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1. Introduction

Throughout the paper, we let k be a fixed field.
Support varieties for modules over a group algebra kG were introduced by J.F. Carlson 

in [4], using the group cohomology ring H∗(G, k). Later, Snashall and Solberg [18] defined 
support varieties for modules over an arbitrary finite-dimensional k-algebra Λ, using the 
Hochschild cohomology ring HH∗(Λ).

We say that a finite-dimensional k-algebra Λ satisfies the (Fg) condition if the 
Hochschild cohomology ring HH∗(Λ) of Λ is Noetherian and the Yoneda algebra 
Ext∗Λ(M, M) is a finitely generated HH∗(Λ)-module for every finitely generated Λ-mod-
ule M (for more details, see the definition in Section 7). It was shown in [9] that many 
of the results for support varieties over a group algebra also hold for support varieties 
over a selfinjective algebra which satisfies the (Fg) condition. We can thus think of the
(Fg) condition as a criterion for deciding whether a given algebra has a nice theory of 
support varieties.

It is therefore interesting to investigate whether the (Fg) condition holds for various 
algebras, and to find out which relations between algebras preserve the (Fg) condition. 
This question has been considered in [16] for algebras whose module categories are related 
by a recollement of abelian categories, and in [12] for derived equivalence of algebras. In 
this paper, we consider singular equivalence of algebras.

The singularity category Dsg(Λ) of a k-algebra Λ, introduced by Buchweitz in [3], is 
defined as the Verdier quotient

Dsg(Λ) = Db(modΛ)/ perf(Λ)

of the bounded derived category Db(modΛ) by the subcategory of perfect complexes. 
This is a triangulated category. We say that two k-algebras Λ and Σ are singularly equiv-
alent if there exists a triangle equivalence f : Dsg(Λ) → Dsg(Σ) between their singularity 
categories, and the functor f is then called a singular equivalence between the algebras 
Λ and Σ.

The purpose of this paper is to investigate to what extent singular equivalences pre-
serve the (Fg) condition. Since arbitrary singular equivalences are hard to work with and 
do not necessarily have nice properties, we restrict our attention to special classes of 
singular equivalences.

A singular equivalence of Morita type (introduced by Chen and Sun in [7]) between 
k-algebras Λ and Σ is a singular equivalence

Dsg(Λ) N⊗Λ−−−−−−→ Dsg(Σ)

which is induced by a tensor functor N ⊗Λ −, where N is a Σ–Λ bimodule subject to 
some technical requirements. Wang [19] has introduced a generalized version of singular 
equivalence of Morita type called singular equivalence of Morita type with level. We recall 
the definitions of these two types of singular equivalences in Section 2. The question we 
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want to answer in this paper is: Do singular equivalences of Morita type with level 
preserve the (Fg) condition?

All algebras that satisfy the (Fg) condition are Gorenstein algebras (see Theorem 7.2), 
and singular equivalences of Morita type with level do not preserve Gorensteinness. 
Moreover, even if one of the algebras involved in a singular equivalence of Morita type 
with level satisfies the (Fg) condition, the other algebra does not need to be a Gorenstein 
algebra (see Example 7.5). This means that the (Fg) condition is in general not preserved 
under singular equivalence of Morita type with level.

However, we can consider the question of whether it is only when one of the algebras 
is non-Gorenstein that such counterexamples arise. In other words, if we require all our 
algebras to be Gorenstein, is it then true that singular equivalences of Morita type with 
level preserve the (Fg) condition? The main result of this paper, Theorem 7.4, answers 
this question affirmatively: A singular equivalence of Morita type with level between 
finite-dimensional Gorenstein algebras over a field preserves the (Fg) condition. As a 
consequence of this, we obtain a similar statement for stable equivalence of Morita type 
(Corollary 7.6), where we do not need the assumption of Gorensteinness.

A result similar to the main result of this paper has been shown independently, and 
in a different way, in a recent preprint by Yiping Chen.

The content of the paper is structured as follows.
In Section 2, we state the definitions of singular equivalence of Morita type and singu-

lar equivalence of Morita type with level, and look at some easily derived consequences.
In Section 3, we begin to look at what more we can deduce from a singular equivalence 

of Morita type with level when the assumption of Gorensteinness is added. We recall 
the well-known result stating that the singularity category of a Gorenstein algebra is 
equivalent to the stable category of maximal Cohen–Macaulay modules. This implies 
that a singular equivalence

f : Dsg(Λ) �−→ Dsg(Σ)

between Gorenstein algebras Λ and Σ gives an equivalence

g : CM(Λ) �−→ CM(Σ)

between their stable categories of maximal Cohen–Macaulay modules. We show that if 
the singular equivalence f is of Morita type with level, and thus induced by a tensor 
functor, then the equivalence g is induced by the same tensor functor.

