk (M*,N*) vanishes for s > 2.
Thus the only possible non-trivial differentials are

dy Ext;;; (M*,N*) — Exti’;_l(M*,N*),

the spectral sequence collapses at F3, and a map 6: My — N« of R«-modules yields an
obstruction d2(6) € Ext®; '(M*,N*) which vanishes if and only if 6 can be realized as

R*
the effect in homotopy of a map X — Y of R-modules with <X = My and m+Y =Nx.
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7.2. The difference between two realizations of an Rx-module

A realization of an Rx-module M« consists of an R-module X and an isomorphism
o (X)) =X = M.

Following Bousfield, two realizations (X,«) and (Y, 8) are said to be strictly equiva-
lent if there is an equivalence f : X =~ Y with B/« =2 Then D(x, f)=fd>(f la)x!
defines the difference in Ext;’; Y(M*,M*). This difference satisfies:

(1) D(a,0)=0;

(i) D(o, f)=0 iff « is strictly equivalent to f;

(iii) D(a,y)=D(a, B) + D(B,7);

(iv) D(a, B)=—D(B,0);

(v) D(ga, gB)=gD(a, B)g~" for each g € Aut M.

Let #(Mx) denote the collection of all strict equivalence classes of realizations of
M. Adapting the methods of Bousfield [8], #(Mx) can be determined algebraically.

Theorem 7. For each Rx-module My and realization o: Xx = Mx, the difference
Sfunction gives a bijection D(a, —): Z(Mx) = Exti‘;l(M*,M* ).

Proof. Injectivity of the difference function follows from the above properties; only
surjectivity needs proof. Let 0 — K — Py - Mx — 0 be a short exact sequence, where
Py is projective and K is the kernel of &. The map ¢ can be chosen so that X is the
cofiber of the realization of the map K — Py. I1dentify Xy with My by the isomor-
phism a.

Any element u € Extry'(M*,M*) = Ext i '(K,M*) lifts to some @ € Extyy
(K,Pyp), since K has projective dimension at most 1; the EKMMSS then yields a
(unique) map u: | K | — | Py |, where | J | is a realization of the Rx-module J. If the
cofibration T7'X —| K |—J:>| Py |— X gives the realization o, then X'V — |K]| e
|Po| — Y yields a realization f: Ys = My with D(%, )=u. O

This strict equivalence of realizations is a finer equivalence than homotopy type;
Aut(Mx) acts on Z(Mx) by composition. There is, however, a forgetful bijection from
the orbit set Z(Mx)/Aut(Mx) to the set of realizations of Mx. A crossed homomor-
phism d . G — B for a group G acting on an abelian group B is a function with d(gh)=
d(g)+ g -d(h), the associated crossed homomorphism action G x B — B carries (g,b)
to d(g)+g-b. Now, Aut(Mx) acts on Exti‘;l(M*,M*) by g-u=gug~'; given a real-
ization a of M*, we have a crossed homomorphism d: Aut(M*) — Extz’; YM* M)
given by d(g) = D(x,g2). The associated crossed homomorphism action of Aut(Mx)
on the Ext group corresponds to the composition action of Aut(Mx) on Z(Mx) by the
bijection of the above theorem.

Thus, we have the following theorem.

Theorem 8. The homotopy types of R-modules with homotopy Mx are in bijective
correspondence with the elements of Exti‘; YM*, M*)/Aut(My).
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This classification is not purely algebraic, however, since in general we lack an
algebraic description of the d, differential of the EKMMSS. One possible approach
toward a more algebraic classification is to use Toda brackets. Alternatively, given a
functorial realization of R-modules with zero differential in the EKMMSS, the methods
of [7] give an easier way to construct a category equivalent to the derived category of
R-modules. We describe these next.

7.3. Sparse graded rings

Let R be an S-algebra of global dimension at most two with Rx concentrated in
degrees congruent to zeromod k, £ > 2. Examples of such S-algebras are ku and ko,
for an odd prime p; since n is null after inverting 2, nxko(,) = Z[u], |u| =4. Any
Ri-module My is then the homotopy of a wedge X =\/]_ X; with the homotopy of X;
concentrated in degrees congruent to i modm. Call this the wedge realization of Mx.
By the classification of R-modules, each wedge summand is unique up to homotopy,
since any Ny concentrated in degrees congruent to i mod m can be resolved by modules
concentrated in the same degrees mod m.

The analysis of [7] applies to this situation; the category of R-modules has a com-
pletely algebraic structure. The key is to note that there is a functorial realization of
any Ri-module as an R-module for which the differentials in the EKMMSS between
any two such R-modules are all zero, as follows. Realize any Rs-modules Mx, Nx as
wedges X and Y as above. Since the wedge realization is homotopy unique, there is a
right inverse to the map [X,Y]o — Hom,«(M™* ,N*) given by the natural realizations
of maps between the wedge summands of like degree together with the zero map be-
tween non-matching summands. Thus, the map of Hom sets is onto, and the differential
is necessarily zero.

The next step is to construct a Bousfield k-invariant to measure the difference be-
tween a given R-module and these realizations with trivial EKMMSS differential. Let
X be an R-module. Define ky € E%"l(X,X) = Exti’;'(X*,X*) as follows: let X’
be an R-module with homotopy isomorphic to X«, equivalent to the wedge realization
above. Choose an isomorphism «: X; — Xx. Define iy = (dy)a™ ' o € Ea(X', X),
™! € E2(X,X"). The element ky is independent of the choice of X' and «, for if X"
is another choice of X’, with § an isomorphism from X" to X, choose an isomorphism
y: X3 — Xy such that f=uay. Since X” and X' are equivalent to wedge realizations,
da2(y)=0, with do(B)S~ ' =da(2)py e~ =dy(2)a~". Thus, kx is well-defined.

The differential in the EKMMSS can now be expressed algebraically.

Proposition 9. Let R be an S-algebra of global dimension at most two with R« con-
centrated in degrees congruent to zero mod m, m > 2. For R-modules X and Y, the
EKMMSS differential

dy: EXY(X,Y) — EXN (X, Y)

is given by dyf =ky f + (=1)"! fky for each f € Eg”(X, Y).
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Proof. The proof is exactly as in [7, Proposition 8.10). Let X’ denote the wedge
realization of X«. For isomorphisms o: X — Xx and B: Y, — Y, consider a and
B as elements of the E; term: o € EY°(X",X), ! € ESX,X"), B € EX(Y".Y).
Choose f € EY'(X’,Y") such that ff'a~'=f € EX'(X,Y). Since dyf' =0,

dof =do(ff'27") = (d2B)f'2™" + (= 1) B (d2a™")
=(d2f)B7 S 07+ (~1Y fa au(dra )
=kyf + (=1) fa(dra™ ).

