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Abstract 

The category of modules over an S-algebra (A~ or E ~  ring spectrum) has many of the good 
properties of the category of spectra. When the homotopy groups of the S-algebra in question 
form a sufficiently nice ring, it is possible to see the deviation of the category of modules over 
an S-algebra from the corresponding algebraic module category. In particular, many algebraic 
modules are realized as homotopy groups of topological modules over S-algebras. Examples 
studied include real and complex K-theory, both connective and periodic. Further, Bousfield 
localization by a smashing spectrum is shown to yield a category of modules over the localized 
sphere. For periodic K-theory, these methods yield an algebraic criterion to determine when a 
local spectrum is a module over the K-theory S-algebra, real or complex. @ 1998 Elsevier 
Science B.V. 

A M S  Classification: Primary: 55P42, 55N15, 19L41, 55T99; secondary: 55P60, 16E10 

I.  Introduction 

The stable category of  spectra is known to have good algebraic properties; this has 

been expanded and made more precise by Elmendorf  et al. [13]. Any  strict commutative 

( E ~ )  ring spectrum is essentially a commutative S-algebra,  for which the appropri-  

ate diagrams commute on the point-set level. Here, all S-algebras are assumed to be 

commutative. 

Let R be an S-algebra. An R-module is defined in terms o f  diagrams that commute 

on the point-set level. The classical definition o f  module spectrum requires that the 

diagrams which define the module merely commute up to homotopy; here, such a 

spectrum will be called a naive module spectrum. 

The category o f  R-modules has all the standard constructions used in stable homotopy 

theory, yielding many stable homotopy theories. The sphere spectrum S is one example 
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of an S-algebra, and the classical stable homotopy category is equivalent to the derived 
category of S-modules. The algebra in other examples often involves (known) tings 
simpler than ~z,S. 

Working in the derived category, ~R, of R-modules (weak equivalences inverted), 
we will not distinguish between an object or map and its weak homotopy type. The 
derived category is equivalent to the homotopy category of cell modules and cellular 
maps, so we could alternately assume that all objects are cell modules and all maps 
are cellular maps. There is a smash product of R-modules, AR, which is analogous to 
the derived tensor product of R,-modules. In the context of S-modules, A denotes As, 
the smash product over S. 

Modules over an S-algebra R can be closely related to algebraic modules over the 
ring R, of homotopy groups of R. For example, the derived category of a discrete 
commutative ring is equivalent to the derived category of modules over the Eilenberg- 
MacLane spectrum of the ring. 

Given an R,-module M, ,  M* denotes the R* module obtained by regrading: M " =  
M_~. Note that, for any naive R-module spectrum X, 7r,X has a canonical R,-module 
structure. Realization of an R,-module refers to finding an R-module with homotopy 
isomorphic to the given module. 

This paper investigates the algebraic classification of modules in these stable homo- 
topy categories of R-modules. The main classification results follow Bousfield 
[7, 8]. 

Theorem 6. Let R be an S-algebra. Then every R,-module of  projective dimension at 
most two can be realized as the module of  homotopy groups of  some R-module. Such 
an R-module is unique up to homotopy i f  the R,-module has projective or injective 
dimension at most one. When M ,  is an R,-module of  projective dimension two, there 
is an equivalence relation finer than homotopy equivalence so that equivalence classes 
o f  R-modules with homotopy M ,  are in bijective correspondence with the elements of  
Ext2', 1 (m*, M* ). 

Thus, any two modules in a given equivalence class are (weakly) homotopy equiv- 
alent, but modules in two distinct classes may also be equivalent. So, isomorphism 
classes of objects in ~R with homotopy M* correspond to elements of a quotient of 
Ext , ' ,  l (M*,M * ). 

Ext is relevant since the main tool used to prove this theorem is a spectral sequence 
E~'t(M,N) =ExtS'~(M*,N *) => [M,N]R_s_t converging from algebraic Ext groups to R 
homotopy classes of R-module maps. In the dimension one case, the spectral sequence 
reduces to a short exact sequence describing the homotopy classes of maps of R- 
modules. Complex periodic K-theory, KU, is an example of an S-algebra over which 

this is true. 
Further, when R,  has global dimension at most two and is sufficiently sparse, the 

category of R-modules can be described completely algebraically. One example is com- 

plex connective K-theory, ku. 
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For real K-theory, the classification is more complex: the relevant ring has infinite 
cohomological dimension; however, generalizing the concept of ring allows construction 
of an algebraic category with dimension two. Note that, as ko-modules, ku ~- ko/xCOl). 
We also use kt, defined here as ko/X c0/z) ,  which is a connective version of self- 
conjugate K-theory [2, 8]. 

Let crt be the category with objects ko, ku, and kt  and maps all maps of ko-modules. 
The category of additive functors from crt into the category of abelian groups has many 
of the properties of a module category: we call this the category of united modules or 
crt-modules. Any ko-module X gives a crt-module 7z~rt(X) by smashing with S, COl), 

and C(t/2) respectively, and taking homotopy. When the image of a crt-module fits into 
certain exact sequences, it is called crt-acyclic. The exactness condition is motivated 
by the topology and is necessary for realizability. 

Theorem 17. The category o f  crt-acyclic crt-modules has enough projectives and all 

objects have projective dimension at most two. Any crt-acyclic crt-module can be 

realized as ~r~"(X) for  some ko-module X. This ko-module is unique up to homotopy 

i f  the crt-module has projective or injective dimension at most one. For a f ixed crt- 
module M o) c projective dimension two, there is an equivalence relation finer than 

homotopy equivalence so that equivalence classes o f  ko-modules X with ~z~H(X)=M 
are in bijective correspondence with the elements' o f  EXt~r~-I(M,M). 

Again, the main tool used to prove the theorem is a spectral sequence E~'t(M, N ) =  
rM. N1 k° converging from a generalization of Ext for united E x t ~ , ( M * , N * )  =:> L , J-s- t  

modules to homotopy classes of maps of ko-modules. 
A similar result holds for the periodic theory, which has dimension one and is thus 

simpler. The periodic version of crt is called CRT. 
The algebraic description of ~Ko and ~ c ,  given by the above theorems, together 

with Bousfield's description of the category of K,-local spectra in terms of objects 
called ACRT-modules, yields an algebraic criterion for when a K,-local spectrum can 
be given the structure of a KO- or KU-module. The notation for localization with 
respect to periodic K-theory is not ambiguous, since both KO and K U  give the same 
localization functor. 

Let U be the fight adjoint to the forgetful functor from ACRT-modules to CRT- 

modules. Note that the complexification map c : KO ~ K U  is a map of S-algebras, so 
that any KU-module is a KO-module. 

Theorem 18. Let X be a K,-local spectrum. Then X is equivalent to a KO-module 
i f  and only (( KC, RT(x)  ~- UTr,cRT(X), where 7tC, RT(X) must be a CRT-acyclic CRT- 

module. Further, X is a KU-module if, in addition, X ,  can be given the structure o f  

a KU,-module. 

The above criterion gives the following corollary, where the derived category of a 
category of spectra or modules is formed by inverting all weak homotopy equivalences. 
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Corollary 19. Any naive module spectrum over KO or KU is homotopic to a KO- or 
KU-module, respectively. Further, the derived category of  naive KO- or KU-module 
spectra is equivalent to the derived category o f  KO- or KU-modules. 

In fact, Bousfield localization at any smashing spectrum (defined in Section 2) is 
closely related to topological module categories. 

Theorem 2. Given a smashing R-module E, the derived category ~R[E -1] of E,-local 
R-modules is equivalent to the derived category ~RE of  RE-modules. 

In particular, this holds for R = S  and E = K U .  
Returning to ko, we show that any ko,-module M,  can be realized as the homotopy 

of some ko-module. 

Theorem 20. Given any ko,-module M,,  it is possible to construct a crt-acyclie crt- 
module with ko part M, .  Thus, by the classification theorem for ko-modules, M ,  can 
be realized as the homotopy of  some ko-module. 

In fact, we can define a general notion of a united theory. The result generalizes to 
any united theory all of whose acyclic objects have dimension at most two. 

Theorem 21. Let R be an S-algebra with a united theory RW. Then given any R , -  
module M ,  it is possible to construct an acyclic united module M such that the R-part 
o f  M is M, .  Thus, by the classification theorem, when the united theory R ~  is of  
dimension at most two, any R,-module can be realized as the homotopy o f  some 
R-module. 

In particular, this can also be done for KO. 
In order to use these united theories for calculations, it is useful to understand how 

to compute Ext in these functor categories. The following is a change of rings theorem. 
Let p and 2 denote the left and right adjoints to the forgetful functor from crt- 

modules to [ku, ku]k,°-modules. For a crt-module M, M ~ denotes the ku-part of M; 

M °, the ko-part. 

Theorem 26. For crt-acyclic crt-modules L and M with the operation tl on M ° equal 
to zero and A = [ku, ku] k°, there are natural isomorphisms 

),(M U) ~- M -~ p(mU), 

ExtS},(M, L) ~ Ext,' t(M u, L v ), 

Ext~c/t(L,M) -~ Ext~t(LO',M ~' ). 

Motivation beyond the desire to reduce all homotopy theory to algebra lies in various 
places. The focus here is on connective topological K-theory: complex K-theory, for 
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example, for its relation to C* algebras; real K-theory, for example, toward greater 
understanding of the corresponding Adams spectral sequence. 

2. Bousfieid localization and modules over S-algebras 

One method of studying stable homotopy theory is to study the category of spectra 
through the eyes of a homology theory, smashing all objects with a fixed spectrum. 
A more sophisticated method is to use Bousfield localization. Bousfield localization at 
a spectrum E constructs a category in which E-homology isomorphisms are inverted. 
When Bousfield localization coincides with smashing all objects with the localization 
of the sphere, E is called smashing. 

We recall the basic definitions. 
For a spectrum E, a map f : A --~ B which induces an isomorphism E,A  ~ E , B  is 

called an E,-equivalence. If E,A  = 0, then A is E,-acyclic; X is E,-locaI if  X*A = 0 
for any E,-acyclic A, or equivalently, if any E ,  equivalence f : A - - ~  B induces a 
bijection f * :  [B,X],  ~ [A,X],. 

The E,-localization of X, XE, is the terminal E,-equivalence out of X. In fact, each 
spectrum X can be decomposed naturally into E,-local and E,-acyclic spectra XE and 
EX via the cofibration EX ~ X & XE ~ S(EX) in the stable category (of S-modules 
or equivalently of spectra). The E,-localization functor is sometimes denoted LE. 

There are analogous definitions and localizations in the category of modules over 
any S-algebra. Bousfield's methods to construct local spectra also generalize to this 

context. 
Note that any R-module X (or even a naive module spectrum over a naive ring 

spectrum R more generally) is automatically R,-local since R , Y  = 0 implies X , Y  = 
0 = X* Y since any element of X,  Y factors through S A X A Y ---, R A X A Y via the 

module structure map [1]. 
The Bousfield localization of an S-algebra is again an S-algebra [13]. In particular, 

this is true of the sphere spectrum. If E,-localization is equivalent to smashing with 
the E,-local sphere, then E is called smashing. 