In Section 4, we consider certain maps of the form

ExtnΛ(U, V ) → ExtnΛ(Ωi
Λ(U),Ωi

Λ(V )),

which we call rotation maps. We show that these maps are isomorphisms if the algebra Λ
is Gorenstein and n > idΛ Λ. This means that in extension groups of sufficiently high 
degree over a Gorenstein algebra, we can replace both modules by syzygies. This result 
is used in the following three sections.
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In Section 5, we show that if we have a singular equivalence of Morita type with level

Dsg(Λ) �−−−−−→
N⊗Λ−

Dsg(Σ)

between two Gorenstein algebras Λ and Σ, then we have isomorphisms

ExtnΛ(A,B)
∼=−−−−−→

N⊗Λ−
ExtnΣ(N ⊗Λ A,N ⊗Λ B) (for A and B in mod Λ) (1.1)

between extension groups over Λ and extension groups over Σ, in all sufficiently large de-
grees n. In the terminology of [16], this implies that a tensor functor inducing a singular 
equivalence of Morita type with level between Gorenstein algebras is an eventually homo-
logical isomorphism. The proof of this result builds on the result about stable categories 
of Cohen–Macaulay modules from Section 3.

In Section 6, we show that a singular equivalence of Morita type with level between 
Gorenstein algebras preserves Hochschild cohomology in almost all degrees. That is, if 
two Gorenstein algebras Λ and Σ are singularly equivalent of Morita type with level, 
then there are isomorphisms

HHn(Λ) ∼= HHn(Σ) (1.2)

for almost all n, and these isomorphisms respect the ring structure of the Hochschild 
cohomology.

In Section 7, we show the main result of the paper: A singular equivalence of Morita 
type with level between finite-dimensional Gorenstein algebras over a field preserves the
(Fg) condition. The main ingredients in the proof of this result are the isomorphism (1.1)
of extension groups from Section 5 and the isomorphism (1.2) of Hochschild cohomology 
groups from Section 6.

2. Singular equivalences of Morita type with level

In this section, we recall the definitions we need regarding singular equivalences. We 
begin with the concept of singularity categories.

Definition 2.1. Let Λ be a k-algebra. The singularity category Dsg(Λ) of Λ is a triangulated 
category defined as the Verdier quotient

Dsg(Λ) = Db(modΛ)/ perf(Λ)

of the bounded derived category Db(modΛ) by the subcategory of perfect complexes. 
We say that two algebras Λ and Σ are singularly equivalent if their singularity categories 
Dsg(Λ) and Dsg(Σ) are equivalent as triangulated categories. A triangle equivalence be-
tween Dsg(Λ) and Dsg(Σ) is called a singular equivalence between the algebras Λ and Σ.
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The singularity category of an algebra was first defined by Buchweitz in [3, Defi-
nition 1.2.2]. In his definition, the singularity category is called the stabilized derived 
category, and it is denoted by Db(Λ). Later, Orlov [15] used the same construction in 
algebraic geometry to define the triangulated category of singularities of a scheme X, 
denoted DSg(X). We follow the recent convention of using Orlov’s terminology and no-
tation for algebras as well. The term singular equivalence was introduced by Chen [6].

Analogously to the special type of stable equivalences called stable equivalences of 
Morita type, Chen and Sun have defined a special type of singular equivalences called 
singular equivalences of Morita type in their preprint [7]. This concept was further ex-
plored by Zhou and Zimmermann in [20].

Definition 2.2. Let Λ and Σ be finite-dimensional k-algebras, and let M be a Λ–Σ bi-
module and N a Σ–Λ bimodule. We say that M and N induce a singular equivalence 
of Morita type between Λ and Σ (and that Λ and Σ are singularly equivalent of Morita 
type) if the following conditions are satisfied:

1. M is finitely generated and projective as a left Λ-module and as a right Σ-module.
2. N is finitely generated and projective as a left Σ-module and as a right Λ-module.
3. There is a finitely generated Λe-module X with finite projective dimension such that 

M ⊗Σ N ∼= Λ ⊕X as Λe-modules.
4. There is a finitely generated Σe-module Y with finite projective dimension such that 

N ⊗Λ M ∼= Σ ⊕ Y as Σe-modules.

Notice that the definition is precisely the same as the definition of stable equivalence 
of Morita type, except that the modules X and Y are not necessarily projective, but 
only have finite projective dimension. Thus stable equivalences of Morita type occur as 
a special case of singular equivalences of Morita type.

The following proposition describes how a singular equivalence of Morita type is a 
singular equivalence, thus justifying the name.

Proposition 2.3. (See [20, Proposition 2.3].) Let ΛMΣ and ΣNΛ be bimodules which induce 
a singular equivalence of Morita type between two k-algebras Λ and Σ. Then the functors

N ⊗Λ − : Dsg(Λ) → Dsg(Σ) and M ⊗Σ − : Dsg(Σ) → Dsg(Λ)

are equivalences of triangulated categories, and they are quasi-inverses of each other.

Inspired by the notion of singular equivalence of Morita type, Wang [19] has defined a 
more general type of singular equivalence called singular equivalence of Morita type with 
level.