Now, a(da™') = da(ao™!) — (dra)a™ = dy(1) — ky = —ky and this proves the
result. O

This allows us to prove the following characterization of maps in the R-module
category.

Corollary 10. Let R be an S-algebra of global dimension at most two with R« con-
centrated in degrees congruent to zeromodm, m > 2. For R-modules X and Y, a
homomorphism [ of degree t from Xy to Y« is the homotopy of a map of R-modules
if and only if ky f =(—1) fkx.

Now let Mk denote the category of pairs (Mx,k), with Mx an Ri-module and
k in Extigl(M*,M*); morphisms f from (Mx, k) to (Nx, k') satisfy k' f = fk in
Exti’;l(M*,N*).

Theorem 11, Let R be an S-algebra of global dimension at most two, with R con-
centrated in degrees congruent to zeromodm, m > 2. Then for any (Mx, k) in Mk,
there is an R-module Y such that (Mx,k) = (Yx,ky). Thus, the homotopy types of
R-modules correspond to isomorphism types in Mk.

Proof. This is essentially the same as [7, Theorem 9.1]. We already have a full additive
functor from R-modules to Mk, as noted above. The wedge realization provides a re-
alization of any R«-module with zero k-invariant. That any k-invariant can be obtained
can be seen by lifting Ext elements, as in the proof of the more general classification
above. Again, let X’ denote the wedge realization of X«. Given (Mx,k) in Mk, let
0— P, LY Py Lt Py 5 My — 0 be a projective resolution of My. Let K = kerg; the
exact sequence splits into two short exact sequences

0P 4P 4K 50, 0-KSPyS My —0.

Given any ¢ : K — P} such that &« = 0, the homotopy cofiber of b + ¢ gives a
realization Yy of M. It suffices to choose ¢ so that ky, =k; Y: is then the desired
realization of (Mx, k).
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Any element & € Ext}za’gl(M*,M*):Ext;’;l(K,M*) lifts to some k € Ext;;' (K, Py),
the group which classifies maps from |K| to |Po| which are zero on homotopy groups.
Any such k is equivalent to a map ¢ as above, since X has projective dimension at
most one. If b is the map which gives the wedge realization Y’ of My, then b + &

yields the desired Y:. O

It is possible to construct additive bigraded categories of R-modules and of Rx-
modules paired with k-invariants. These categories are additively equivalent, as
in [7].

Note that this analysis requires only a natural realization of R4-modules as R-modules
with zero differential in the EKMMSS, which is a weaker condition than sparseness.

8. Modules over additive categories

In order to use algebra to classify modules over the real K-theory S-algebras ko and
KO, it is necessary to generalize the algebraic concept of a module to that of a functor
over an appropriate generalization of a ring.

A ring can be considered [20] as a suitably structured category with only one object.
Much homological algebra generalizes to “modules” over a small additive category %,
specifically, additive functors from % to abelian groups; the morphisms are the natural
transformations. One can consider the Hom sets in % as giving additive operations
on the modules. The category «/b% of additive functors from € to /b is actually
equivalent to a category of modules over an honest ring; we will, however, keep our
additive category while also considering our functors naively as sets of modules with
operations.

As an example, a graded ring R={R,},cz is an additive category € with object set
Z and morphisms %(m,n)=R,_,,; composition is given by multiplication in the ring.
Note that it only makes sense to add elements of the same degree, as is standard for
topologists. Then, =/b% is the category of graded R-modules.

Since our functor category is abelian, we have kernels and cokernels and can de-
fine exact sequences and resolutions. There is an abelian group-valued Hom functor
satisfying Homg (4 (X, —), F(—)) = F(X) = #b*(6(X,—),F(—)), with a left adjoint
Qe Lb% ® b — o/b. Ext and Tor can be defined via resolutions, which always
exist. See [20] for further details.

9. United homology theories

Bousfield, in [8, 9], defines an additive category CRT (which he calls Alg(CRT))
and the corresponding category of CRT-modules. Bousfield’s method generalizes to
other united homology theories such as the one below, as well as to united cohomology
theories.
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9.1. United homology theories

Let R be an S-algebra and % some collection of finite spectra. Define the category
RF to be the category with objects {R A F, | F, € #} and morphisms all homotopy
classes of R-module maps between any pair of objects. R# is an additive category
which yields two united homology theories: first, let M = R% (X) denote the united
theory on spectra X given by the functors from R# to abelian groups with M* =
MR AF)=nx(RANF AX). Second, there is a united theory on R-modules X given
by the functors N = f (X) from RF to abelian groups with N¥ = N(R A F) =
(X Ag (RAF)) 2 nx(X A F). This has a naive variant. If R is merely a ring
spectrum, then the maps in R# should be all maps in the derived category of naive
module spectra. The theory RZ (X) is as defined above; N = nZ(X) is defined by
Nf=mu(X AF).

The first type of united theory is used by Bousfield [8] to classify Kx-local spectra.
The second type is used below to classify both KO-modules and ko-modules.

Since [RA F,R A F']? = [S,R A F/ A DFx, the Spanier—Whitehead duals of the
finite spectra in # yield the representable functors (free objects). Thus the free objects
under such a theory are given by the united homology of all suspensions of the Spanier—
Whitehead duals of the finite spectra in #. Note that the objects of R# need only
be semi-finite as R-modules when R is an S-algebra, that is, D3F ~ F for F in
RF.

A united module, or RF-module, M is called . -acyclic if it takes cofibrations of
R-modules in R# to long exact sequences.

9.2. Connective united K-theory

This is described in more detail in the next section. The obstacle to using the same
techniques as for ku to classify ko-modules is precisely that kosx has infinite global
dimension. By killing nilpotent elements, we obtain a theory R# = crt with global
dimension 2 and it suffices to construct an appropriate spectral sequence in order to
obtain the desired classification. An appropriate choice of finite spectra is S, C(#), and
C(n?), yielding ko, ku, and kt.

One can check that using only S and C(#) over ko yields an algebraic category with
infinite homological dimension; adding C(5?), or ki, eliminates this difficulty.