Theorem 1. I f  E is smashing, then the derived category of  E,-local spectra is equiv- 
alent to the derived category of  SE-modules. 

This comparison of categories is a nice observation, but not yet very useful for 
calculations since SE is usually quite nasty. 

The same holds for localization in the category of R-modules for an arbitrary 
S-algebra R. For an R-module E, we define ER,(x) = [R,E AR X]R, = n , (E  An X). 
Now, LE is replaced by L~, which denotes ER,-localization. We denote the localization 

L~X of an R-module X by XE. E is smashing in ~R if XL" --~ X AR Re. 
The notation ~R[E -J ] denotes the category of E,-local R-modules, which is equi- 

valent to the category ~R after inverting ER,-equivalences. 
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Theorem 2. Given a smashing R-module E, the derived category ~n[E -1] of ER,-local 
R-modules is equivalent to the derived category ~nE of Re-modules. 

Proof. Let E be a smashing R-module; the map X ~- R An X ---, RE AR X gives the 
localization functor, so that any E.R-local R-module is homotopic to one of the form 

Re AR X.  Also, RE An Re --~ Re is an isomorphism since the idempotent functor L~ is 
smashing: localization gives an inverse to the multiplication map. 

Next we show that any Re-module X has X ~ Re An X as Re-modules. First note 
R__ R that L e --LR~, that is, Re.-isomorphisms are the same as E.-isomorphisms: any RE.- 

isomorphism has an Re.-acyclic cofiber, but any Re.-acyclic has trivial E,-localization, 
so it is E.-acyclic. Thus, X has X ~- Re An X as R-modules. The forgetful functor and 
Re An ( - )  are adjoint functors between @n and @nF; the counit Re An X ~ X is by 
definition a map of Re-modules, giving the desired weak equivalence on the level of 
Re-modules. 

Further, for E ,  R-local R-modules W -~ Re AR X and Z ~- Re An Y, 

[w,z]R, ~ [RE A~ X, REAR rle, -~ [X,R~ A~ y]R, 

~_ z'Re '-~ [RE Ae X, Re AR Y]R. E [W, 1, 

where the second isomorphism is by X ~- Re ARX and the third follows from freeness. 
The isomorphisms are all natural. 

Therefore, the derived category of ER,-local R-modules is equivalent to that of RE- 
modules. 

This theorem is generalized in [13] to describe E.-local R-modules for arbitrary E: 
the categories ~R[E - t ]  and ~nE[(Re/~R E)  -1] are equivalent. 

Although Bousfield localization does not require E to be a ring spectrum or an 
S-algebra, it would be interesting to know, for an S-algebra E, how E-modules and 
SE-modules are related. The example of  E = KU mentioned in the introduction is 

discussed in the next section. 

3. Categories related to the K-theory spectra 

The connective complex K-theory spectrum ku is an S-algebra by infinite loop space 
technology [19]. As shown in [13], KU is an S-algebra by localization in the category 
of ku-modules; S~c, the K,-local sphere, is therefore an S-algebra, as noted above. 

The K-local sphere, Sx, is closely related to the (periodic) Image of J spectrum. 
Localized at a prime p, we have the cofibration (where r = 3 if p = 2 and r generates 

the un i t smodp 2 for an odd prime) J(p) ---, KOOr-~ KO ~ NJ(p) and the K(p).-local 
sphere is the homotopy fiber of  the map J(p) ~ N-1S~ which is a rational isomorphism 
on ~- l .  Thus it is possible to calculate ~,Sx  [6]. 
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Since localization of S- or ku-modules with respect to KU is smashing, Theorem 1 
shows that each local category ~s[KU - l]  and ~ku[KU -1] is a module category; 
~ku[KU -1] is actually the derived category of KU-modules. 

We have the diagram of categories 

LI.u 
~s--'-'-~ ~s[ KU-I] "~ ~sx 

N k , , 2 ~ N t . [ K U  -1] ~ N r v  

where each L is a localization functor and each F is a free functor. For an S-module 
X, the free functor to ku-modules is given by ku AsX; similarly, the free functor from 
Sx-modules to KU-modules is given by KU A& X,  which is equivalent to KU As X,  
since KU is K,-local. It is shown below that the categories ~s ,  ~ & ,  ~ku, and ~ x u  
are all distinct. 

We have four categories to compare: spectra (~s ) ,  K,-local spectra (i.e., SK- 
modules), K,-local ku-modules, and KU-modules, or K,kU-local ku-modules. Note that, 
as one would expect, not all ku-modules are K,-local: Lxku ~- Sx Asku ~ ku by direct 
calculation. 

Further, since they are not rationally periodic (see [6, Corollary 4.4]), the homotopy 
groups of Lxku are not periodic; not all K,-local ku-modules are KU-modules. This 
is in sharp contrast to localization in the category of ku-modules, whieh is simply the 
free functor from ku-modules to KU-modules. 

To see that not all Sx-modules are ku-modules, we note that no element of  n,(SK) 
of positive degree can be represented by a map of ku-modules. I f  SK were a ku-module, 
then consider any element 

c [&,sx]Sq ~ ~- [ k u , & ] ~  u ~- [S ,&]q  c_[S,S]q, q > O. 

The isomorphisms are given directly by freeness; the inclusion is a theorem relying on 
the relation of SK to the image of J .  The element :~ would be represented by a map 
a : SK ~ Sx in ~s~ and also as a map b : S ---+ S in ~s-  Since ~ is of positive degree, 
b: S -+ S gives the zero map ku ~ ku after smashing with ku, so the same is true for 
a, and lku A :~ is null. Now the commutative diagram 

r/hi IAc~ 
SAS K ) kuAS  K "' kuAS~ 

S~ " S K 

would guarantee that 7 itself be null; but &;, has non-trivial elements in positive 

degree, so SK cannot be a ku-module. 
A similar result involving real K-theory holds as well. 
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4. A spectral sequence for R-modules 

All algebraic maps from the homotopy of a free R-module to that of any R-module 
can be realized as the homotopy of  some map of naive module spectra. The theory of 
R-modules actually allows the realization of many more maps. The method is to use 
a spectral sequence to show that maps with certain algebraic properties exist. 

Adjoint to the smash product X AR Y is a function spectrum FR(X, Y), which for 
cellular X satisfies rc,(FR(X, Y))  ~ [X, Y]~. As noted above, we are only concerned 
with weak homotopy type, and we continue to assume all R-modules are cellular R- 
modules. 

There is a spectral sequence [13] (EKMMSS) 

E~'t(X, Y)=Ext~ t  (X *, Y*) =:> rc_(s+t)(FR(X, Y)), 

with differentials d~ 't : E~r ,t ~ f s+r't-r + l Here, Ext~,(P, Q) = Ext~'°(27P, Q ), ( St L ) ,  
- - r  • t~ R 

----L,-t. The filtration on rc,(FR(X, Y)), is given by letting Fsrt,(FR(X, Y))  be the 
image of zt,(FR(X~, Y))  ---+ r~,(F~(X, Y)), where the X~ are constructed from an R , -  
free resolution of X, .  Thus, the (s, t)th term of the associated bigraded group of  the 
filtration is 

E~o't rc,( FR( X, Y ) ) = F" Tt_,_t( FR( X, Y ) )/ FS+ l rt_s_t( FR( X, Y ) ). 

One can define Ext,(X, Y)=rc_,(Fn(X,  Y)). 
Composition pairings are also discussed in [13]. The pairing FR(Y,Z)ARFR(X, Y) ---+ 

FR(X,Z) induces a pairing of spectral sequences of differential R,-modules that coin- 
cides with the algebraic Yoneda pairing on the E2-1evel and converges to the pair- 
ing induced by composition. This is proven by taking free resolutions of  X and 
Y in the contravariant side of each function spectrum: FR(Ys, Z ) A R  FR(Xs, Y) ---+ 
FR(Y,Z) ARFR(Xs, Y) --~ FR(Xs, Z). For a E Ext~'t(Y*,Z *) and b E ExtU'~'(X*,Y*), 
dr(ab) : (dra)b + (-1)t+~a(drb). The EKMMSS is always conditionally convergent; 
with additional information, it is often strongly convergent, for example, when X has 

a finite length cellular resolution as an R-module. 
This spectral sequence is essential to understanding the difference between R-modules 

and R,-modules. When an R,-module - -  for example, the homotopy of an R-module 
- -  is placed in the E2 term of this spectral sequence, we regrade it as an R*-module. 

5. Realization of projective and injective modules 

5. I. Projective modules 

Any projective module P over any ring A is the direct summand of a free module 
F -~ P ® Q ~ Q ® P. Thus, Eilenberg's swindle gives us a two step free resolution 
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of P: 

O ---~ P @ Q @ F ®~ --~ P ® Q @ F ~ --~ P --* 0, 

where the map between free modules moves each copy of P to the next P-coordinate 
to the right. 

See [18, 21] for a discussion of modules over graded rings. 
When A is the ring of homotopy groups R, for an S-algebra R, any free module 

is easily realized as the wedge of copies of R (up to suspensions). The EKMMSS 
(Section 4) shows that any map between free modules can be realized in topology; the 
cofiber of the realization of this map is the realization of our projective module. 

Proposition 3. Let R be an S-algebra. Then any projective R,-module P ,  can be 

realized as the R,-module o f  homotopy groups o f  some R-module X : n , ( X ) = X ,  = 

P, .  For any other R-module Y, [X, y]n, _~ Homn * (p , ,  y*). 

Proof. The vanishing of higher Ext groups shows that any map from a projective 

module is uniquely realizable. [] 

5.2. Injective modules 

For a Noetherian ring A, the direct sum of injective modules is injective, and we 
can decompose any injective module as the direct sum of certain indecomposables. 

Recall that the injective hull of a module is the minimal injective extension of the 

module; it is unique up to non-canonical isomorphism. 

Proposition 4 (Matlis [ l 6], Matsumura [ 17], N~st~sescu and van Oystaeyen [21 ]). Let 
A be a graded commutative Noetherian ring, p a prime ideal in A. Then the injective 

hull o f  A/p is indecomposable with respect to direct sum. Further, any indecomposable 

injective A-module is the injective hull o f  A/p for  some prime p. 

Thus, when all elementary injectives can be obtained by a sequence of quotient 
by regular sequences and localization procedures, the techniques of [13] allow such 
procedures on the spectrum level and all injectives can be realized. 

More generally, obstruction theory similar to that of Costenoble and Waner [11] for 
equivariant Moore spectra can be used to realize any injective uniquely up to homotopy. 

This is done in [26]. 

6. Realization of modules of  dimension at most one 

Given an R,-module M,  of projective dimension one, there is a projective resolution 
0 --~ P1 ~ P0 ---+ M,  ~ 0 and M,  can be realized as the homotopy cofiber of  the 
(unique) realization of ~. Given an R,-module M, ,  let IM, I denote an R-module with 
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homotopy M, .  In this case, the realization [M, I is unique up to homotopy since the 
identity map on M,  lifts to a comparison of resolutions 

0 ~P1 'Po  ~M, > 0 

0 , P~ ~ P; , M,  > 0. 