Definition 2.4. Let Λ and Σ be finite-dimensional k-algebras, and let M be a Λ–Σ bi-
module and N a Σ–Λ bimodule. Let l be a nonnegative integer. We say that M and N
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induce a singular equivalence of Morita type with level l between Λ and Σ (and that Λ
and Σ are singularly equivalent of Morita type with level l) if the following conditions are 
satisfied:

1. M is finitely generated and projective as a left Λ-module and as a right Σ-module.
2. N is finitely generated and projective as a left Σ-module and as a right Λ-module.
3. There is an isomorphism M ⊗Σ N ∼= Ωl

Λe(Λ) in the stable category modΛe.
4. There is an isomorphism N ⊗Λ M ∼= Ωl

Σe(Σ) in the stable category modΣe.

Just as in the case of singular equivalence of Morita type, the conditions in the defi-
nition of singular equivalence of Morita type with level are designed to ensure that the 
functors N ⊗Λ − and M ⊗Σ − induce singular equivalences.

Proposition 2.5. (See [19, Remark 2.2].) Let ΛMΣ and ΣNΛ be bimodules which induce 
a singular equivalence of Morita type with level l between two k-algebras Λ and Σ. Then 
the functors

N ⊗Λ − : Dsg(Λ) → Dsg(Σ) and M ⊗Σ − : Dsg(Σ) → Dsg(Λ)

are equivalences of triangulated categories. The compositions

M ⊗Σ N ⊗Λ − : Dsg(Λ) → Dsg(Λ) and N ⊗Λ M ⊗Σ − : Dsg(Σ) → Dsg(Σ)

are isomorphic to the shift functor [−l] on the respective categories Dsg(Λ) and Dsg(Σ).

We now show that the notion of singular equivalence of Morita type with level gener-
alizes the notion of singular equivalence of Morita type, in the sense that any equivalence 
of the latter type is also of the former type. This is mentioned without proof in [19].

Proposition 2.6. Let Λ and Σ be finite-dimensional k-algebras. If a functor f : Dsg(Λ) →
Dsg(Σ) is a singular equivalence of Morita type, then it is also a singular equivalence of 
Morita type with level.

Proof. Let M , N , X and Y be bimodules satisfying the requirements of a singular 
equivalence of Morita type, such that f = (N ⊗Λ −). Let l = max{pdΛe X, pdΣe Y }. Let 
M ′ be an l-th syzygy of M as Λ–Σ-bimodule, and let

0 → M ′ → Pl−1 → · · · → P0 → M → 0 (2.1)

be the beginning of a projective resolution of M . We show that the bimodules M ′ and N

induce a singular equivalence of Morita type with level l.
If we consider the bimodules in sequence (2.1) as one-sided modules (left Λ-modules 

or right Σ-modules), then M and the modules P0, . . . , Pl−1 are projective, and thus M ′
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must be projective as well. Thus condition (1) in Definition 2.4 is satisfied. Condition (2) 
in Definition 2.4 is trivially satisfied, since it is the same as condition (2) in Definition 2.2.

Tensoring sequence (2.1) with N gives the sequence

0 → M ′ ⊗Σ N → Pl−1 ⊗Σ N → · · · → P0 ⊗Σ N → M ⊗Σ N → 0.

This sequence is exact since N is projective as left Σ-module, and the modules Pi⊗ΣN are 
projective Λe-modules since N is projective as right Λ-module. The Λe-module M ′⊗ΣN

is therefore an l-th syzygy of M ⊗Σ N . Since M ⊗Σ N is isomorphic to Λ ⊕X and the 
projective dimension of X is at most l, this means that M ′ ⊗Σ N is an l-th syzygy of Λ
as Λe-module. Similarly, we can show that N⊗ΛM ′ is an l-th syzygy of Σ as Σe-module. 
This means that conditions (3) and (4) in Definition 2.4 are satisfied. �

In the rest of the paper we work with singular equivalences of Morita type with level. 
By the above proposition, all results where we assume such an equivalence are also 
applicable to singular equivalences of Morita type.

As seen above, if ΛMΣ and ΣNΛ are bimodules which induce a singular equivalence of 
Morita type with level, then the functors N ⊗Λ − and M ⊗Σ − are equivalences between 
the singularity categories of Λ and Σ. We end this section by examining some properties 
of these tensor functors when viewed as functors between the module categories modΛ
and modΣ.

Lemma 2.7. Let ΛMΣ and ΣNΛ be bimodules which induce a singular equivalence of 
Morita type with level between two k-algebras Λ and Σ. Then the functors

N ⊗Λ − : mod Λ → modΣ and M ⊗Σ − : modΣ → mod Λ

are exact and take projective modules to projective modules. In particular, this means 
that they take projective resolutions to projective resolutions.