9.3. Periodic united K-theory

The inspiration for studying connective united K-theory came from Bousfield’s use of
a periodic version, CRT, in [8]; the categories crt and CRT use the same finite spectra
S, C(n), and C(n?). The periodic theory has global dimension one. Bousfield adjusts
the category of modules by adding Adams operations to classify Kx-local spectra. The
united category without operations classifies KO-modules.
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10. The operation algebra for connective united K-theory

10.1. Anderson cofibrations with spheres

To calculate the algebra of operations, we use the cofibration sequences of [2, 8] (»
denotes the Hopf map)

s s S cm S s,
255 s 5 cop) & 5B,
cGrt) 5 c(ny % 22 - TCP),

which, when smashed with ko, give cofibration sequences relating ko, ku, and kt.
First, describe and fix names for maps among S, C(#), and C(n*):

— n:8' — S is the Hopf map, the non-zero element of n,S;

—c:S— C(n), e: S — C(n?) are given by inclusion of the zero cell;

— h: C(#*) — C(n) is any map of degree one on the zero cells;

— j: C(y) — Z71C(n?) is degree one on the 2-cells;

— k: Z71C(n*) — §? is degree one on the 2-cells;

- r: C(n) — §? is top cell projection;

— Y=y : C(y) — C(y) and =1 : C(n*) — C(n*) are degree one on O-cells and
degree —1 on top cells;

~ @: C(n) — 22C(n) kills the zero cell and sends the 2-cell to the bottom cell of
22C(y) by a degree one map, as C(n) = $2 5 22C(n).

Note that the definitions of /2 and r imply that the diagrams

s —t e COp) Cin) —2— = ci?)
\ lh and \ lk
C(n) s’
commute.

10.2. Anderson cofibrations of ko-modules

The maps above induce, upon smashing with the identity on ko,
: Yko — ko,

: ko — ku and ¢: ko — kt, unit maps;

: kt — ku, with c="{¢;

: ku — X~ 'kt, from j;

- XYkt — X0, from k;

— r: ku — X%ko;

— Yy =y ku— ku and yr=y: kt — kt;

— @ ku— Z%ku.

]
a4 = v O =
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Note that some of the degrees of maps differ from those of the same name in Bousfield’s
periodic version [8]; the difference comes from the lack of an inverse to the Bott
element. To simplify the number of generating operations, note that »=1y and c¢={_e¢.
The map c¢ is complexification; » is realification.

The following cofibrations are obtained:

Sko L ko S ku 5 3%ko,

ko L ko 5 kt z ko,

kt 5 ku 5 22k sk,
Here, ku is merely shorthand for ko A C(x) and similarly for k¢, however it is possible
to prove that these are equivalent as ko-modules to the usual ku and k¢ by the classi-
fication below (Theorem 17). There are other proofs of this fact as well, for example,
using the homology of ko and ku (R. Bruner, personal correspondence).

These cofibrations can be viewed as parts of the Verdier braid diagram generated

by the triangle two sides of which are 5, the third given by #%. One important relation

seen in this braid and which can also be derived from relations listed in Section 10.4
1s @=cr.

10.3. Determining the operations
Recall the ring structures of kox, kux, and kix:
kox=Z[n, @, Bol/(2n, 1, e, = 4Bo), In|=1, || =4, |Bol=
kux=Z[Bu], |Bul=2;
ktx =Z[n, &, Brl/Qn.n mé, &), Inl=1, [¢]=3, |Br|=4.

In the world of ko-modules, X« = [ko, X%, so these rings give all maps from ko to
each of the three objects. Explicitly, for n > 0 (other groups are all zero),

[ko, kolse = (Bp) = [ko, kolgo., = (Bom) =2/2,
[ko, kolgs,» = (Bon’) =2/2, [ko, kol .o = (Bow) =Z,
lko,kol%., =0, i€ {3,5,6,7},

[ko, kuls, = (B1) =Z., [ko, kulsn,, =0,

[ko, ktli; = (B7) =Z, ko, kil ={(Brn) =Z2/2,

[ko, k11 =0, [ko,kilse 3= (f3&) =12,
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Except where noted, the maps given below are proven to be generators by looking at
the action on homotopy groups.

Since kux(n) = 0 and the duals of C(n) and C(n*) are DC(n) = 272C(n) and
DC(?)=Z73C(n?), the cofibrations in Section 10.2 give

7={¢p) n=-2,
[kt kaa)¥® 2= Kt (C(n)) 2= 7 Z= (B, Biwy) n=2k k20,
0 otherwise,

using the fact that ki, 2(C(n))=kttn2 @ ku,. Similarly, since kt,.2(C(n)) = Kunia
(C(n2)):kun+2 B kuy_1,

Z=(erf) n=2k—1), k>0,
[ku kil = { 7=(y8) n=2k+1, k>0,

0 otherwise;

{
[kt, kult” = ki a(COTP)) =S Z=(BEL)  n=2k k=0,

0 otherwise;

and since ktx(n*)=0, ktp3(C(H*))=ktnis © kin,

" Z:(gr) n=—3,
Z/2=(piner) n=4k -2, k>0,
ko = 2% 7= (B%, Brir) n=4k k>0,
Zoz/2=B"er, fim) n=4k+1, k20,
Z=<ﬁ’}£> n=4k +3, k>0,
0 otherwise.

For [kt, kt]ﬁ,‘i_z, note that it suffices to prove that et is essential. But this is clear:
replace S-cells in nek: c(p?) — Z2C(#*) with ko-cells; one sees the composition is
not null.

10.4. Relations between operations

Note that w=187yPule and é=yBy{, further reducing our generating maps.

The effect of the various maps from ko on homotopy is clear from the above
ring structure; for example, 7 f = fn for any map f (when the composition makes
sense).
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Composing these maps with those in Section 10.2, we obtain the following relations:

Yoy =1, Yryr =1, Yre = ¢,

YovBu = —Buu,  YrBr = Bryr, Yré= =4,

Yrn =n, Yol = Qfr =, Buo=1—yu
Yry=-—wu =y,  wr=-1, efo = fre,

(Br = BLL, Bry = 7By, 87 = Por,
hre=n, 16 =0, {y=0,

WK=n, Bret = etfir +1, {eryBu = 1 + Y,
eryful=1+Yr, huie=2, PBulet =1 —yr,

with additional relations involving other elements of kox, kux, and kt«. These relations
are more than sufficient, however, to prove the desired results. The proof that the crt-
module category has projective dimension two relies on a reduction to the complex
part of the module, regarded as a module over kux. Knowing some of the relations in
the operation algebra is useful, but it is not necessary to know all of them to use the
united theory.

10.5. Operations on united modules

Rephrasing the terminology of functors in terms of modules, the algebra of operations
on a triple M = {MZ,MY,M]} of Z-graded abelian groups which form a module over
connective united K-theory is generated by homomorphisms

. A0 0 LU U Y73 T
Bo: My — My, Bu: My — M, Br: My — My,

. o 0 . U ~ U . T ~ T
n:MZ — ML, Yy MY > MY, Ut My = M, ,

. T T . o T “ . T U
n:My — M, e My — My, (M, - M/,
e AU T . T 4 . / U
Vi My — My, T: My — M5, o: Mg — M,

satisfying appropriate relations as in Section 10.4.