Since the two maps from P1 to P~ are the same in algebra, their realizations in topology 
are the same in homotopy and we get an equivalence between the two realizations 

of  M, .  
When R, is a Noetherian ring with all primes generated by regular sequences, we 

can use the dual construction to realize, uniquely up to homotopy, any module of 

injective dimension at most one. 
Note that, without further hypotheses, we can describe the Horn set between two 

R-modules of  dimension at most one only up to extension: 

0 ~ ExtlR',l(X*, Y*) ~ {X, Y]0 R ~ HomR,(X*, Y*) ~ 0. 

The difference of any two maps X ~ Y with the same effect in homotopy is measured 
by an element of  Ext~' , l (X *, Y*). Of  course, only one module need be of (projective 

or injective, depending on the variable) dimension at most one. 
Composition is given by the naturality of the EKMMSS and the fact that the product 

in Ext corresponds to the composition product on the associated graded of the Hom 

sets in the derived module spectrum category. 
In the case where R,  is of global dimension at most one, this is an almost com- 

plete algebraic description of the category, including the corollary that an R-module is 
determined by its homotopy groups as an R,-module. One example, mentioned above, 

is periodic K-theory. 
Let R be an S-algebra with R,  of  global dimension at most one and concentrated 

in even degrees. Since realizations of  R,-modules are unique up to homotopy, any 
R-module X is the wedge of its even and odd pieces: X = Xcve, V Xoda. Let Y be 
another R-module. By additivity, we can assume X and Y are each concentrated in 
either even or in odd degrees. The group [X, y]R, depends on the relative parities of X 

and Y. Using the suspension functor, it suffices to calculate [X, Y]0 R. 
I f X  and Y are both even (or both odd), then note that Ex t l ' - l (X  *, Y*) is zero. If  

the parities of X and Y differ, then HomR, (X*, Y * ) = 0  and [X, Y]0 R ~ Ext~',l -1 (X*, Y*). 

More generally, we have the following theorem. 

Theorem 5. For an S-algebra R o f  global dimension at most one with R ,  concentrated 

in degrees congruent to zero modk, k > 1, each R-module X splits as the wedge o f  

X k pieces X =  V j=l J such that Xj,  is concentrated in degrees congruent to j mod k. 
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For two R-modules X and Y. 

HomR, (X/*. Yi* ) 

[X,.,Yj]g -~ Ext , ' .  1 (X/*. Yf)  

0 

i = j ,  

i +  l = j ,  

otherwise. 

Proof. There are no non-trivial maps between two modules X and Y if X is concen- 

trated in degrees congruent to m mod k, Y in n mod k, m # n. Similarly, there are no 
non-trivial extensions 0 --~ Y, ~ M --~ X-1X,  ~ 0 when m + 1 ~ n. [] 

7. Classification of R-modules of  projective dimension at most two 

The purpose o f  this section is to prove the following theorem. 

Theorem 6. Let R be an S-algebra. Then every R,-module o f  projective dimension at 

most two can be realized as the module o f  homotopy groups o f  some R-module. Such 

an R-module is unique up to homotopy i f  the R,-module has projective or injective 

dimension at most one. When M ,  is an R,-module o f  projective dimension two, there 

is an equivalence relation finer than homotopy equivalence so that equivalence classes 
o f  R-modules with homotopy M ,  are in bijective correspondence with the elements o f  
Ext2' ,  l (M *,M* ). 

7.1. Realization 

The previous sections showed how to realize any R, -module  o f  projective dimension 
at most one as the homotopy of  an R-module. When the projective dimension of  M ,  

is two, M ,  has a projective resolution 0 ~ P2 --~ PI ~ P0 ~ M ,  ~ 0, which can be 

split into two short exact sequences 

0 ---* P2 - ~ P I  ---~ K ---~ 0, 

O ---, K --* po --~ M .  --+ O, 

where K = ker(Po ~ M, ) .  Using the EKMMSS, any R.-module  o f  projective dimen- 

sion two can be realized as the homotopy of  some R-module: the modules K and P0, 
as well as the map whose cokernel is M, ,  can be realized as in the above section. 

One realization of  M ,  is the cofiber of  the realization o f  the map K ~ P0. 
Now, when R .  has global dimension at most 2, ExtS'~(M*,N *) vanishes for s > 2. 

R 
Thus the only possible non-trivial differentials are 

d2 : E x t ~ , ( M * , N * )  ~ E x t Z ' t - l ( M  * N * ~  
t~ R* \ ' J' 

the spectral sequence collapses at E3. and a map 0 : M ,  ---+ N ,  o f  R,-modules  yields an 
obstruction d2(0) c Ext~ ' , l (M * ,N*)  which vanishes if  and only if 0 can be realized as 

the effect in homotopy of  a map X ~ Y &R-modules  with n , X  ~ M ,  and n , Y = N , .  
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7.2. The difference between two realizations of an R,-module 

A realization of an R,-module M,  consists of an R-module X and an isomorphism 
: ~ , ( X ) = X .  ~ M..  

Following Bousfield, two realizations (X, cO and (Y, fi) are said to be strictly equiva- 
lent if there is an equivalence f :X  _ Y with r f .  =:~. Then D(:~,fl)=fld2(fl-l~)~ -1 
defines the difference in Ext , ' ,  1 (M*,M*). This difference satisfies: 

(i) D(e,~) =0;  

(ii) D(~ , f l )=0  iff c~ is strictly equivalent to r ;  
(iii) D(c~, 7) =D(c~, r) + D(/~, y); 
(iv) D(~, r )  = -D(fl, ~); 
(v) D(gu, gfl)=gD(a, fl)g - l  for each g E AutM,.  

Let ~ ( M , )  denote the collection of all strict equivalence classes of realizations of 
M,.  Adapting the methods of Bousfield [8], ,~(M,)  can be determined algebraically. 

Theorem 7. For each R,-module M,  and realization ~ : X ,  ~ M,,  the difference 
function 9ires a bijection D(c~,-): ~ ( M , )  ~ EXt2R'2X(M*,M* ). 

Proof. Injectivity of the difference function follows from the above properties; only 
surjectivity needs proof. Let 0 ~ K ---* P0 ~ M,  ~ 0 be a short exact sequence, where 
P0 is projective and K is the kernel of ~. The map a can be chosen so that X is the 
cofiber of the realization of the map K ~ P0- Identify X, with M, by the isomor- 
phism :c 

Any element u E Ext~' , I(M*,M *) = ExtIR',I(K,M *) lifts to some ~ C Ext , ' ,  1 
(K, Po), since K has projective dimension at most 1; the EKMMSS then yields a 
(unique) map ~" [ K I --~ I P0 I, where I J I is a realization of the R.-module J.  If the 

cofibration Z-1X---,1K [ f [  Po I---* X gives the realization ~, then L'-IY ~ [K I f+~ 
[Pol ~ Y yields a realization fi: Y, - ~ M ,  with D(2,f l )=u.  [] 

This strict equivalence of realizations is a finer equivalence than homotopy type; 
Aut(M,) acts on .~(M,) by composition. There is, however, a forgetful bijection from 
the orbit set ~ (M,) /Aut (M,)  to the set of realizations of M,.  A crossed homomor- 
phism d : G ~ B for a group G acting on an abelian group B is a function with d(gh)= 
d(g) + g '  d(h); the associated crossed homomorphism action G × B---* B carries (g,b) 
to d(g)+ g" b. Now, Aut(M,) acts on Ext~' , I(M*,M *) by g" u=gug-1; given a real- 

ization ~ of M*, we have a crossed homomorphism d: Aut(M*)--~ Ext~' , I(M*,M *) 
given by d(g)= D(:~, g~). The associated crossed homomorphism action of Aut(M,) 
on the Ext group corresponds to the composition action of Aut(M,) on ~ ( M , )  by the 
bijection of the above theorem. 

Thus, we have the following theorem. 

Theorem 8. The homotopy types of R-modules with homotopy M, are in bijective 
correspondence with the elements of Ext, ' ,  1 (M*, M* )/Aut(M, ). 
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This classification is not purely algebraic, however, since in general we lack an 
algebraic description of the d2 differential of the EKMMSS. One possible approach 
toward a more algebraic classification is to use Toda brackets. Alternatively, given a 
functorial realization of R-modules with zero differential in the EKMMSS, the methods 

of [7] give an easier way to construct a category equivalent to the derived category of 
R-modules. We describe these next. 

7.3. Sparse graded rings 

Let R be an S-algebra of global dimension at most two with R,  concentrated in 
degrees congruent to zerornodk, k >_ 2. Examples of such S-algebras are ku and ko(p) 
for an odd prime p; since r/ is null after inverting 2, rc,ko(p): 7/[u], lu[ : 4. Any 
R,-module M,  is then the homotopy of a wedge X = vm=Lxi with the homotopy of X/ 

concentrated in degrees congruent to i rood m. Call this the wedge realization of M, .  
By the classification of R-modules, each wedge summand is unique up to homotopy, 
since any N,  concentrated in degrees congruent to i rood m can be resolved by modules 
concentrated in the same degrees mod m. 

The analysis of [7] applies to this situation; the category of R-modules has a com- 
pletely algebraic structure. The key is to note that there is a functorial realization of 
any R,-module as an R-module for which the differentials in the EKMMSS between 
any two such R-modules are all zero, as follows. Realize any R,-modules M, ,  N ,  as 
wedges X and Y as above. Since the wedge realization is homotopy unique, there is a 
right inverse to the map [X, Y]0 ~ HomR*(M*,N*) given by the natural realizations 
of  maps between the wedge summands of like degree together with the zero map be- 
tween non-matching summands. Thus, the map of Horn sets is onto, and the differential 
is necessarily zero. 

The next step is to construct a Bousfield k-invariant to measure the difference be- 
tween a given R-module and these realizations with trivial EKMMSS differential. Let 
X be an R-module. Define kx E E~'-I(x ,x)  TM E x t 2 ' , l ( x * , x  *) as follows: let X '  

be an R-module with homotopy isomorphic to X, ,  equivalent to the wedge realization 
above. Choose an isomorphism c¢: X~--~ X,.  Define kx = (d2~)~-l;  ~ E Ez(X t ,X ) ,  

~-1 E E2(X,X'). The element kx is independent of  the choice of X ~ and ~, for if X"  
is another choice of X ~, with/3 an isomorphism from X"  to X, choose an isomorphism 
7: X~' ~ X,  such that /3 = 77- Since X "  and X ~ are equivalent to wedge realizations, 
d 2 ( ) ' ) : 0  , with d2(/3)f1-1 : d2 (~ )5 ' 7 -1~  -1 =d2(~ )~  -1. Thus, kx is well-defined. 

The differential in the EKMMSS can now be expressed algebraically. 