Proof. Consider the functor N ⊗Λ −. This functor is exact since N is projective as right 
Λ-module, and it takes projective modules to projective modules since N is projective 
as left Σ-module. �

Let Λ, Σ, M and N be as in the above lemma. Since the functor

N ⊗Λ − : modΛ → mod Σ

is exact, it induces homomorphisms of extension groups. By abuse of notation, we denote 
these maps by N ⊗Λ − as well. More precisely, for Λ-modules U and V and an integer 
n ≥ 0, we define a map

N ⊗Λ − : ExtnΛ(U, V ) → ExtnΣ(N ⊗Λ U,N ⊗Λ V ). (2.2)
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For n = 0, the map N ⊗Λ − simply sends a homomorphism f : U → V to the homo-
morphism N ⊗Λ f : N ⊗Λ U → N ⊗Λ V . For n > 0, the map N ⊗Λ − sends the element 
represented by the extension

0 → V → En → · · · → E1 → U → 0

to the element represented by the extension

0 → N ⊗Λ V → N ⊗Λ En → · · · → N ⊗Λ E1 → N ⊗Λ U → 0

obtained by applying the functor N ⊗Λ − to all objects and maps.
The maps (2.2) play an important role later in the paper. In Section 5, we show that 

if Λ and Σ are Gorenstein algebras, then these maps are isomorphisms for almost all n. 
This fact is used in the proof of the main theorem (Theorem 7.4).

3. Gorenstein algebras and maximal Cohen–Macaulay modules

So far, we have considered the situation of two k-algebras Λ and Σ, together with 
bimodules ΛMΣ and ΣNΛ inducing a singular equivalence of Morita type with level 
between Λ and Σ. From now on, we restrict our attention to the special case where 
both Λ and Σ are Gorenstein algebras. In this section, we prove our first result under 
this assumption, namely Proposition 3.7, which states that the tensor functors N ⊗Λ −
and M ⊗Σ − induce triangle equivalences between the stable categories of maximal 
Cohen–Macaulay modules over Λ and Σ.

We begin by recalling the definition of Gorenstein algebras.

Definition 3.1. A k-algebra Λ is a Gorenstein algebra if the injective dimension of Λ as a 
left Λ-module is finite and the injective dimension of Λ as a right Λ-module is finite:

idΛ(ΛΛ) < ∞ and idΛop(ΛΛ) < ∞.

If Λ is a Gorenstein algebra, then idΛ(ΛΛ) and idΛop(ΛΛ) are the same number, and 
this number is called the Gorenstein dimension of Λ. In later sections, we need the 
following result about Gorenstein algebras.

Lemma 3.2. (See [2, Lemma 2.1].) If Λ is a Gorenstein k-algebra with Gorenstein dimen-
sion d, then its enveloping algebra Λe is a Gorenstein algebra with Gorenstein dimension 
at most 2d.

We continue by recalling the definition of maximal Cohen–Macaulay modules.

Definition 3.3. Let Λ be a k-algebra. A finitely generated Λ-module C is a maximal 
Cohen–Macaulay module if ExtnΛ(C, Λ) = 0 for every positive integer n. We denote the 
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subcategory of modΛ consisting of all maximal Cohen–Macaulay modules by CM(Λ), 
and the corresponding stable category modulo projectives by CM(Λ).

In the following lemma, we recall some characterizations of maximal Cohen–Macaulay 
modules over Gorenstein algebras.

Lemma 3.4. Let Λ be a finite-dimensional Gorenstein k-algebra and C a finitely generated 
Λ-module. The following are equivalent.

1. C is a maximal Cohen–Macaulay module.
2. C has a projective coresolution. That is, there exists an exact sequence

0 → C → P−1 → P−2 → · · ·

where every Pi is a projective Λ-module.
3. For every n > 0, there is a Λ-module A such that C is an n-th syzygy of A.
4. For some n ≥ idΛ Λ, there is a Λ-module A such that C is an n-th syzygy of A.

Proof. We only need to show that statement (1) implies statement (2); the implications 
(2) =⇒ (3) =⇒ (4) are obvious, and the implication (4) =⇒ (1) follows directly from 
Definition 3.3.

We use Theorem 5.4 (b) from [1]. We first describe the notation used in [1] for certain 
subcategories of a module category.

For a Λ-module T with the property that ExtiΛ(T, T ) = 0 for every i > 0, we define 
the subcategories ⊥T and XT of modΛ. The category ⊥T is the subcategory of modΛ
consisting of all modules A such that ExtiΛ(A, T ) = 0 for every i > 0. The category XT is 
the subcategory of ⊥T consisting of all modules A such that there is an exact sequence

0 → A → T0
f0−−→ T1

f1−−→ T2
f2−−→ · · ·

where Ti is in addT and im fi is in ⊥T for every i ≥ 0.
Theorem 5.4 (b) in [1] says that if T is a cotilting module, then the categories ⊥T

and XT are equal.
Now consider the case T = Λ. Since Λ is a Gorenstein algebra, it is a cotilting module, 

and then by the above we have ⊥Λ = XΛ. Furthermore, ⊥Λ is the category CM(Λ) of 
maximal Cohen–Macaulay modules. Therefore, every maximal Cohen–Macaulay module 
is in the category XΛ, and thus it has a resolution of the form

0 → C → P−1 → P−2 → · · ·

where every Pi is a projective Λ-module. �
We now recall the theorem by Buchweitz which provides the connection we need be-

tween singularity categories and stable categories of maximal Cohen–Macaulay modules.
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Theorem 3.5. (See [3, Theorem 4.4.1].) Let Λ be a finite-dimensional Gorenstein algebra. 
Then there is an equivalence of triangulated categories

CM(Λ) �−→ Dsg(Λ)

given by sending every object in CM(Λ) to a stalk complex concentrated in degree 0.