Note that unlike CRT, objects in crt need not have periodicity; fo, fu, and fr need
not be isomorphisms.

Define M by (M) = S(M{) = M{_, for X one of O, U, or T. A crt-module M
is defined to be crt-acyclic if its operations give rise to long exact sequences analogous
to those of Section 10.2:

O N a4s0 € aU ¥ 3.0
Mn—l _‘)Mn _)Mn _)Mn—2a
0 W 4,0 & 44T 5T 200
Mn—2 _)Mn _)Mn '—)Mn—B’
T L oagU @ agU E9 4.7
M, >M =M _,—M,_.

Note that z5'X is cri-acyclic for any ko-module X. A CRT-module is CRT-acyclic
if the same sequences are exact [8].
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11. A spectral sequence for united homology

The object of this section is to construct a spectral sequence analogous to that of [13].
Let R be an S-algebra; R, a united homology theory over R (Section 9.1); M and
N, R-modules. This spectral sequence E; = Ext}(n (M), nZ (N))=Ey ' nx(Fr(M,N))
converges from Ext over the united theory to the Rx-module of homotopy classes of
R-module maps from M to N. Notation, in fact most of the exposition, follows that
of [13].

When the united theory is small, the algebraic category is abelian, so that de-
rived functors such as Ext are well known. We present an explicit description here
which is useful for understanding the realization of united modules and maps between
them.

11.1. Realizing Hom-sets of free objects

As noted above, the monogenic free objects for united #-theory are suspensions
of nZ (R A DF) for F € #, where D denotes the Spanier-Whitehead dual. Now, the
functor Homg : (6% )P ® o/b% — o/b satisfies the Yoneda relation Homg(F (R A
F,—),M(-)) = M¥. Thus, for any functor M realizing the united #-theory of an
R-module X,

Homz(Re(—),M(—)) = M* = Xy = nsFr(R,X),
Homgz ((R A DF)«(=),M(=)) = M" = nx(X A F) = n+Fr(R A DF, X).

It is thus clear that, for an R-module X and a representable functor M, any clement
of the Hom set Homgz(M,nZ (X)) is realizable as a map of R-modules. The R A DF
become the analogs of spheres in a new cellular theory for R-modules.

11.2. Constructing the spectral sequence

Once we can realize all free crr-modules, the construction of the spectral sequence
mirrors that of [13].
Given a (cell) R-module M, choose a free resolution of ¥ M by F-modules

o F B FL = Fy S afM 0.
This free resolution gives rise to an exact couple
D} i=n_  (Fr(M,N)),  Ey'i=n_ (Fr(FK;,N)).

whose spectral sequence has E,-term Ey’ = Ext}y/(n M, 7 N). Exactly the same words
used in [13] describe the convergence and yield the naturality of this spectral sequence.
Also, there is a Yoneda product on E; which converges to the composition product.
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11.3. Naive module spectra

Since much of this theory relies only on free objects and extended module spectra,
and in particular since the definition of united homology theory only requires a ring
spectrum and not an S-algebra, one might hope for this spectral sequence to generalize
to that wider setting. This, however, is unlikely: the point-set level category is necessary
to construct the free resolutions of the R-modules; since the homotopy cofiber or fiber
of a map of naive module spectra cannot be given an obvious module structure, we
cannot make resolutions in the naive module spectrum category.

11.4. A dual spectral sequence

For an S-algebra R, a united theory R% has a dual category DR# given by taking
the Spanier—Whitehead dual in the category of R-modules of every object and morphism
in R#. Note that this satisfies all the properties of R#: DRZ is equivalent to the
opposite category of R%. Thus, we can understand the tensor product as a functor
Rz : A @ APPRF — /b with derived functor Tor(M,N) defined on a pair of
functors M covariant on R# and N covariant on DRZ.

Let M« # denote nZ (M) and N*.#, the cohomological version obtained from the
modules [RAF,N], F € #. Thus, N*% = N«DF. To construct the spectral sequence,
let M be a right (cell) R-module, N a left (cell) R-module. The exact couple defined
by

Di[ = Ryt (Msg1 ARN), Esl,, = T (FK; AR N)

yields a spectral sequence with Ei, = Torf,(M*g" ,N*F), converging to EX =
E(S)”n*(M Ar N). The filtration on nx(M Ag N) is given by the resolution of M.
Alternately, one can resolve in the N variable. The E? term can be identified by
noting that Es1 ; = F, ®7 N by construction. Convergence and functoriality are proven
as for the Ext spectral sequence. The Tor spectral sequence always converges strongly:

see [13].

12. Classification of modules over real connective K-theory

For an S-algebra R with homotopy groups forming a Noetherian ring of dimension
at most two, the R-modules are classified by their homotopy groups and a difference
in Ext, as seen above. For other ring spectra, the same method can be used once
an algebraic category with sufficient structure and global dimension at most two is
built [9]. As noted above, additional free objects provided by a united homology theory
can lower the dimension of the algebraic category. This classification is carried out here
for ko.
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12.1. Homological dimension of crt-modules

The following theorems rely on work of Bousfield [8] regarding abelian groups
with involution, and essentially parallel his similar theorems for the periodic case. In
the category of crz-modules, all projectives are free and all crr-acyclic objects have
projective dimension at most two.

Theorem 12. Given a crt-module M, the following are equivalent:
(i) M has projective dimension (as a crt-module) at most 2,
(ii) M has finite projective dimension, and

(iii) M is crt-acyclic.

This theorem relies on the following determining property of projectives.

Theorem 13. Given a crt-module M, the following are equivalent:
(1) M is projective (as a crt-module),
(ii) M is crt-acyclic and MY is free over Z[By] = [ko, kul*®,
(iii) M is free.

Proof of Theorem 12. Since # is nilpotent, equivalences under ko-, ku-, and kt-
homology are all the same. Thus, the projective dimension of a ¢rf-module is bounded
by the kux-projective dimension of its U-part. Thus, Theorem 12 follows from
Theorem 13 and the fact that whenever two crt-modules in a short exact sequence
are crt-acyclic, the third is as well. O

Proof of Theorem 13. (i) = (ii): Given M projective, there is another projective P
such that M ® P = F, where F is free, hence the n{" of a wedge of suspensions of
ko, ku, and kt. Since free objects are all crs-acyclic, so are their direct summands.
Now, MV is a direct summand of FY, hence projective over kusx Clku,kul%® since
FY is. If MY is finitely generated over kux, then it is free. If not, note that kux is
commutative and Noetherian and has no non-zero idempotents; by [3] this implies that
any non-finitely generated projective is also free.