Proposition 9. Let R be an S-algebra of global dimension at most two with R,  con- 
centrated in degrees congruent to zero mod m, m _> 2. For R-modules X and Y, the 
EKMMSS differential 

O,t p2, t -- l (y  
d2 :E  2 ( X , Y )  ---+ Y)  

is given by d2 f  : k y f  + ( -1) t - l  f k x  fi~r each f E E°'t(X, Y). 
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Proof.  The proof  is exactly as in [7, Proposition 8.10]. Let X ~ denote the wedge 
realization of  X , .  For isomorphisms e : X,~ ~ X .  and /3 : Y~ --~ Y., consider e and 

oo , oo , tzo, otv, y). /3 as elements of  the E2 term: ~ E E 2' (X ,X) ,  ~-1 E E 2' ( X , X ) ,  f l ~  ~2 ' , - ,  
ot Choose f '  E E°2't(X ', Y') such that /3f,~-1 = f  E E 2' (X, Y). Since d 2 f ' = 0 ,  

d2 f  = d2(/~f '7  -1 ) = (d2fl)f'0~ -1 + ( -  l) ' /3f ' (d2ct -1 ) 

= (d2fl)f l- l f l f '~ -1 + (-1)t[;~ft~-l~(d2~: -1 ) 

= k r f  + ( - 1 ) t f e ( d 2 e - 1 ) .  

Now, ~(d2:t -1 )  = d 2 ( ~  - l )  - (d2~):~ -1 = d2(1) - kx = - k x  and this proves the 
result. [] 

This allows us to prove the following characterization of  maps in the R-module 

category. 

Corol lary 10. Let R be an S-algebra o f  global dimension at most two with R .  con- 
centrated in degrees congruent to zero modm, m > 2. For R-modules X and Y, a 
homomorphism f of  degree t from X .  to Y, is the homotopy of  a map of  R-modules 

if  and only if  k r f  = ( - 1 ) t  f kx .  

Now let ~ k  denote the category of  pairs ( M . , k ) ,  with M .  an R, -module  and 
k in E x t ~ ' , I ( M * , M * ) ;  morphisms f from ( M . , k )  to (N . , k ' )  satisfy k ' f  = f k  in 

Ex t , ' ,  1 (M*,N*) .  

Theorem 11. Let R be an S-algebra of  global dimension at most two, with R con- 
centrated in degrees congruent to zeromodm, m > 2, Then for any ( M , , k )  in ~dk, 
there is an R-module Y such that ( M . , k ) =  (Y. ,ky) .  Thus, the homotopy types of  
R-modules correspond to isomorphism types in Mk. 

Proof. This is essentially the same as [7, Theorem 9.1]. We already have a full additive 
functor from R-modules to Mk, as noted above. The wedge realization provides a re- 
alization of  any R. -module  with zero k-invariant. That any k-invariant can be obtained 
can be seen by lifting Ext elements, as in the proof  of  the more general classification 
above. Again, let X '  denote the wedge realization of  X. .  Given ( M . , k )  in Mk, let 

0 ~ P2 -~ P1 ~ P0 ~ M ,  --~ 0 be a projective resolution of  M , .  Let K = ker e; the 
exact sequence splits into two short exact sequences 

O --+ p2 d-L pI 2,  K --+ O, O---, K °-~ po Z+ M,  -+ O. 

Given any ~ : K r --* P~ such that ~,  = 0, the homotopy cofiber of  b + ~ gives a 
realization Y~ of  M , .  It suffices to choose ~ so that ky: = k; Y¢ is then the desired 

realization of  (M, ,  k). 
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Any element k E E x t ~ . I ( M * , M * ) = E x t ~ . ' ( K , M  *) lifts to some k c Ext~ ' . l (K,  P0), 
the group which classifies maps from ]KI to IN01 which are zero on homotopy groups. 
Any such k is equivalent to a map ~ as above, since K has projective dimension at 
most one. I f  b is the map which gives the wedge realization Y~ of  M . ,  then b + 
yields the desired ~ .  [] 

It is possible to construct additive bigraded categories of  R-modules and of  R , -  
modules paired with k-invariants. These categories are additively equivalent, as 
in [7]. 

Note that this analysis requires only a natural realization of  R , -modules  as R-modules 
with zero differential in the EKMMSS, which is a weaker condition than sparseness. 

8. Modules over additive categories 

In order to use algebra to classify modules over the real K-theory S-algebras ko and 
KO, it is necessary to generalize the algebraic concept of  a module to that of  a functor 
over an appropriate generalization of  a ring. 

A ring can be considered [20] as a suitably structured category with only one object. 
Much homological algebra generalizes to "modules" over a small additive category oK, 
specifically, additive functors from c~ to abelian groups; the morphisms are the natural 
transformations. One can consider the Horn sets in ~ as giving additive operations 
on the modules. The category ~¢b ~ of  additive functors from cg to ~¢b is actually 
equivalent to a category of  modules over an honest ring; we will, however, keep our 
additive category while also considering our functors naively as sets o f  modules with 
operations. 

As an example, a graded ring R =  {Rn}~z  is an additive category c£ with object set 
7/ and morphisms Cg(m,n)=Rn-m; composition is given by multiplication in the ring. 
Note that it only makes sense to add elements of  the same degree, as is standard for 
topologists. Then, d b  ~e is the category of  graded R-modules. 

Since our functor category is abelian, we have kernels and cokernels and can de- 
fine exact sequences and resolutions. There is an abelian group-valued Horn functor 
satisfying Hom~(Cg(X, - ), F ( -  )) = F ( X )  = ~¢b~(cg(X, - ), F(  - )), with a left adjoint 
®g: ~¢b ~' ® . J b  g°p ~ ~¢b. Ext and Tor can be defined via resolutions, which always 
exist. See [20] for further details. 

9. United homology theories 

Bousfield, in [8, 9], defines an additive category C R T  (which he calls A lg (CRT) )  
and the corresponding category of  CRT-modules.  Bousfield's method generalizes to 
other united homology theories such as the one below, as well as to united cohomology 
theories. 
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9.1. United homology theories 

Let R be an S-algebra and ~ some collection of finite spectra. Define the category 
R Y  to be the category with objects {R A F~ I F~ E ~-} and morphisms all homotopy 
classes of R-module maps between any pair of objects. Ro~ is an additive category 
which yields two united homology theories: first, let M = R~(X) denote the united 
theory on spectra X given by the functors from R~¢- to abelian groups with M F = 
M(R A F ) =  zc,(R A F A X). Second, there is a united theory on R-modules X given 
by the functors N = ~'~(X) from R ~  to abelian groups with N F = N(R A F ) =  
~, (X A~ (R A F) )  ~ zr,(X A F).  This has a naive variant. If R is merely a ring 
spectrum, then the maps in R ~  should be all maps in the derived category of naive 
module spectra. The theory R'~,(X) is as defined above; N = g~(X)  is defined by 
N F= rc,(X A F). 

The first type of united theory is used by Bousfield [8] to classify K,-local spectra. 
The second type is used below to classify both KO-modules and ko-modules. 

Since [R A F,R A F']R, ~ [S,R A F ~ A DF],, the Spanier-Whitehead duals of the 
finite spectra in o~ yield the representable functors (free objects). Thus the free objects 
under such a theory are given by the united homology of  all suspensions of the Spanier- 
Whitehead duals of  the finite spectra in g .  Note that the objects of R Y  need only 
be semi-finite as R-modules when R is an S-algebra, that is, DZF ~- F for F in 

R ~ .  
A united module, or Ro~-module, M is called @-acyclic if it takes cofibrations of 

R-modules in R ~  to long exact sequences. 

9.2. Connective united K-theory 

This is described in more detail in the next section. The obstacle to using the same 
techniques as for ku to classify ko-modules is precisely that ko, has infinite global 
dimension. By killing nilpotent elements, we obtain a theory R.~ = crt with global 
dimension 2 and it suffices to construct an appropriate spectral sequence in order to 
obtain the desired classification. An appropriate choice of finite spectra is S, C(q), and 
C(q2), yielding ko, ku, and kt. 

One can check that using only S and C(r/) over ko yields an algebraic category with 
infinite homological dimension; adding C(r/2), or kt, eliminates this difficulty. 

9.3. Periodic united K-theory 

The inspiration for studying connective united K-theory came from Bousfield's use of 
a periodic version, CRT, in [8]; the categories crt and CRT use the same finite spectra 
S, C(rl), and C(t/2). The periodic theory has global dimension one. Bousfield adjusts 
the category of modules by adding Adams operations to classify K,-local spectra. The 
united category without operations classifies KO-modules. 
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10. The operation algebra for connective united K-theory 

10.1. Anderson c@brat ions  with spheres' 

To calculate the algebra of  operations, we use the cofibration sequences o f  [2, 8] (r/ 
denotes the Hopf  map) 

Z S  & S 5+ C(~)  & Z2S, 

s2s ~ s ~ c&) k z3s, 

c(,t 2) L c(,t) ~ z2c(,7) Z zc(,12), 

which, when smashed with ko, give cofibration sequences relating ko, ku,  and kt.  

First, describe and fix names for maps among S, C(r/), and C0/2): 

- q : S a ~ S is the Hopf  map, the non-zero element o f  rtlS; 

- c:  S ~ C01 ), e: S ~ C(r/2) are given by inclusion of  the zero cell; 
- h:  C(r/2) -~ C(r/) is any map of  degree one on the zero cells; 
- j :  C(r/) --+ Z-1C(r/2) is degree one on the 2-cells; 

- k : Z-1C(r/z)  ~ S 2 is degree one on the 2-cells; 
- r :  C(r/) --~ S 2 is top cell projection; 

- ~ l = q J :  C(~I)---~C(q) and ~ 2 = ~ :  C(r/z)--~ C(r/2) are degree one on 0-cells and 

degree - 1  on top cells; 
- ~p: C(~/)--+ xZc(r/)  kills the zero cell and sends the 2-cell to the bottom cell of  

Z2C(r/) by a degree one map, as C(r/) 1S~ q' S 2 ~ Z2C0/). 

Note that the definitions of  h and r imply that the diagrams 

S ~ P C(~] 2 ) C ( ~ )  J" i, Y~-IC(q2 ) 

C(rl) S 2 

commute. 

10.2. Anderson cofibrations o f  ko-modules  

The maps above induce, upon smashing with the identity on ko,  

- q : Z k o ~ k o ;  

- c: ko  ~ ku  and e: ko ~ kt ,  unit maps; 

- ~" k t  --~ ku,  with e = ff~; 

- 7 : ku  ~ L ' - l k t ,  from j ;  
- ~: Z - l k t  ---, Z2ko,  from k; 
- r: ku  ~ X2ko; 

- 6u  = ~ : ku  --~ ku  and ~Or --- ~b : k t  ---+ kt; 

- qo : ku  --+ S2ku.  
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Note that some of  the degrees of  maps differ from those of  the same name in Bousfield's 
periodic version [8]; the difference comes from the lack of  an inverse to the Bott 
element. To simplify the number of  generating operations, note that r = W and c--_~e. 
The map c is complexification; r is realification. 