A direct consequence of Theorem 3.5 is that if two finite-dimensional Gorenstein 
algebras Λ and Σ are singularly equivalent, then the categories CM(Λ) and CM(Σ)
are triangle equivalent. If the algebras are not only singularly equivalent, but singularly 
equivalent of Morita type (with level), then there are tensor functors N⊗Λ− and M⊗Σ−
that induce equivalences between the singularity categories Dsg(Λ) and Dsg(Σ). What we 
aim to prove now is that these tensor functors also induce equivalences between the stable 
categories CM(Λ) and CM(Σ) of maximal Cohen–Macaulay modules. We first show that 
these functors preserve the property of being a maximal Cohen–Macaulay module.

Lemma 3.6. Let ΛMΣ and ΣNΛ be bimodules which induce a singular equivalence of 
Morita type with level between two finite-dimensional Gorenstein k-algebras Λ and Σ. 
Then the functors

N ⊗Λ − : mod Λ → modΣ and M ⊗Σ − : mod Σ → modΛ

send maximal Cohen–Macaulay modules to maximal Cohen–Macaulay modules.

Proof. Let n = max{idΛ Λ, idΣ Σ} (this is finite since the algebras Λ and Σ are Goren-
stein). Let C be a maximal Cohen–Macaulay module over Λ. Then by Lemma 3.4, there 
is a Λ-module A such that C is an n-th syzygy of A. By Lemma 2.7, the Σ-module 
N ⊗Λ C is an n-th syzygy of N ⊗Λ A, and therefore by Lemma 3.4 it is a maximal 
Cohen–Macaulay module. �

Finally, we are ready to prove the main result of this section.

Proposition 3.7. Let ΛMΣ and ΣNΛ be bimodules which induce a singular equivalence of 
Morita type with level between two finite-dimensional Gorenstein k-algebras Λ and Σ. 
Then the functors

N ⊗Λ − : CM(Λ) → CM(Σ) and M ⊗Σ − : CM(Σ) → CM(Λ)

are equivalences of triangulated categories.

Proof. We first check that N ⊗Λ − actually gives a functor from CM(Λ) to CM(Σ). We 
know from Lemma 3.6 that it gives a functor from CM(Λ) to CM(Σ). By Lemma 2.7, we 
see that if f is a map of Λ-modules that factors through a projective module, then the 
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map N ⊗Λ f also factors through a projective module. Thus N ⊗Λ − gives a well-defined 
functor from CM(Λ) to CM(Σ).

Consider the diagram

CM(Λ)
N⊗Λ−

�

CM(Σ)

�

Dsg(Λ)
N⊗Λ−

� Dsg(Σ)

of categories and functors, where the vertical functors are the equivalences from Theo-
rem 3.5, and the functor N⊗Λ− in the bottom row is an equivalence by Proposition 2.5. 
The diagram commutes, and therefore the functor N ⊗Λ − in the top row is also an 
equivalence. �
4. Rotations of extensions

If U and V are modules over an algebra Λ, then dimension shift gives isomorphisms 
ExtnΛ(U, V ) ∼= Extn−i

Λ (Ωi
Λ(U), V ) for integers n and i with n > i > 0. If the algebra Λ

is Gorenstein, then all projective Λ-modules have finite injective dimension. This means 
that for sufficiently large n (more precisely, n > idΛ Λ), we can use projective resolutions 
to do dimension shifting in the second argument of Ext as well. That is, we have iso-
morphisms ExtnΛ(U, V ) ∼= Extn+i

Λ (U, Ωi
Λ(V )). By dimension shifting in both arguments, 

we then get isomorphisms

ExtnΛ(U, V ) ∼= ExtnΛ(Ωi
Λ(U),Ωi

Λ(V )),

where we stay in the same degree n, but replace both arguments to Ext by their i-th 
syzygies. In this section, we describe such isomorphisms, which we call rotation maps, 
and which are going to be used several times in later sections.

For defining the rotation maps, we do not need to assume that we are working over a 
Gorenstein algebra. This however means that the maps are not necessarily isomorphisms. 
We first define the maps in a general setting, and then in Lemma 4.2 describe the 
conditions we need for ensuring that they are isomorphisms.

Definition 4.1. Let Λ be a finite-dimensional k-algebra, and let U and V be finitely 
generated Λ-modules. Choose projective resolutions π : · · · → P1 → P0 → U → 0 and 
τ : · · · → Q1 → Q0 → V → 0 of the modules U and V . Let i and n be integers with 
i < n, and let

πi : 0 → Ωi
Λ(U) → Pi−1 → · · · → P0 → U → 0,

τi : 0 → Ωi
Λ(V ) → Qi−1 → · · · → Q0 → V → 0
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be truncations of the chosen projective resolutions. We define the i-th rotation of the 
extension group ExtnΛ(U, V ) with respect to the resolutions π and τ to be the map

ρi : ExtnΛ(U, V )

(τi)∗

ExtnΛ(Ωi
Λ(U),Ωi

Λ(V ))

Extn+i
Λ (U,Ωi

Λ(V ))
(π∗

i )−1

given by ρi = (π∗
i )−1(τi)∗.