(i) = (iii): Given M satisfying (ii), we want to decompose M as the direct sum
of free objects. By Proposition 3.7 of [8] (Lemma 14 below), each MY decomposes
as MV = G, @ yG, ®i*H, ¢ i"I, for G,, H,, I, free abelian, where i interchanges
summands on G® YG, Yy =1 on i*G, and Yy = —1 on i~ G.

For a of degree n, let FU(a) denote the monogenic free crt-module generated by a
isomorphic to 2"n{"(Dku). Similarly, FO = n5(Dko) and FT = n'(Dki).

First, we find a direct summand of M which is isomorphic to the direct sum of
copies of FU. Select elements {a,,} with a,, = a, in itH, CMV, a, not in the
image of By, and such that {a,,} is a Z-basis for the set of elements x in itH, with
Bux in Gyy2 BYGpya. That such a basis is possible (disjoint from image ) is shown
in Lemma 15. Let K be the kernel of the map €, 2"FU(a,,) — M. KY = 0, since
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each element a generates a copy of Z[Byla ® £?Z[By]b in MY with -action given
by y*b = Y(Bya—b) = b, isomorphic to the y-action on FU. Since K is a submodule
of a direct sum of copies of FU, nK° = 0, which gives K° = 0. The Anderson
cofibration relating K© and KT now gives that K7 = 0. Thus, K = 0 and the map is
monic. In fact (see Lemma 15), the free module surjects onto a direct summand of
MV, so the cokernel N also satisfies (ii). Further, NV = (NY)* @ (NY)~ as graded
abelian groups, where Gt = {x € G : Yyx =x} and G~ = {x € G : yx = —x}.
Next, we find a direct summand of N which is the direct sum of copies of FO. Note
that n2 = rB%c by the definitions of the maps in Section 10.2 and the relations in
Section 10.4. Thus, #? factors as the composition NO 5 (NV)* LN rBL(NY YT C NG,
The identities crfy = 1+ and fyy = —y By give crfy(NY )Y = (1+¢)XNE,)™ =0,
so rB(NY)*t is a Z/2-module (i.e., is contained in nN9).

Choose a Z-basis {bg}U{c,}U{ds}U{e.} for NU by extending a basis for the image
of By to the whole of NV such that the b’s project to a basis for #Z,(NV)* /p*N©,
the ¢’s project to a basis for y?N9, the d’s are trivial in rp%,(NY)", and the e’s are
in (NV)~.

For any ¢, , not in the image of fy, define m, , as follows: since 2(NY )™ C c(N?)
and #? = rf¥c, there is an m,, € N° with c(m,) — ¢, € Span{ds}, that is, #*m, =
rf?.c.. Then ¢, , can be replaced by c(m, ). The construction of the m, implies that
@, Z"FO(m, ) — N is monic with crt-acyclic cokernel P such that PV is free over
Z[Bul, PV = (PV)" © (PY)~ as graded abelian groups, and #?P° = 0. The map is
monic since the m, hit elements which are non-zero under #?; everything else is forced
by fo # 0 on N9, since NV is free over Z[fy]. Also, the map from the free module
generated by the m, hits generators ¢(m,) in a basis for N U, so the cokernel has U-part
free over Z[By]. Since #n?NC Crp%,(NY)*, all of #*NY is hit; n?P? = 0.

Lastly, we see that P is a direct sum of copies of FT by using the exact sequence

/ 7 ¢ 4 1 7
--~—+P$*1——>P£-—>P£—>P[§_2—/>P£-1—>-~-.

Since f is injective on PU, 0 = 1 — ¢y = Py implies @ = 0. So, since PV is free
over Z[fy], the exact sequence

0— (PY_ ) & (PY_) /25 PL S (P =0
reduces mod torsion to

0 — (PY_,)* L PLjtors = (PY)* — 0,
with y(PY_,)* = (PL/tors)™ (to see this, look at the relations between yr, Yy, and 7).
The exact sequence for #° gives the short exact sequence

0 — P2/tors = PLjtors = P{_;/tors — 0,

since tors(P2_;) = ker(c: P¢_y — PY ;) = nP¢_, and tors(Py) = y(P{_ )~ =
yPI_, = nPL_, by the above short exact sequence and the effect of {. Thus, since
yre = &, (P tors) = (PL/tors)*.
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Note that PL/tors is free abelian in each degree, so that we have decompositions
Pl jtors = (G, @Y G,)®itH,&i~ . Since any torsion is killed by #, there is an epimor-
phism Pl —»netfr(Pl). Now, netfire = nen = 0, so n kills &(PQ/tors) = (PL/tors);
also kills y«(B#') = B3 '¢ and y«(B7~") = Bin, hence netfiry = 0 and m(PY_)*t =
n(PL/tors)™ = 0. Lastly, 7y = —t and Y7 = fry imply that ety = nerfr. Thus,
the restriction to G, is a surjection G,~»netfr(P7).

Choose a Z-basis {r,} U {s;} U {t,} of PL such that {r,} U {s,} gives a basis for
netfrPT, extending a basis {54} for the sum of the images of fr and ¢, and satisfying
{t.} — 0 in netBrPT. Lift each element Fpn 10 7, in Pl giving a monic map

P Fr(Fsn) — P
p

with cre-acyclic cokernel Q; again, QU is free over Z[By ] (use the short exact sequence
relating (PY)* and PLjtors), QY = (QY)" & (QY)~, #*(Q°) = 0 (true for P, FT),
and further, 7et(Q7) = 0, since any element in the image of ner is in the image of
the FT’s. Note that there is no need to kill the s,; they are hit by linear combinations
of the f1+&%,’s.

Lemma 16, the analog of [8, Proposition 3.11] for crt-acyclics, then gives that 0 = 0,
so M is a free crt-module. [

12.2. Technical lemmas used in the proof of Theorem 13

First we define the abelian category Inv of involution modules, as in [8], to be the
category of Z{1,} modules where > = 1; this is the category of abelian groups
with involution. For an abelian group G, G ® ¥G denotes the involution module in
which ¥ interchanges summands; i*G denotes G with involution ¥ = 1; i—G has
involution ¢ = —1. For an involution module M, M = {x € M{yx =x} and M~ =
{x e M|yx = ~x}.

Lemma 14. Any object M of Inv which is free as an abelian group is isomorphic to
(GayGYditH @i~ I for free abelian groups G, H, and 1.

Proof. This is Proposition 3.7 of [8]. [

Lemma 15. Given a crt-module M such that MY is free over Z[fy], with decompo-
sition as abelian groups

MY =G, o¥G, ®itH, & i~ I,

any element in G, & G, must be in a submodule generated under Y and By by a
generator of a copy of kux(C(n)) taken as a [ku,kul’-module. Such a generator is
necessarily in i*H, for some n. Further, the image of kux(C(n)) in MY is a direct
summand over Z[fy, ]
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Proof of Lemma 15. We want to prove that any element of G, ® WG, must be
generated under ¥ and Sy by a generator of a copy of kux(C(n)).