The following cofibrations are obtained: 

Z k o n - ~ k o Z ~ k u Z - ~ Z 2 k o ,  

t] 2 
Z2ko --~ ko Z+ kt  -s5 Z3ko, 

kt  ¢ - ~ k u Y ~ Z 2 k u Z ~ ' Z k t .  

Here, ku is merely shorthand for ko/~ C(q)  and similarly for kt, however it is possible 
to prove that these are equivalent as ko-modules to the usual ku and kt  by the classi- 
fication below (Theorem 17). There are other proofs of  this fact as well, for example, 
using the homology of  ko and ku (R. Brunet, personal correspondence). 

These cofibrations can be viewed as parts o f  the Verdier braid diagram generated 
by the triangle two sides of  which are t/, the third given by r/2. One important relation 

seen in this braid and which can also be derived from relations listed in Section 10.4 

is ~p=cr. 

10.3. Determining the operations 

Recall the ring structures of  ko . ,  ku . ,  and k t . :  

ko,=2~[tl, co, flo]/(2~l, tl3,tlco,~o2-4fio), [r/I----l, 1~[=4,  [f io[=8; 

ku,=Y_[fl~q,  [&,,[ =2; 

kt .=Y_[~,~,f lv]/(Z~,q2, ,~,~2),  It/ l=1, ]~[=3, Jflr[--4. 

In the world of  ko-modules, X .  = [ko, X]k. °, so these rings give all maps from ko to 
each of  the three objects. Explicitly, for n _> 0 (other groups are all zero), 

k o  [ko, ko]8 n = (fl~) = Z, 

[ko, ko]sk°+2 = (fl~t/2) = ~/2, 

ko {3,5,6,7},  [ko, ko]sn_ i = O, i C 

ko [ko, ku]2 , = {fl~,) = Z, 

ko n 
[ k o ,  k t  ]4 n ~- ( f iT)  = 7]  

[ko, kt]k°+2 = O, 

k o  n [ko, kO]sn+l = (Bo") = ~_/2, 

ko n __ [ko,  ko]8,+4 = (floCO) - 7L 

k o  [ko, ku]e,+ l = 0, 

ko [ko, kt]4n+ 1 = {fi~-r/) = 77/2, 

ko [ko, kt]4,+ 3 = (fl}~) = 7/, 
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Except where noted, the maps given below are proven to be generators by looking at 

the action on homotopy groups. 
Since ku.(q) = 0 and the duals of C(r/) and C(r/2) are DC(q) = z -Zc( t / )  and 

OC(tl 2) = ~-3 C(r/2), the cofibrations in Section 10.2 give 

! = (~,) 
[ku, ku]~ ° TM ku .+z(C(q) )  TM • Z = (ilk, flk~b ) 

n ~ - 2 ~  

n=2k, k>O, 

otherwise, 

using the fact that ku,+z(C(rl))=ku~+2 ® ku~. Similarly, since kt~+2(C(tl)) -~ ku~+2 
(C(q2))=ku,+2 ® kun-1, 

I Z=(erflk,) n = 2 ( k -  1), k > 0, 

[ku, kt] k°-~ 2~={'lfi~,) n = 2 k +  1, k > 0, 
a n  

0 otherwise; 

[kt'ku]k° ~ kun+3(C(rl2)) -~ I ~_ ~ o k  ~'\ = \put,/ 

0 

n = 2 k -  3, k>_0, 

n=2k,  k>_0, 

otherwise; 

and since kt , ( r /2)=0,  ktn+3(C(tl2))=ktn+3 Q ktn, 

[kt kt] k° 

71 = (e~} n = - 3 ,  

Z/2=(flkrr/er) n=4k - 2 ,  k >_ O, 

Z ® 7] = (fl~_,fl~0v) n=4k, k>_O, 

7] G7]/Z=(fi~+lez, fl~rl) n = 4 k + l ,  k > O ,  

Z=(fikr~ ) n = 4 k + 3 ,  k > O ,  

0 otherwise. 

For ko [kt, kt]ak_2, note that it suffices to prove that r/ez is essential. But this is clear: 
replace S-cells in q~k: C(g 2) ~ zZcoI 2) with ko-cells; one sees the composition is 

not null. 

10.4. Relations between operations 

Note that ~o = z/3rTfiu~e and ~ = 7fic'~, further reducing our generating maps. 
The effect of the various maps from ko on homotopy is clear from the above 

ring structure; for example, r / f  = fr/  for any map f (when the composition makes 

sense). 
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Composing these maps with those in Section ! 0.2, we obtain the following relations: 

Ou~,v = 1, O r ~ ' r  = 1, i r e  = e, 

4'u~c' = -3uOc, ,  ~ ' r 3 r  = ~rOr, 4'r~. = - ~ ,  

4'r'7 = ~, g 'u~  = i g ' r  = ~, ~ c , o  = 1 - g'c, 

O~-'/ = - ~ ' 0 c ,  = ~', ~g 'r  = - ~ ,  ~ f lo  : flzre., 
2,~ = 

rflve = tl, re. = O, ~7 = O, 

7~ =- q, firS~ = e~fll + Jl, ~ W f i w  =- 1 -4- ~u,  

er'/flu~ = 1 + t /IT,  "CTflU'~g = 2, 7flU~e~ = 1 -- ~r, 

with additional relations involving other elements of  k o , ,  k u , ,  and k t , .  These relations 
are more than sufficient, however, to prove the desired results. The proof that the crt- 

module category has projective dimension two relies on a reduction to the complex 
part of  the module, regarded as a module over k u , .  Knowing some of the relations in 
the operation algebra is useful, but it is not necessary to know all of  them to use the 
united theory. 

10.5. Operations on uni ted modules  

Rephrasing the terminology of functors in terms of modules, the algebra of  operations 
on a triple M = {M°,MC,~,Mr,} of Z-graded abelian groups which form a module over 
connective united K-theory is generated by homomorphisms 

/~o : M2 ---+ M°+8, 
~: M 2  ~ M°_l ,  

r/: M,  r --~ MT+I, 

7 : MU -+ Mr,+,, 

fib' : M,  °" MU --~ * + 2 ,  

~ : M,~ ~ M 2  ', 

~: M °  -~ M~,. 

"C : M T --+ M ° _ 3 ,  

satisfying appropriate relations as in Section 10.4. 

/~r: M, r - '  ML4.  

; : M~, ~ M ,  ~, 

~ : M~, ' _-+ M~,1_2. 

Note that unlike C R T ,  objects in crt need not have periodicity; rio, flu, and fir need 
not be isomorphisms. 

Define XM by (ZM)X, = Z(MX, ) = MX,_ 1 for X one of O, U, or T. A crt-module M 

is defined to be crt-acyclic if its operations give rise to long exact sequences analogous 

to those of Section 10.2: 

Mo_I ~ M 0 Z+ M U Z~ Mo_2, 

Mno_2 ~ MnO Z~ M r ~ Mo_3, 

M f C _ ~ M U 2 ~  u 2 M;_2 ~ ML1. 

Note that g~r~X is crt-acyclic for any ko-module X. A C R T - m o d u l e  is CRT-acycl ic  

if  the same sequences are exact [8]. 
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11. A spectral sequence for united homology 

The object of this section is to construct a spectral sequence analogous to that of  [13]. 
Let R be an S-algebra; R g ,  a united homology theory over R (Section 9.1); M and 

S, t ,~ N, R-modules. This spectral sequence E2 = E x t , ( n ,  (M), n '~ (N) )~E~ ' t r c , (FR(M,N) )  

converges from Ext over the united theory to the R,-module of  homotopy classes of  
R-module maps from M to N. Notation, in fact most of  the exposition, follows that 
of [13]. 

When the united theory is small, the algebraic category is abelian, so that de- 
rived functors such as Ext are well known. We present an explicit description here 
which is useful for understanding the realization of united modules and maps between 
them. 

11.1. Realizing Hom-sets  o f  f ree  objects 

As noted above, the monogenic free objects for united ~- theory  are suspensions 
of  n~(R A D F )  for F E Y ,  where D denotes the Spanier-Whitehead dual. Now, the 
functor Hom~ : ( J b ~ )  °p ® .~¢b ~ ---+ d b  satisfies the Yoneda relation Hom.~(Y(R A 
F , - ) , M ( - ) )  = M F. Thus, for any functor M realizing the united Y-theory of an 

R-module X, 

H o m y ( R , ( - ) , M ( - ) )  = M s : X ,  = n , F R ( R , X ) ,  

Hom~((R A D F ) , ( -  ) , M ( -  ) ) = M F : n , ( X  A F )  : n ,FR(R A DF, X ) .  

It is thus clear that, for an R-module X and a representable functor M, any element 
of the Horn set Hom~(M, n,~(X)) is realizable as a map of R-modules. The R A D F  

become the analogs of  spheres in a new cellular theory for R-modules. 

11.2. Constructing the spectral sequence 

Once we can realize all free crt-modules, the construction of the spectral sequence 

mirrors that of  [13]. 
Given a (cell) R-module M, choose a free resolution of n,~M by ~-modules  

. . . . .  n~ M --+ O. 

This free resolution gives rise to an exact couple 

D~(' := n . . . .  t (FR(Ms,N)) ,  E[ 't := n-s - t (FR(FKs ,N) ) .  

s,t whose spectral sequence has E:-term E~ "¢ = E x t , ( n ,  M, nS, N) .  Exactly the same words 
used in [13] describe the convergence and yield the naturality of  this spectral sequence. 
Also, there is a Yoneda product on E2 which converges to the composition product. 
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11.3. Naive module spectra 

Since much of this theory relies only on free objects and extended module spectra, 
and in particular since the definition of united homology theory only requires a ring 
spectrum and not an S-algebra, one might hope for this spectral sequence to generalize 
to that wider setting. This, however, is unlikely: the point-set level category is necessary 
to construct the free resolutions of the R-modules; since the homotopy cofiber or fiber 
of  a map of naive module spectra cannot be given an obvious module structure, we 
cannot make resolutions in the naive module spectrum category. 

11.4. A dual spectral sequence 

For an S-algebra R, a united theory R ~  has a dual category DRo~ given by taking 
the Spanier-Whitehead dual in the category of R-modules of  every object and morphism 
in R ~ .  Note that this satisfies all the properties of  R~°P: DR.~ is equivalent to the 
opposite category of R.~. Thus, we can understand the tensor product as a functor 
®.,s : sJb R~ ® ,~ 'bDR~ ---' d b  with derived functor Tor(M,N) defined on a pair of  
functors M covariant on R Y  and N covariant on DROP. 

Let M . f f  denote z~.~(M) and N*.~ ,  the cohomological version obtained from the 
modules [RAF, N], F E ~ .  Thus, N*,W -~ N . D ~ .  To construct the spectral sequence, 
let M be a right (cell) R-module, N a left (cell) R-module. The exact couple defined 

by 

D~,, := 7~s+t+l(ms+ 1 A R N), E~, t : =  ~s+t(FKs AR N)  

yields a spectral sequence with E2¢ = Tor~ , (M, .~- ,N*~) ,  converging to Es~ = 

E~'t~z,(M AR N). The filtration on ~z,(M Ae N)  is given by the resolution of M. 
Alternately, one can resolve in the N variable. The E 2 term can be identified by 

noting that E~, t ~ Fs ®.~ N by construction. Convergence and functoriality are proven 
as for the Ext spectral sequence. The Tor spectral sequence always converges strongly: 

see [13]. 