Consider the situation in the above definition. If the algebra Λ is Gorenstein and 
n > idΛ Λ, then for each of the projective modules Qj , we have idΛ Qj ≤ idΛ Λ < n, and 
thus the map (τi)∗ is an isomorphism. This gives the following result.

Lemma 4.2. Let Λ be a finite-dimensional Gorenstein k-algebra, and let U and V be 
finitely generated Λ-modules. For every n > idΛ Λ and every i < n, the i-th rotation

ρi : ExtnΛ(U, V ) → ExtnΛ(Ωi
Λ(U),Ωi

Λ(V ))

(with respect to any projective resolutions of U and V ) is an isomorphism.

If we look at a rotation map of an extension group ExtnΛ(U, U) with the same module 
in both arguments, then the action of the map can be viewed as a concrete “rotation” 
of the extensions, as we will now see. Let π : · · · → P1 → P0 → U → 0 be a projective 
resolution of U , and consider the i-th rotation map

ρi : ExtnΛ(U,U) → ExtnΛ(Ωi
Λ(U),Ωi

Λ(U))

with respect to the resolution π. Every element of ExtnΛ(U, U) can be represented by an 
exact sequence of the form

0 U E Pn−2 · · · Pi Pi−1 · · · P0 U 0

Ωi
Λ(U)

Applying the map ρi to the element represented by this sequence produces the element 
represented by the following sequence:

0 Ωi
Λ(U) Pi−1 · · · P0 E Pn−2 · · · Pi Ωi

Λ(U) 0

U

We have thus rotated the sequence by removing an i-fold sequence from the right side 
and moving it to the left side.
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5. Isomorphisms between extension groups

In this section, we show that if Λ and Σ are Gorenstein algebras which are singularly 
equivalent of Morita type with level, then we have isomorphisms between extension 
groups over Λ and extension groups over Σ in sufficiently high degrees. More precisely, 
if ΛMΣ and ΣNΛ are bimodules which induce a singular equivalence of Morita type with 
level between the algebras Λ and Σ, then the functor N ⊗Λ − induces an isomorphism

ExtnΛ(A,B) ∼= ExtnΣ(N ⊗Λ A,N ⊗Λ B) (5.1)

for every n ≥ max{idΛ Λ, idΣ Σ} and for any Λ-modules A and B. This is stated as 
Proposition 5.4.

To prove this result, we use maximal Cohen–Macaulay modules and the results from 
Section 3, as well as the rotation maps from Section 4. By Proposition 3.7, we know that 
in the setting described above, we have isomorphisms

HomΛ(C,C ′) ∼= HomΣ(N ⊗Λ C,N ⊗Λ C ′) (5.2)

between stable Hom groups over Λ and Σ for maximal Cohen–Macaulay Λ-modules C
and C ′. Lemma 5.2 below relates stable Hom groups to extension groups. Using this and 
isomorphism (5.2), we show (Proposition 5.3) that there are isomorphisms

ExtnΛ(C,C ′) ∼= ExtnΣ(N ⊗Λ C,N ⊗Λ C ′)

for all maximal Cohen–Macaulay modules C and C ′ and every positive integer n. Finally, 
to arrive at isomorphism (5.1) for any Λ-modules A and B in Proposition 5.4, we use 
Proposition 5.3 together with two facts about Gorenstein algebras from earlier sections: 
all syzygies of sufficiently high degree are maximal Cohen–Macaulay modules, and by 
using a rotation map, we can replace the modules A and B by their syzygies.

We begin this section by showing, in the following two lemmas, how extension groups 
between maximal Cohen–Macaulay modules can be described as stable Hom groups. 
If C and C ′ are maximal Cohen–Macaulay modules over an algebra Λ, then we get 
(Lemma 5.2) an isomorphism

ExtnΛ(C,C ′) ∼= HomΛ(Kn, C
′)

for every positive integer n, with Kn an n-th syzygy of C.
In fact, it turns out that the conditions on C and C ′ can be relaxed somewhat. Recall 

that C being a maximal Cohen–Macaulay module means that ExtiΛ(C, Λ) = 0 for every 
positive integer i. To get the above isomorphism in degree n, it is sufficient to assume 
that ExtnΛ(C, Λ) = 0, and we do not need to put any assumptions on the module C ′. We 
use this weaker assumption in the lemmas.
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The following notation is used in the two lemmas. Given two modules A and B
over an algebra Λ, we write PΛ(A, B) ⊆ HomΛ(A, B) for the subspace of HomΛ(A, B)
consisting of morphisms that factor through a projective module; then the stable Hom 
group is HomΛ(A, B) = HomΛ(A, B)/PΛ(A, B).

In the first lemma, we consider the special case n = 1.

Lemma 5.1. Let Λ be a finite-dimensional k-algebra, and let A and C be finitely generated 
Λ-modules such that Ext1Λ(C, Λ) = 0. Let

η : 0 → K
α−→ P

β−→ C → 0

be a short exact sequence of Λ-modules with P projective. Then the sequence

0 → PΛ(K,A) ↪→ HomΛ(K,A) η∗

−−→ Ext1Λ(C,A) → 0

of k-vector spaces is exact.