Let Z[Bulx be a Z[fy]-free submodule and direct summand of MY generated by x
and closed under . Note that the united operation ¢ requires ¥x = x, so that x can
be in the kernel of ¢.

For a module with MY = Z[fy]x ® Z[By]y as Z[Br]-modules and indecomposable
over Z[By,¥], x and y must have different degrees of the same parity, since any group
Zey D yZe; has an element e; — e; in the image of By. Let |y| > |x| and suppose
|x| =0, so |»| = 2. To rule out |y| > 4, use the n exact sequence and #° = 0 to show
that M is (~2)-connected, since MY is (—1)-connected. Then use the exact sequence
with @ to see that MT, includes torsion Z/2 (coker ¢); the ¢ exact sequence shows
then that M‘_)1 = Z/2. The n exact sequence now forces MY, = Z/2, a contradiction.

This covers all possible cases, since ¥* = 1 and Yfy = —fy.

Let 4 = [ku,ku)%. For any crt-module M, MY is an A-module. Call an A-module
@-acyclic if the complex

'—>M>.E’;2 E’Mf iM}LZ A
given by ¢ € A_; is exact. O

Lemma 16. Let M be a crt-acyclic crt-module. The following are equivalent:
(i) MY is @-acyclic,
(ii) # =0 in MO,
(iii) #* = 0 in M© and net =0 in M7,

Proof. This is the crt analog of Proposition 3.11 of [8].

(i)= (ii): Note that ¢ = ¢r. Now, an element x € M? is in the image of r if and
only if #x = 0. Also, for any x € M9, ¢(cx) = 0; by @-acyclicity, there is an element
y € ¢~ '(ex). Suppose x is not in the image of r. Then ry # x, but cry = @y = cx, so
x —ry = nz {kerc = im#n). Since ry £ x, #z # 0 and z is not in the image of r. Thus,
we can do for z = x; what we just did for x = x,, obtaining a sequence x, € M? such
that #x, # 0 and x,_1 —#x, is in the image of r. Since nr = 0, nxo = n*x; = ’x; =0,
so we must have had x in the image of » (kernel of 1) after all: n = 0 in M©.

(ii)=(1): If = 0, then ¢ is monic and r is epic, so that kero = ker(cr) =
ker (r) = im(c) = im(cr) = im(¢). Thus, MY is g-acyclic.

(ii) = (iii): Now, n = 0 in M implies n* = 0 in M9. Since the composition

T & n
M*T — M$_3 = M,Z_z — Mir_z
equals the composition
T T ag0 A a0 & 3gT
My = M 3 — My ) — My,

we also get et = 0 in M7,
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(iii) = (ii): If 2 = 0 in M9, then
0—-M?SMI SME ,—0

is exact, but 0 = ner = ent in MT. Since & is monic, nr = 0. Now, 1 surjects onto
MO and also maps into the kernel of #, so # =0 in M°. [J

12.3. Classifying ko-modules

As in the dimension two case for rings above (Theorem 7), all crz-acyclic crt-
modules can be realized as n§’ of some ko-module, again using projective resolutions.

The analysis is completed after verifying that the classification of ko-modules with
the same n{’ M is given by a quotient of Extf;,—l(M,M ), exactly as in [8] and in
Theorem 7.

Theorem 17. The category of crt-acyclic cri-modules has enough projectives and all
objects have projective dimension at most two. Any cri-acyclic crt-module can be
realized as ©'(X) for some ko-module X. This ko-module is unique up to homotopy
if the crt-module has projective or injective dimension at most one. For a fixed crt-
module M of projective dimension two, there is an equivalence relation finer than
homotopy equivalence so that equivalence classes of ko-modules X with n{'(X)=M
are in bijective correspondence with the elements of Extﬁ;,‘l(M,M ).

13. Modules over periodic K-theory and X«-local spectra

A simpler classification results when % -modules have % -projective dimension at
most one. One example is Bousfield’s CRT-theory [8], noted above. This classification
yields an algebraic criterion for when a Kx-local spectrum can be given the structure
of a KO-module or KU-module.

13.1. Classifying KO-modules

Since Bousfield proves that all CRT-acyclic CRT-modules have projective dimension
at most one and that all projectives are free (hence easily realized), we obtain a
classification of CRT-modules using the united CR7-homology spectral sequence. A
KO-module M is determined by nS*7 (M) and the group of KO-module maps between
two KO-modules M and N is given by the short exact sequence

0 — Extligr(nERT (M), n$RT (W) — [M, N 1§

— Homerr (nRT (M), n{KT(N)) — 0.
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Note that we have now classified R-modules where R is real or complex K-theory,
either connective or periodic.

13.2. Local spectra with module structures

If X is a Kx-local spectrum (or S-module), it would be good to know when X ~ M
as spectra for some KO- or KU-module M. Note that X« for a spectrum X has only
the structure of an Si-module; here, we need consider it only as a graded abelian
group.

A CRT-module enriched with Adams operations is called an ACRT-module [8].
These A CRT-modules classify Kx-local spectra by taking KSRT(X) = nSRT (KO A X)
as CRT-modules for X Kx-local, together with Adams operations induced by those on
KO.

Note that 7$R7(X) is not in general a CRT-module, though the acyclicity condition
always holds. If X has the structure of a naive KO-module spectrum, however, then
7SRT(X) is a CRT-module.

Let U be the right adjoint to the forgetful functor from 4CRT-modules to CRT-
modules. Note that the complexification map ¢: KO — KU is a map of S-algebras:
any KU-module is a KO-module.

Theorem 18. Let X he a Kx-local spectrum or S-module. Then X is equivalent to a
KO-module if and only if KSRT(X) = UnSRT(X) as ACRT-modules, where n{RT(X)
must be a CRT-acyclic CRT-module. Further, X is a KU-module if and only if, in
addition, Xy can be given the structure of a KUx-module.

Proof. Necessity is clear: given a K«-local spectrum X which is equivalent to a KO-
module, 7$RT(X) must be a CRT-acyclic CRT-module, and by [8], KSR (X) =
UrSRT(X) as ACRT-modules.

If z$R7 (X)) is CRT-acyclic, then by the classification theorem for KO-modules, there
is a KO-module Y, unique up to homotopy, such that 7S{R7(X) = a{RT(Y).

For X and Y to have the same homotopy type as spectra, it suffices to check their K-
local type, since both are Kx-local. The question is now answered by the analysis in [8]
relating the categories of CR7T-modules and CRT-modules with Adams operations, or
ACRT-modules.