12. Classification of modules over real connective K-theory 

For an S-algebra R with homotopy groups forming a Noetherian ring of dimension 
at most two, the R-modules are classified by their homotopy groups and a difference 
in Ext, as seen above. For other ring spectra, the same method can be used once 
an algebraic category with sufficient structure and global dimension at most two is 
built [9]. As noted above, additional free objects provided by a united homology theory 
can lower the dimension of the algebraic category. This classification is carried out here 

for ko. 



J.J. WolbertlJournal of Pure and Applied Algebra 124 (1998) 289-323 311 

12.1. Homological dimension of crt-modules 

The following theorems rely on work of  Bousfield [8] regarding abelian groups 
with involution, and essentially parallel his similar theorems for the periodic case. In 
the category of  crt-modules, all projectives are free and all crt-acyclic objects have 
projective dimension at most two. 

Theorem 12. Given a crt-module M, the following are equivalent: 
(i) M has projective dimension (as a crt-module) at most 2, 

(ii) M has finite projective dimension, and 
(iii) M is ert-acyclic. 

This theorem relies on the following determining property of  projectives. 

Theorem 13. Given a crt-module M, the following are equivalent: 
(i) M is projective (as a crt-module), 

(ii) M is crt-acyclic and M u is free over Y[flu] = [ko, ku]k, °, 
(iii) M is free. 

Proof of Theorem 12. Since ~/ is nilpotent, equivalences under ko-, ku-, and kt- 
homology are all the same. Thus, the projective dimension of  a crt-module is bounded 
by the ku,-project ive dimension of  its U-part. Thus, Theorem 12 follows from 
Theorem 13 and the fact that whenever two crt-modules in a short exact sequence 
are crt-acyclic, the third is as well. E 

Proof of Theorem 13. (i)=:~ (ii): Given M projective, there is another projective P 
such that M ® P ~ F ,  where F is free, hence the n~, rt of  a wedge of  suspensions of  
ko, ku, and kt. Since flee objects are all crt-acyclic, so are their direct summands. 
Now, M u is a direct summand of  F u, hence projective over ku,  C_[ku, ku]k, ° since 
F U is. I f  M U is finitely generated over ku, ,  then it is free. I f  not, note that ku,  is 
commutative and Noetherian and has no non-zero idempotents; by [3] this implies that 
any non-finitely generated projective is also free. 

(ii) ::~ (iii): Given M satisfying (ii), we want to decompose M as the direct sum 
of  free objects. By Proposition 3.7 of  [8] (Lemma 14 below), each M~' decomposes 

as M c '  = G, ® IpG~ @ i--Hn ® i-In for Gn, H~, In free abelian, where ~p interchanges 
summands on G ® ~9G, 0 = 1 on i+G, and 0 = - 1  on i -G. 

For a of  degree n, let FU(a) denote the monogenic free crt-module generated by a 
isomorphic to Z"n~.rt(Dku). Similarly, FO TM n~.rt(Dko) and FT ~= nc.rt(Dkt). 

First, we :find a direct summand of  M which is isomorphic to the direct sum of  
copies of  FU. Select elements {a~,~} with a~,~ = a~ in i+H, C_M U, a~ not in the 

image of  flu, and such that {a~,~} is a Z-basis for the set o f  elements x in i+H~ with 
/3crx in Gn+2 ®0Gn+2. That such a basis is possible (disjoint from image /?u) is shown 
in Lemma 15. Let K be the kernel o f  the map ( ~  Z~FU(a~,n)--~ M. K U = 0, since 
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each element a generates a copy of  Z[flu]a ® S2z[rc~]b in M °" with 0-action given 

by 02b = O ( r u a -  b) = b, isomorphic to the 0-action on FU. Since K is a submodule 
of  a direct sum of  copies of  FU, qK ° = 0, which gives K ° = 0. The Anderson 
cofibration relating K ° and K r now gives that K r = 0. Thus, K = 0 and the map is 

monic. In fact (see Lemma 15), the free module surjects onto a direct summand of  
M c', so the cokemel N also satisfies (ii). Further, N t: = (N~:) + ® (NC~) - as graded 

abelian groups, where G + = {x E G : 0x  = x} and G -  = {x E G : 0x = - x } .  

Next, we find a direct summand of  N which is the direct sum of  copies of  FO. Note 
that t/2 = rfl2~c by the definitions o f  the maps in Section 10.2 and the relations in 

Section 10.4. Thus, r/2 factors as the composition N ° 5+ (N~')+ ~ rflu(N~2 cl)+ C NO2. 
The identities crflu = 1+ 0 and to-0  = -ore ,  give crr~(NnC') + = (1 +lp ) (NnO+2)  - = 0 ,  

so rru(N ~ 2  u)+ is a 7//2-module (i.e., is contained in qN°). 
Choose a Z-basis {b~}U{cv}U{d6}U{e~ } for N °' by extending a basis for the image 

of  flu to the whole o f  N U such that the b 's  project to a basis for rr2(NU)+/q2N °, 
the c 's  project to a basis for qZN°, the d ' s  are trivial in rrZT(NU) +, and the e 's  are 
in (NO') - . 

For any c,l,~ not in the image of  rio, define rny,~ as follows: since 2(NV) + C_c(N °)  
and r/2 = rr2Tc, there is an m./,n E N ° with c(mv) - c,,, E Span{d6}, that is, q2m~. = 
rr2ucT. Then c:.,,n can be replaced by c(mTm ). The construction of  the rn~. implies that 
(~;, ZnFO(m.~,n) -+ N is monic with crt-acyclic cokernel P such that p g  is free over 
~-[flc'], pU = (pU)+ G ( p U ) -  as graded abelian groups, and tl2P ° = 0. The map is 

monic since the rn v hit elements which are non-zero under r/2; everything else is forced 

by r o ¢  0 on N °, since N U is free over Y[flc,]. Also, the map from the free module 
generated by the m.~ hits generators c(mv) in a basis for N c', so the cokernel has U-part 

flee over 7/[flF]. Since tl2N ° c rr~(NU) +, all o f  tl2N ° is hit; tl2p ° = O. 
Lastly, we see that P is a direct sum of  copies of  FT by using the exact sequence 

" '  ~ P * - I  ~ " "  

Since rio" is injective on pC', 0 = 1 - 0u = r i co  implies ~o = 0. So, since pO is free 

over Y[fl~:], the exact sequence 

0 --* ( p . O ) +  ® ( p U _ , ) - / 2  -5 p.T ~ (p.U)+ --, 0 

reduces mod torsion to 

0 --* (P,~'_,)+ 2_~ p,r/tor s ~_~ (p,C~)+ ~ 0, 

with ),(P,U_I)+ = (P,r / tors)-  (to see this, look at the relations between 0v, tPu, and ";). 

The exact sequence for q2 gives the short exact sequence 

0 ~ P ° / t o r s  ~ r ~ 0 P ,_3/ tors  P , / t o t s  0, 

since tors(P,° 3) ker(c P O _  3 u = " - ' * P * - 3 )  = riP°*-4 and tors(P,  r)  = 7(P,U 1) - = 

7~,p,¢ r_l  = t/P,r_l by the above short exact sequence and the effect of  ~. Thus, since 

Ore = e, e(P,°/tors) = (P,r/tors)+. 
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Note that pT/tors  is free abelian in each degree, so that we have decompositions 
P~r/tors = (G,®~bG,)®i+H,@i-I,.  Since any torsion is killed by % there is an epimor- 
phism r r Pn -+~lszflr(Pn ). Now, qsrflre = */er/ = 0, so r/ kills ~(P,°/tors) = (P,T/tors); ~/ 
also kills y , ( f 2 . )  f } - l ~  and 2n--1 = 7 * ( f u  ) = f}~/, hence ~ezfry = 0 and qy(P~,_l) + = 
q(P,Y,/tors)- = 0. Lastly, z~ = - v  and Ofir = fr~O imply that qSZfTtp = qSzfr. Thus, 
the restriction to G, is a surjection G,--~,qszfv(P~). 

Choose a 72-basis {ro} U {s~} U {&} of  p,r such that {rp} U {s~} gives a basis for 
qeZfTP v, extending a basis {s~} for the sum of  the images of  fit and {, and satisfying 
{t~} --~ 0 in qszfrP r. Lift each element rp, n to £p in P [ ,  giving a monic map 

@ZnFT(Pp,  n) ---+ p 

P 

with crt-acyclic cokernel Q; again, Qu is free over 72[fu] (use the short exact sequence 
relating (P~)+  and P,V/tors), QC' = (QU)+ ® ( Q U ) - ,  r/2(QO) = 0 (true for P, FT),  

and further, ,/e~(Q r )  = 0, since any element in the image of  qez is in the image of  
the FT's. Note that there is no need to kill the &; they are hit by linear combinations 

? ~ ?  , 
of  the f r g  rp s. 

Lemma 1 6, the analog of  [8, Proposition 3.1 1 ] for crt-acyclics, then gives that Q = 0, 
so M is a free crt-module. [] 

12.2. Technical lemmas used in the proof  of  Theorem 13 

First we define the abelian category lnv of  involution modules, as in [8], to be the 
category of  72{1,~} modules where ~2 = 1; this is the category of  abelian groups 
with involution. For an abelian group G, G ® OG denotes the involution module in 
which ~ interchanges summands; i+G denotes G with involution ~b = 1; i - G  has 
involution ~ = - 1 .  For an involution module M,  M + = {x 6 MlOx = x} and M -  = 

{x < Minx = -x}. 

L e m m a  14. Any object M of  Inv which is free as an abelian group is isomorphic to 
(G @ ~G) ® i+H ® i - I  for free abelian groups G, H, and I. 

Proof .  This is Proposition 3.7 of  [8]. [ ,  

L e m m a  15. Given a crt-module M such that M u is free over 72[flu], with decompo- 
sition as abelian groups 

Mn U = G, O ~G, @ i+H, @ i - I , ,  

any element in G~ 0 ~9G, must be in a submodule generated under ~ and f u  by a 
generator of  a copy o f  ku,(C(~l)) taken as a [ku, ku]~,°-module. Such a generator is 
necessarily in i+H, for some n. Further, the irnage o f  ku,(CO1)) in M U is a direct 

summand over Z[flu, t~]. 
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Proof of L e m m a  15. We want to prove that any element of  Gn ® tpGn must be 

generated under ~ and fig by  a generator of  a copy of  k u , ( C ( ~ l ) ) .  

Let 7/[flv]x be a 7/[flv]-free submodule and direct summand of  M U generated by  x 

and closed under t). Note that the united operation go requires Ox = x, so that x can 

be in the kernel o f  (p. 