Proof. By applying the functor HomΛ(−, A) to the sequence η, we get the exact sequence

0 → HomΛ(C,A) β∗

−−→ HomΛ(P,A) α∗
−−→ HomΛ(K,A) η∗

−−→ Ext1Λ(C,A) → 0.

From this we obtain the short exact sequence

0 → imα∗ ↪→ HomΛ(K,A) η∗

−−→ Ext1Λ(C,A) → 0.

Now we only need to show that imα∗ = PΛ(K, A). If a homomorphism f : K → A

lies in imα∗, then it factors through the map α : K → P , and since the module P is 
projective, this means that f lies in PΛ(K, A). We thus have imα∗ ⊆ PΛ(K, A).

For the opposite inclusion, let Q be a projective Λ-module. Since we have assumed 
that Ext1Λ(C, Λ) = 0, we also have Ext1Λ(C, Q) = 0. Then from the long exact sequence 
obtained by applying the functor HomΛ(−, Q) to the short exact sequence η, we see that 
every homomorphism g : K → Q factors through the homomorphism α : K → P . Thus 
every homomorphism which starts in K and factors through some projective module, 
also factors through α, and we get PΛ(K, A) ⊆ imα∗. �

Now we continue to extension groups in arbitrary degree by using the above lemma 
and dimension shifting.

Lemma 5.2. Let Λ be a finite-dimensional k-algebra, let A and C be finitely generated 
Λ-modules, and let n be a positive integer. Assume that ExtnΛ(C, Λ) = 0. Let

πn : 0 → Kn → Pn−1 → Pn−2 → · · · → P1 → P0 → C → 0
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be the beginning of a projective resolution of C with Kn as the n-th syzygy. Then the 
sequence

0 → PΛ(Kn, A) ↪→ HomΛ(Kn, A) π∗
n−−→ ExtnΛ(C,A) → 0

of k-vector spaces is exact, and thus the map π∗
n induces an isomorphism

π∗
n : HomΛ(Kn, A)

∼=−→ ExtnΛ(C,A).

Proof. Decompose the sequence πn into two exact sequences

η : 0 → Kn → Pn−1 → Kn−1 → 0

and πn−1 : 0 → Kn−1 → Pn−2 → Pn−3 → · · · → P1 → P0 → C → 0,

such that πn = η ◦ πn−1. By dimension shifting, we have an isomorphism

π∗
n−1 : Ext1Λ(Kn−1, A)

∼=−→ ExtnΛ(C,A).

We observe that π∗
n = π∗

n−1 ◦ η∗, so the following diagram is commutative.

0 PΛ(Kn, A) HomΛ(Kn, A)
η∗

Ext1Λ(Kn−1, A)

π∗
n−1 ∼=

0

0 PΛ(Kn, A) HomΛ(Kn, A)
π∗
n ExtnΛ(C,A) 0

By Lemma 5.1, the top row of this diagram is exact. Since all the vertical maps are 
isomorphisms, the bottom row is also exact. �

We now show that we get the isomorphisms we want between extension groups in the 
special case where the involved modules are maximal Cohen–Macaulay modules. In this 
case, we get isomorphisms between extension groups in all positive degrees, while in the 
general case which is considered afterwards (Proposition 5.4), we only get isomorphisms 
in almost all degrees.

Proposition 5.3. Let Λ and Σ be finite-dimensional Gorenstein algebras which are sin-
gularly equivalent of Morita type with level, and let ΛMΣ and ΣNΛ be bimodules which 
induce a singular equivalence of Morita type with level between Λ and Σ. Let C and C ′ be 
maximal Cohen–Macaulay modules over Λ. Then for every positive integer n, the map

ExtnΛ(C,C ′) N⊗Λ−−−−−−→ ExtnΣ(N ⊗Λ C,N ⊗Λ C ′)

is an isomorphism.
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Proof. The idea is to translate the two Ext groups to stable Hom groups by using 
Lemma 5.2, and then use the equivalence of stable categories of Cohen–Macaulay mod-
ules from Proposition 3.7.

Let

πn : 0 → Kn → Pn−1 → · · · → P0 → C → 0

be the beginning of a projective resolution of C with Kn as n-th syzygy. By Lemma 2.7, 
the sequence N ⊗Λ πn, which is obtained by applying the functor N ⊗Λ − to all objects 
and maps in πn, is the beginning of a projective resolution of the Σ-module N ⊗Λ C, 
with N ⊗Λ Kn as the n-th syzygy.

Since C and C ′ are maximal Cohen–Macaulay modules, we deduce that N⊗ΛC, N⊗Λ
C ′, Kn and N ⊗Λ Kn are also maximal Cohen–Macaulay modules, by using Lemma 3.4
and Lemma 3.6. We form the following commutative diagram of k-vector spaces.