Bousfield constructs the right adjoint U to the forgetful functor from 4ACRT-modules
to CRT-modules. Since U is a right adjoint, it preserves injectives; in fact, this is how
he shows that the category of ACRT-modules has enough injectives. Further, given
a naive KO-module spectrum Y, KSRT(Y) = Un§RT(Y) as ACRT-modules. Thus,
X is a KO-module if KSRT(X) = UnSRT(Y). In particular, although the category of
ACRT-modules has global injective dimension two, since U/ preserves injectives, our
prospective KO-module X must have K{R7(X) with injective dimension at most one
as an ACRT-module.
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In order for a Kx-local spectrum X to be a KU-module, X must be a KO-module
by neglect of structure and Xx must have a KUx-module structure; in fact, since the
Bott element must be an isomorphism, any KUs-module structures on Xx are isomor-
phic. Let Yx denote X« with a KUx-module structure. Yy has an injective resolution
0 — Y« — Iy — {; — 0 of KUx-modules, which we realize uniquely up to homotopy
as a cofibration ¥ — || — |[| — ZY of KU-modules; m+(Y) = Y.

By neglect of structure, Y is a KO-module, hence X and Y have the same homotopy
type if they satify the condition KSR7(X) & Un{R7(Y). In this case, X is homotopy
equivalent to the KU-module Y. [

Note that this shows readily that any naive KU-module spectrum is equivalent to a
KU-module; thus, any naive KU-module spectrum can be given the structure of a KU-
module. Further, since any map of naive module spectra is a map between modules of
dimension at most one, it can be realized as a strict map. Thus, the homotopy category
of naive module spectra over KU (weak equivalences inverted) is equivalent to the
derived category of KU-modules.

Corollary 19. The derived category of KU-modules is equivalent to the derived cat-
egory of naive KU-module spectra. The same is true for KO.

This answers a question of Mark Hovey (personal communication) of when a Kx-
local spectrum has the structure of a KU-module spectrum.

14. Realizing modules of dimension higher than two

Given an S-algebra R with a united theory R# (the crt and CRT theories, for
example), and given any Ri-module My it is possible to construct an R% -module
with My as its value at RAS (Section 9.1). For the sake of clarity, the exposition here
will focus on the example of ko.

Theorem 20. Given any kosx-module My, it is possible to construct a crt-acyclic cri-
module with ko part My. Thus, by the classification theorem for ko-modules, My can
be realized as the homotopy of some ko-module.

The general case is stated at the end of this section. The method of proof will be
clear from the example of ko; essentially, it is to build a complex of copies of 7{’(ko)
from a free resolution of the module, then to see that the homology of the complex is
concentrated in degree zero and is our desired crs-module.

14.1. The construction

Let My denote a (graded) kox-module. Take a free resolution FC — My — 0 of
My; each FO is a free, graded kos-module. Let F be a free graded kux-module on
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generators corresponding to those of F. Now construct a bicomplex F

.— YF0 L, R0 &, FU L, 32RO ..

d"l dnl dﬁi dnl

- — ZF0 L FO . 5 FY L 52F0

dk,'l d"—‘.l df_..l dn~|j[
T

— F¢ L FY 5 FY L 2R —

where each X, has an additional internal grading. Suspension affects only this internal
grading: XX« = Xgx_,. The maps #, ¢, » are induced by the maps

Tkos b kos < kus 5 Zkoy;

and the differentials of FY are given by the following method: F¢ — F? | has a
unique realization as a map of ko-modules; smash with the identity on C(#).

This is equivalent to defining FU as FP @y, kux, since the modules in FC are
all free over kox. Thus, we can construct a complex F of free crt-modules as F =
FP @, « &' (ko), where Ff=Fp Bkoy Tx(kX ). We obtain diagrams similar to the one
above corresponding to the other long exact sequences defining crz-acyclicity. The rows
are exact complexes by construction. Since free modules are flat, each complex FZ is a
resolution. Define a crt-module M by MO = My, MY = Hy(FY), and M7 = H(F[),
operations induced by those on the resolutions FJ.

Now M can be realized in topology (since cr¢-theory has dimension two) if and
only if M is crt-acyclic. To see that M is crf-acyclic, recall that a bicomplex F has
two spectral sequences [14] (where é denotes the horizontal differential given by #, c,
and r; and 4, the vertical)

EPY = Hy(H,— ,(F.d),0), and E;P9 = Hy(H,_,(F,0),d)

each converging to the homology of the associated total complex (appropriately fil-
tered). In our case, the spectral sequences are half-plane spectral sequences. Since they
are spectral sequences from a bicomplex, they automatically converge conditionally [5].
Further, only finitely many differentials are non-zero since each spectral sequence has
differentials which go from the groups in the free resolutions downward (in the above
diagram) eventually into the lower half-plane, which is all zero.

In this case, the one spectral sequence converges to zero and the other, since it is a
single line, converges from the homology of the complex

c IMO - MO - MY — MO —
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to zero, forcing the complex in question to be exact. Similar analysis yields exactness
for the MP-M* and MV-MT complexes. Thus, M is crt-acyclic and can be realized
as n{"(X) for some ko-module X.

The details of the generalization of this construction are in the section below, The
guarantee that any % -module can be realized holds only for theories of dimension at
most two; in such a case, the analysis realizing and classifying such modules is exactly
as in the crt case.

14.2. General united theories

Let R# be a united theory for an S-algebra R, with X an R-module in R#%. Set
A = [X,X]%. Note that nZ (DX) consists of 4-modules and A-module homomorphisms.
Given any A-module My with A-free resolution FY — My — 0, we can form F =
F¥ ®4 nZ(DX), which is a complex of R#-modules such that F¥ is the complex
FX. The acyclicity conditions are proven as in the cri-case above, and we define the
R#F-module M by M' = H,(F!) for Y in RF, operations induced by those on F.
Thus we obtain an % -acyclic R# -module M. When M has projective dimension at
most two, we can use the techniques of earlier sections to realize M as 7% (Z) for an
R-module Z. This finishes the proof of Theorem 20 and its generalization:

Theorem 21. Let R be an S-algebra with a united theory RF, X an R-module in
RF. Let A = [X,X)R. Then given any A-module M« it is possible to construct an
F -acyclic united module M such that MX = Mx. Thus, by the techniques preliminary
to the classification theorem, when the united theory RF is of dimension at most two,
any A-module can be realized as the homotopy of DX AgZ for some R-module 7. In
particular, any Rx-module is the homotopy of some R-module.

In particular, any kox-module is the homotopy of some ko-module, and the same is
true for KO.