For a module with M U = ~_[fi~/]x • ~-[flc']Y as 2[f lu]-modules  and indecomposable 

over 7/[flu, ~], x and y must have different degrees o f  the same parity, since any group 

~el O ~ e 2  has an element el - e2 in the image of  fiG. Let [Yl > [xl and suppose 

Ix I = 0, so lY] >- 2. To rule out lYl -> 4, use the t/ exact sequence and t/3 = 0 to show 

that M ° is ( -2 ) -connec ted ,  since M U is ( -1 ) -connec ted .  Then use the exact sequence 

with g0 to see that MTl includes torsion Z/2 (coker q0); the e exact sequence shows 

then that M ° l  = Z/2. The t/ exact sequence now forces M Ul = ~/2 ,  a contradiction. 

This covers all possible cases, since 0 2 = 1 and Orb, = - f l u O .  

Let A = [ku, ku]k, °. For any crt-module M, M ~ is an A-module. Call an A-module 

go-acyclic i f  the complex 

• . .  - -  M 2 '  - , " .  

given by q) E A_2 is exact. [] 

Lemma 16. L e t  M be a cr t -acycl ic  crt-module.  The fo l lowing  are equivalent: 

( i)  M v is ¢p-acyclic, 

(ii) t /=O in M °,  
(ii i)  r / 2 = 0  in M ° and ~lez = O  in M v. 

Proof.  This is the crt analog o f  Proposition 3.11 o f  [8]. 

( i )  ~ (ii): Note that (p = cr.  Now, an element x c M ° is in the image o f  r if  and 

only i f  t/x = 0. Also, for any x C M ° ,  q)(cx) ---= 0; by  ~o-acyclicity, there is an element 

y E qo- l (cx) .  Suppose x is not in the image of  r.  Then r y  7 ~ x,  but c r y  = qoy = cx, so 

x - r y  = tlZ (ke rc  = imt/) .  Since r y  7~x, tlz 7 ~ 0 and z is not in the image o f r .  Thus, 

we can do for z = xl what we just  did for x = Xo, obtaining a sequence xn E M ° such 

that tlx n 7~ 0 and x , - i  --tlXn is in the image of  r. Since t/r = 0, r/x0 = t/2Xl = t/3x2 = 0, 

so we must have had x in the image of  r (kemel  of  ~/) after all: t / =  0 in M °.  

( i i ) ~ ( i ) :  I f  t/ = 0, then c is monic and r is epic, so that kerq0 = k e r ( c r )  = 

k e r ( r )  = i r a (c )  = i m ( c r )  = im(q~). Thus, M w is qo-acyclic. 

(ii) =~ (iii): Now, t / =  0 in M ° implies t/2 = 0 in M ° .  Since the composit ion 

M2 M °_ 3 ML3 M,L2 

equals the composit ion 

M, M°_3 M°_2 ML2, 

we also get t/~z = 0 in M r. 



J.J. Wolbert/Journal of Pure and Applied Algebra 124 (1998) 289-323 315 

( i i i ) ~  (ii): If r/2 ----- 0 in M °, then 

0--* M,  0 ~ M ,  r ~M,°_3  ----~ 0 

is exact, but 0 = t/ez = er/z in M r. Since ~ is monic, t/r = 0. Now, ~ surjects onto 
M ° and also maps into the kernel of  q, so t / =  0 in M °. [] 

12.3. Classifying ko-modules 

As in the dimension two case for rings above (Theorem 7), all crt-acyclic crt- 
modules can be realized as 7r~ rt of some ko-module, again using projective resolutions. 

The analysis is completed after verifying that the classification of ko-modules with 
the same ~rt  M is given by a quotient of  Ext2c'~tl(M,M), exactly as in [8] and in 

Theorem 7. 

Theorem 17. The category of  crt-acyclic crt-modules has enough projectives and all 
objects have projective dimension at most two. Any crt-acyclic crt-module can be 
realized as rcc, rt(X) for some ko-module X. This ko-module is unique up to homotopy 
i f  the crt-module has projective or injective dimension at most one. For a fixed crt- 
module M of projective dimension two, there is an equivalence relation finer than 
homotopy equivalence so that equivalence classes of  ko-modules X with ~z~,rt(x) = M 
are in b ij'ective correspondence with the elements of  Ext2;~ -~ (M,M). 

13. Modules over periodic K-theory and K,-local spectra 

A simpler classification results when .fi-modules have ~-projective dimension at 
most one. One example is Bousfield's CRT-theory [8], noted above. This classification 
yields an algebraic criterion for when a K,-local spectrum can be given the structure 

of  a KO-module or KU-module. 

13.1. Classifying KO-modules 

Since Bousfield proves that all CRT-acyclic CRT-modules have projective dimension 

at most one and that all projectives are free (hence easily realized), we obtain a 
classification of CRT-modules using the united CRT-homology spectral sequence. A 
KO-module M is determined by zcC, RT(M) and the group of KO-module maps between 

two KO-modules M and N is given by the short exact sequence 

1,-1 cRr ztC, R T ( N ) ) ~  [M, Nfo o 0 ~ ExtcRT(TZ, (M), 

-~ HOmcRT(gCRT(M), rcCRT(N)) ~ O. 
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Note that we have now classified R-modules where R is real or complex K-theory, 
either connective or periodic. 

13.2. Local spectra with module structures 

I f X  is a / ( , - loca l  spectrum (or S-module), it would be good to know when X _~ M 
as spectra for some KO- or KU-module M. Note that X,  for a spectrum X has only 
the structure of an S,-module; here, we need consider it only as a graded abelian 
group. 

A CRT-module enriched with Adams operations is called an ACRT-module [8]. 
These A CRT-modules classify K,-local spectra by taking KcRT (X) ~- z~C, RT ( KO A X )  
as CRT-modules for X K,-local, together with Adams operations induced by those on 
KO. 

Note that zt~RV(X) is not in general a CRT-module, though the acyclicity condition 
always holds. If  X has the structure of a naive KO-module spectrum, however, then 
~,cRr(X) is a CRT-module. 

Let U be the right adjoint to the forgetful functor from ACRT-modules to CRT- 
modules. Note that the complexification map c : KO ~ KU is a map of S-algebras: 
any KU-module is a KO-module. 

Theorem 18. Let X be a K,-local spectrum or S-module. Then X is equivalent to a 
KO-module i f  and only if  KC, RT(X) ~ UztC, RT(x) as ACRT-modules, where 7~C, RT(x) 
must be a CRT-acyclic CRT-module. Further, X is a KU-module if and only if, in 
addition, X ,  can be given the structure of a KU,-module. 

ProoL Necessity is clear: given a K,-local spectrum X which is equivalent to a KO- 
module, ncRr(X) must be a CRT-acyclic CRT-module, and by [8], KcRr(X)  
unC, Rr(X) as ACRT-modules. 

If  ncRr(X) is CRT-acyclic, then by the classification theorem for KO-modules, there 
is a KO-module Y, unique up to homotopy, such that 7r,cRr(X) ~ nc, RT(Y). 

For X and Y to have the same homotopy type as spectra, it suffices to check their K , -  
local type, since both are/( ,- local .  The question is now answered by the analysis in [8] 
relating the categories of CRT-modules and CRT-modules with Adams operations, or 
A CR T-modules. 

Bousfield constructs the right adjoint U to the forgetful functor from ACRT-modules 
to CRT-modules. Since U is a right adjoint, it preserves injectives; in fact, this is how 
he shows that the category of ACRT-modules has enough injectives. Further, given 
a naive KO-module spectrum Y, KcRr(Y)  ~ u~cRr (Y)  as ACRT-modules. Thus, 
X is a KO-module if KC, RT(X) ~- UgcRT(Y). In particular, although the category of 

ACRT-modules has global injective dimension two, since U preserves injectives, our 
prospective KO-module X must have Kc, RT(X) with injective dimension at most one 

as an ACRT-module. 
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In order for a K,- local  spectrum X to be a KU-module, X must be a KO-module 

by neglect o f  structure and X ,  must have a KU,-module  structure; in fact, since the 
Bott element must be an isomorphism, any KU,-module  structures on X ,  are isomor- 

phic. Let Y, denote X ,  with a KU, -module  structure. Y, has an injective resolution 
0 --~ Y, ~ I0 ---* I~ ~ 0 o f  KU,-modules ,  which we realize uniquely up to homotopy 

as a cofibration Y --+ ]I0] ~ II11 ~ Z Y  of  KU-modules; ~z,(Y) -~ Y,. 

By neglect of  structure, Y is a KO-module, hence X and Y have the same homotopy 
type if they satify the condition KC, RT(x)  ~- u~c, RT(Y). In this case, X is homotopy 

equivalent to the KU-module Y. [] 

Note that this shows readily that any naive KU-module spectrum is equivalent to a 

KU-module; thus, any naive KU-module spectrum can be given the structure of  a KU- 
module. Further, since any map of  naive module spectra is a map between modules o f  

dimension at most one, it can be realized as a strict map. Thus, the homotopy category 

of  naive module spectra over KU (weak equivalences inverted) is equivalent to the 
derived category of  KU-modules. 

Corollary 19. The derived category o f  KU-modules is equivalent to the derived cat- 
egory of  naive KU-module spectra. The same is true for KO. 

This answers a question o f  Mark Hovey (personal communication) of  when a K , -  
local spectrum has the structure o f  a KU-module spectrum. 

14. Realizing modules of dimension higher than two 

Given an S-algebra R with a united theory R ~  (the crt and C R T  theories, for 
example), and given any R,-module  M ,  it is possible to construct an R ~ - m o d u l e  

with M ,  as its value at R A S  (Section 9.1). For the sake of  clarity, the exposition here 

will focus on the example o f  ko. 

Theorem 20. Given any ko,-module M,,  it is possible to construct a crt-acyclic crt- 
module with ko part M, .  Thus, by the classification theorem for ko-modules, M ,  can 
be realized as the homotopy of  some ko-module. 

The general case is stated at the end of  this section. The method of  proof  will be 
clear from the example of  ko; essentially, it is to build a complex of  copies of  ~c, rt(ko) 
from a free resolution of  the module, then to see that the homology of  the complex is 

concentrated in degree zero and is our desired crt-module. 

14.1. The construction 

Let M ,  denote a (graded) ko,-module.  Take a free resolution F ° ~ M ,  ---, 0 of  
M , ;  each F ° is a free, graded ko,-module.  Let F~ r be a free graded ku , -module  on 
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generators corresponding to those of  Fn °. Now construct a bicomplex F 

, ZF o ~, F o c F~ ~ Z2FO 

,1 d 
, zg°_~ ", X°_, c, F L ,  ~ Z2F°_, 

+ + + d._ I d,:_ I dn- i d._ I 

I i i I 
ZFoO ~> Fo o c F g  r Z 2 f g  

where each Xk has an additional internal grading. Suspension affects only this internal 
grading: ZXk,, = Xk,,-1. The maps q, c, r are induced by the maps 

X k o , & k o ,  C k u , - ~ Z 2 k o , ;  

and the differentials of  F. v are given by the following method: /~o ~ F O l  has a 
unique realization as a map of ko-modules; smash with the identity on C(t/). 

This is equivalent to defining /~u as F ° ®ko. k u . ,  since the modules in F ° are 
all free over k o . .  Thus, we can construct a complex F of free crt-modules as F = 
F ° @ko, rcc, rt(ko), where F x = F ° ~ko, ~z,(kX). We obtain diagrams similar to the one 

above corresponding to the other long exact sequences defining crt-acyclicity. The rows 
are exact complexes by construction. Since free modules are flat, each complex Fi r is a 
resolution. Define a crt-module M by M ° = M, ,  M v = Ho(F.U), and M r = H o ( F f ) ,  

operations induced by those on the resolutions F x .  
Now M can be realized in topology (since crt-theory has dimension two) if and 

only if M is crt-acyclic. To see that M is crt-acyclic, recall that a bicomplex F has 
two spectral sequences [14] (where g denotes the horizontal differential given by q, c, 

and r; and d, the vertical) 

E2 p'q = Hp(Hq_p(~-,a) ,o) ,  and E~ p'q -~ Hp(Hq_p(~-,~),d) 

each converging to the homology of the associated total complex (appropriately fil- 
tered). In our case, the spectral sequences are half-plane spectral sequences. Since they 
are spectral sequences from a bicomplex, they automatically converge conditionally [5]. 
Further, only finitely many differentials are non-zero since each spectral sequence has 
differentials which go from the groups in the free resolutions downward (in the above 
diagram) eventually into the lower half-plane, which is all zero. 

In this case, the one spectral sequence converges to zero and the other, since it is a 
single line, converges from the homology of the complex 

• . .  ~ X M  ° -+ M ° __, M U -+ Z2M o ~ . . .  
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to zero, forcing the complex in question to be exact. Similar analysis yields exactness 

for the M ° - M  r and M~:-M r complexes. Thus, M is crt-acyclic and can be realized 
as rt~t(X) for some ko-module X. 

The details of the generalization of this construction are in the section below. The 

guarantee that any o~-module can be realized holds only for theories of dimension at 
most two; in such a case, the analysis realizing and classifying such modules is exactly 
as in the crt case. 

14.2. General united theories 

Let R ~  be a united theory for an S-algebra R, with X an R-module in R ~ .  Set 
A = [X,X]R,. Note that z~,(DX) consists of A-modules and A-module homomorphisms. 
Given any A-module As/, with A-free resolution F x ~ M, ~ 0, we can form F = 

F x ®A ~z~(DX), which is a complex of R~-modules such that F x is the complex 

F x .  The acyclicity conditions are proven as in the crt-case above, and we define the 

R~'-module M by M r = Ho(F. r)  for Y in R ~ ,  operations induced by those on F. 

Thus we obtain an Y-acyclic R~-module M. When M has projective dimension at 
most two, we can use the techniques of earlier sections to realize M as rift(Z) for an 

R-module Z. This finishes the proof of Theorem 20 and its generalization: 

Theorem 21. Let R be an S-algebra with a united theory R ~ ,  X an R-module in 

R.~. Let A = [X,X]R,. Then given any A-module M ,  it is possible to construct an 

~-acycl ic  united module M such that M x = M, .  Thus, by the techniques preliminary 

to the classification theorem, when the united theory R ~  is o f  dimension at most two, 

any A-module can be realized as the homotopy of  DX An Z for some R-module Z. In 
particular, any R,-module is the homotopy o f  some R-module. 

In particular, any ko,-module is the homotopy of some ko-module, and the same is 

true for KO. 
Note also that any [ku, ku]k,°-module can be realized as n , ( ku  Ako Z)  for some ko- 

module Z, since ku is self-dual up to suspension as a ko-module. 

15. A change of rings isomorphism 

This section gives a change of categories isomorphism analogous to the standard 

change of rings isomorphisms for calculating Ext. 
Let A = [ku, ku]k, °. Recall the definition of q)-acyclic preceding Lemma 16. 

15.1. Universal functors between A-modules and crt-modules 

The forgetful functor M ~ M v from crt-modules to (graded) A-modules has both 

a left adjoint and a right adjoint. 
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Lemma 22. The left adjoint 2 to the forget fu l  functor  f r o m  crt-modules to (graded) 
A-modules is given by 

()d~/)6,; = M, ,  ()214), ° ----- N, ,  (234),  r = N ,  @ N,+ , ,  

where N ,  is the double desuspension o f  the cokernel o f  ~o. The operations on )dYI are 
4 x 2 2 . . . .  [riux, r iuy] ,  E[x] = Ix, o], given by tl O, ~br[x, y] [ x , - y ] ,  rio[x] [flu ], fir[x, y] 

~[x,y] = [x + ~x], 7x = [O,x], and z[x,y] = [y]. 

The right adjoint p to the forge( ful  functor  is given by 

(pM)~, ~ -=- M , ,  (pM)°, -= L , ,  (pM);,  = L ,  @ L,+I,  

where L ,  is the kernel o f  99. The operations on p M  are given by r / =  0, t~r(x,y) = 

(x, )), rio(x) ri~,x, r i r ( x , y )  (ri~x, 2 . . . .  riuY), ~(x) = (x, 0), ((x, y )  = x, 7x = (O,x + 
~bx), and r(x, y )  -- y. 

ProoL The adjunctions are verified by using the operation sequences, noting that maps 
must commute with all crt-operations: given an A-module map a :  M ,  --+ X,  v, where 
X is a crt-module, there should be a unique map ~crt : 2 ( M )  ~ X with ~u = ~. The 

definition of  2 and the crt-operations require that a °' = ~, a r  is determined by ~o 

(because of  the O-T and U-T sequences), and ~O[y] = r~(y) ,  which is well-defined 

since [y] = [z] if and only if ~p(y - z) = 0, and r(p = 0. Similarly for ~ : X,  t' ---+ M, ,  
we need a unique map ~ w r t : x  ---+ p(M) .  This time, ~°(x)  = ~c(x) E p ( M )  = ker~0 

since ~ is a map of  A-modules, so q)~e(x) = ~oc(x)  = ~(0). [] 

Lemma 23. l f  M is a projective A-module, then 2tl4 is a projective crt-module. I f  M 

is an injective A-module, then p M  is an injective crt-module. 

Lemma 24. Let  0 --~ L --+ M --~ N ---* 0 be an exact  sequence o f  A-modules. I f  N is 

~p-acyclic, then 0 ~ 2L ~ )dkl ---+ ) ~  ~ 0 is an exact  sequence o f  crt-modules. I f  L 

is ~p-acyclic, then 0 -+ pL ~ p M  ---+ p N  ~ 0 is an exact  sequence o f  crt-modules. 

Proofi Any right adjoint preserves limits, hence is left exact and preserves mon- 

ics; dually for any left adjoint and epis. Thus, it suffices to check the exactness of  
0--~ )~L---+ )dV/ and pM--+ pN--+ 0 where N and L are (0-acyclic. But this is clear 

from the definitions of  p and 2 and the fact that A-module maps commute with ~o. [] 

Lemma 25. For any ~p-acyclic A-module M, 2M and p M  are crt-acyclic. 

Proofl Again, by direct calculation from the definitions o f  the adjoint functors. [~ 

Theorem 26. For crt-acyclic crt-modules L and M with q = 0 in M °, there are 

natural isomorphisms 

).(M U) ~ M ~- p(MU),  

s t U U ExtS~(M,L) = Ext)' (M ,L ), ExtS~(L,M) = ExtS~t(LU,MU). 
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Proof. We use the fact that M c' is ~p-acyclic (Lemma 16), the lemmas above, and 
the long exact sequences which link the crt-operations. Since r /=  0, we have the iso- 
morphisms 2(MU) ° = coker q~ = MU/im q~ = MU/ker(r)~-~ZZM ° and M ° -~ im (c) = 
ker ~p = p(MU) °. Given these isomorphisms and that, by adjointness, Homcrr is deter- 
mined by HomA, the isomorphism between U-pieces lifts to a crt-isomorphism. 

Taking a free or injective A-resolution of M, depending on whether M is in the 
contravariant or covariant variable, we obtain the desired change of rings isomorphisms. 

[] 

16. Future directions 

16.1. C*-algebras and connective K-theory 

Module spectra (in the classical, naive sense) over connective K-theory which are 
of  the form ku A X for a compact space X are closely related to C*-algebras. For X 

and Y compact spaces, 

[4ff ® CX, ~" ® CY] ~- IX, ku A y]Stable ----_ [kU A X, ku A y]ku, 

where Y denotes compact operators and CZ is the space of all maps Z ~ C. 
D~dfirlat [12] and Blackadar [4] give more details on this relation between connec- 
tive K-theory and C*-algebras. Segal [23] has given a more geometric construction of 

the connective K-theory spectrum. 
Thus, it would be good to know which module spectra over ku are actually of the 

form ku A X ,  at least for X a finite CW-complex. 

16.2. Extended modules 

The ko Adams spectral sequence is useful for its quick convergence. This leads 
one to a desire to understand ko-modules better, for example, which ko,-modules can 

occur as the ko-homology of a space or spectrum. 
Note that, since ku and kt  are finite ko-modules, the result above on finitely generated 

R,-modules generalizes to finitely generated crt-modules. 
In a different vein, a theorem of Jung and Stolz [24] states that a manifold admits 

a positive scalar curvature metric if and only if the image in ko-theory of the spin 
bordism class given by the classifying map M ~ BnIM of the universal cover lies in 
a certain subgroup of  konBnlM (n = d imM > 5). Thus, the study of ko A Bn would 
be interesting. The periodic case reduces to representation theory. While there is no 
general description of HY A Bn, connective K-theory may be a middle ground between 

this and the periodic K-theory of Bn. 

16.3. Questions 

Among other interesting questions is one suggested by Neil Strickland: when is a 
module over M U ,  the homotopy of an MU-module? Here we have realized all modules 
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of projective dimension at most two, but the question remains for all higher and infinite 
MU,-dimensional modules. 

Perhaps more tractable would be to investigate other rings of finite homological 
dimension first. This might require a better understanding of the relation between the 
associated graded of the Horn groups from the EKMMSS and the actual Hom groups. 

Along another tack is the investigation of other united homology theories. It would 
be interesting to find situations apart from K-theory where these theories are useful. 

The work of T.-Y. Lin included results about modules over S,.  One hope would be 
that we could determine S,-injectives or obtain more information about maps between 
2-cell complexes. Since S,  is not concentrated in even (or otherwise sparse) degrees, 
the algebra over this uncalculated ring is likely to be difficult to approach, but it should 
be possible to see part of the picture. 

The categories DR of R-modules give alternate worlds of homotopy theory. As this 
paper shows, these worlds are often simpler than the usual stable category. It would be 
interesting to investigate, for general S-algebras R, whether there is a choice of R such 
that the every Bousfield class (R-modules with the same localization functor) has a 
complement in the algebra of Bousfield classes of R-modules. Also possibly interesting 
would be analogs of the chromatic filtration and whether the telescope conjecture might 
be true over some choice of R. This might aid in determining the deviation of the 
telescope conjecture from the truth. 
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