Note also that any [ku, kul%’-module can be realized as m«(ku Ay, Z) for some ko-
module Z, since ku is self-dual up to suspension as a ko-module.

15. A change of rings isomorphism
This section gives a change of categories isomorphism analogous to the standard

change of rings isomorphisms for calculating Ext.
Let 4 = [ku,ku]®°. Recall the definition of @-acyclic preceding Lemma 16.

15.1. Universal functors between A-modules and crt-modules

The forgetful functor M — MY from cri-modules to (graded) 4-modules has both
a left adjoint and a right adjoint.
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Lemma 22. The left adjoint A to the forgetful functor from crt-modules to (graded)
A-modules is given by

MY =My, (M) =Ns,  (AM)L = Nx & Ny,

where Nx is the double desuspension of the cokernel of ¢. The operations on AM are
given by n =0, Yrlx, y] = [x, =y, Bolx] = [B{x], Brlx, ¥] = [BEx, BT ¥, elx] = [x,0],
(e y] = [ + g, x = [o,x], and tfx, y] = [].

The right adjoint p to the forgetful functor is given by

(pM){ = M, (pM)S = L, (M) = Ly © L1,

where Ly is the kernel of @. The operations on pM are given by n =0, Yr(x,y) =
(X, —_y)ﬂ ﬁo(x) = ,X ﬂT(x y) - (:B ﬁ y)’ g(x) = (xa O)a C(x5 Y) =X, X = (O,X +
x), and t(x,y) =

Proof. The adjunctions are verified by using the operation sequences, noting that maps
must commute with all crt-operations: given an A-module map o: Msx — XY, where
X is a crt-module, there should be a unique map o' J(M) — X with a¥ = . The
definition of A and the crt-operations require that ¥ = «, «’ is determined by «°
(because of the O-T and U-T sequences), and a®[y] = rx(y), which is well-defined
since [y] = [z] if and only if @(y —z) = 0, and r¢ = 0. Similarly for o : X{ — M,
we need a unique map /€. X — p(M). This time, 2(x) = ac(x) € p(M) = ker ¢
since « is a map of A-modules, so @ac(x) = apc(x) = a(0). O

Lemma 23. If M is a projective A-module, then AM is a projective cri-module. If M
is an injective A-module, then pM is an injective crt-module.

Lemma 24. Let 0 - L — M — N — 0 be an exact sequence of A-modules. If N is
o-acyclic, then 0 — AL — AM — AN — 0 is an exact sequence of crt-modules. If L
is g-acyclic, then 0 — pL — pM — pN — 0 is an exact sequence of crt-modules.

Proof. Any right adjoint preserves limits, hence is left exact and preserves mon-
ics; dually for any left adjoint and epis. Thus, it suffices to check the exactness of
0— iL— M and pM — pN — 0 where N and L are g-acyclic. But this is clear
from the definitions of p and A and the fact that A-module maps commute with ¢. [

Lemma 25. For any @-acyclic A-module M, JM and pM are crt-acyclic.
Proof. Again, by direct calculation from the definitions of the adjoint functors. [

Theorem 26. For crt-acyclic crt-modules L and M with n = 0 in MO, there are
natural isomorphisms

MYy M= pMY),

ExtS(M, L) = Exti (MY, LY),  Extii(L,M) = Ext; (LY, MY).

crt
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Proof. We use the fact that MY is ¢-acyclic (Lemma 16), the lemmas above, and
the long exact sequences which link the crf-operations. Since # = 0, we have the iso-
morphisms A(MY)? = cokerp = MY /imp = MY /ker (r)5Z*MP and MC = im(c) =
ker o = p(MY)P. Given these isomorphisms and that, by adjointness, Hom,,, is deter-

mined by Homy, the isomorphism between U-pieces lifts to a crt-isomorphism.
Taking a free or injective A-resolution of M, depending on whether M is in the
contravariant or covariant variable, we obtain the desired change of rings isomorphisms.
0

16. Future directions

16.1. C*-algebras and connective K-theory

Module spectra (in the classical, naive sense) over connective K-theory which are
of the form ku A X for a compact space X are closely related to C*-algebras. For X
and Y compact spaces,

[# R CX, 4 @ CY] = [X,kur Y3 = [ku A X ku A YT,

where . denotes compact operators and CZ is the space of all maps Z — C.
Dadirlat [12] and Blackadar [4] give more details on this relation between connec-
tive K-theory and C*-algebras. Segal [23] has given a more geometric construction of
the connective K-theory spectrum.

Thus, it would be good to know which module spectra over ku are actually of the
form ku A X, at least for X a finite CW-complex.

16.2. Extended modiiles

The ko Adams spectral sequence is useful for its quick convergence. This leads
one to a desire to understand ko-modules better, for example, which kox-modules can
occur as the ko-homology of a space or spectrum.

Note that, since ku and kt are finite ko-modules, the result above on finitely generated
Rx-modules generalizes to finitely generated crt-modules.

In a different vein, a theorem of Jung and Stolz [24] states that a manifold admits
a positive scalar curvature metric if and only if the image in ko-theory of the spin
bordism class given by the classifying map M — BniM of the universal cover lies in
a certain subgroup of ko,BmM (n = dimM > 5). Thus, the study of ko A Br would
be interesting. The periodic case reduces to representation theory. While there is no
general description of HZ A Br, connective K-theory may be a middle ground between
this and the periodic K-theory of Bm.

16.3. Questions

Among other interesting questions is one suggested by Neil Strickland: when is a
module over MUy the homotopy of an MU-module? Here we have realized all modules
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of projective dimension at most two, but the question remains for all higher and infinite
MU -dimensional modules.

Perhaps more tractable would be to investigate other rings of finite homological
dimension first. This might require a better understanding of the relation between the
associated graded of the Hom groups from the EKMMSS and the actual Hom groups.

Along another tack is the investigation of other united homology theories. It would
be interesting to find situations apart from K-theory where these theories are useful.

The work of T.-Y. Lin included results about modules over Sx. One hope would be
that we could determine Sx-injectives or obtain more information about maps between
2-cell complexes. Since Sx is not concentrated in even (or otherwise sparse) degrees,
the algebra over this uncalculated ring is likely to be difficult to approach, but it should
be possible to see part of the picture.

The categories % of R-modules give alternate worlds of homotopy theory. As this
paper shows, these worlds are often simpler than the usual stable category. It would be
interesting to investigate, for general S-algebras R, whether there is a choice of R such
that the every Bousfield class (R-modules with the same localization functor) has a
complement in the algebra of Bousfield classes of R-modules. Also possibly interesting
would be analogs of the chromatic filtration and whether the telescope conjecture might
be true over some choice of R. This might aid in determining the deviation of the
telescope conjecture from the truth.
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