HomΛ(Kn, C
′)

N⊗Λ−
∼=

π∗
n

∼=

HomΣ(N ⊗Λ Kn, N ⊗Λ C ′)

(N⊗Λπn)∗∼=

ExtnΛ(C,C ′)
N⊗Λ−

ExtnΣ(N ⊗Λ C,N ⊗Λ C ′)

The vertical maps are isomorphisms by Lemma 5.2, and the map in the top row is 
an isomorphism by Proposition 3.7. Therefore the map in the bottom row is also an 
isomorphism, and this concludes the proof. �

Finally, we come to the main result of this section, where we show that if two Goren-
stein algebras Λ and Σ are singularly equivalent of Morita type with level, then for every 
extension group (of sufficiently high degree) over Λ, there is an isomorphic extension 
group over Σ.

Proposition 5.4. Let Λ and Σ be finite-dimensional Gorenstein k-algebras which are sin-
gularly equivalent of Morita type with level, and let ΛMΣ and ΣNΛ be bimodules which 
induce a singular equivalence of Morita type with level between Λ and Σ. Let

d = max{idΛ Λ, idΣ Σ}

be the maximum of the injective dimensions of Λ and Σ. Then for every integer n > d, 
we have k-vector space isomorphisms

ExtnΛ(A,B)
∼=−−−−−→

N⊗Λ−
ExtnΣ(N ⊗Λ A,N ⊗Λ B) for Λ-modules A and B,

ExtnΣ(A′, B′)
∼=−−−−−→

M⊗Σ−
ExtnΛ(M ⊗Σ A′,M ⊗Σ B′) for Σ-modules A′ and B′.
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Proof. Let A and B be Λ-modules, and let

π : · · · → P1 → P0 → A → 0 and τ : · · · → Q1 → Q0 → B → 0

be projective resolutions. Then by Lemma 2.7, the sequences N ⊗Λ π and N ⊗Λ τ are 
projective resolutions of the Σ-modules N ⊗Λ A and N ⊗Λ B. We form the following 
commutative diagram, where ρd is the d-th rotation map with respect to the resolutions 
π and τ , and ρ′d the d-th rotation map with respect to the resolutions N⊗Λπ and N⊗Λτ . 
These maps are isomorphisms by Lemma 4.2.

ExtnΛ(A,B)
N⊗Λ−

ρd ∼=

ExtnΣ(N ⊗Λ A,N ⊗Λ B)

ρ′
d

∼=

ExtnΛ(Ωd
Λ(A),Ωd

Λ(B))
N⊗Λ−

∼=
ExtnΣ(N ⊗Λ Ωd

Λ(A), N ⊗Λ Ωd
Λ(B))

By Lemma 3.4, the syzygies Ωd
Λ(A) and Ωd

Λ(B) are maximal Cohen–Macaulay modules, 
and then by Proposition 5.3, the map N ⊗Λ − in the bottom row is an isomorphism. It 
follows that the map N ⊗Λ − in the top row is an isomorphism. This gives the first of 
the two isomorphisms we want. The second isomorphism follows by symmetry. �
6. Hochschild cohomology rings

In this section, we define the Hochschild cohomology ring HH∗(Λ) of an algebra Λ, 
and we show that if two Gorenstein k-algebras are singularly equivalent of Morita type 
with level, then their Hochschild cohomology rings are isomorphic in almost all degrees.

We first introduce some notation for rings of extensions. If Λ is a k-algebra and A a 
Λ-module, then we define

E∗
Λ(A) = Ext∗Λ(A,A) =

⊕
n≥0

ExtnΛ(A,A).

That is, E∗
Λ(A) denotes the graded k-algebra which is the direct sum of all extension 

groups of A by itself, with multiplication given by Yoneda product.
We are interested in the “asymptotic” behaviour of such graded rings of extensions; 

that is, we want to find isomorphisms which hold in all degrees above some finite bound. 
Given an extension ring E∗

Λ(A), we therefore consider the graded ideals of the form

E>d
Λ (A) =

⊕
n>d

ExtnΛ(A,A)

for some integer d. Such an ideal is a graded nonunital k-algebra. When we want to 
say that two extension rings E∗

Λ(A) and E∗
Σ(B) (for k-algebras Λ and Σ with modules 
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ΛA and ΣB) are the same in almost all degrees, the appropriate kind of isomorphism 
to look for, in order to preserve all the relevant structure, is an isomorphism of graded 
nonunital k-algebras between E>d

Λ (A) and E>d
Σ (B), for some integer d. This section is 

mainly concerned with finding isomorphisms of this type.
We define the Hochschild cohomology of an algebra as the extension ring of the algebra 

over its enveloping algebra.

Definition 6.1. Let Λ be a finite-dimensional k-algebra. The Hochschild cohomology ring
of Λ is the extension ring HH∗(Λ) = E∗

Λe(Λ).

Hochschild cohomology was first defined by G. Hochschild in [11]. The original defini-
tion uses the bar resolution. We follow the definition in [5], where Hochschild cohomology 
is given by extension groups. Since we have assumed that k is a field, this definition is 
equivalent to the original one. More generally, the two definitions are equivalent whenever 
Λ is projective over k (see [5, IX, §6]).

We now turn to the problem of showing that singular equivalences of Morita type 
with level between Gorenstein algebras preserve Hochschild cohomology in almost all 
degrees. We need the following diagram lemma, known as the “3 × 3 splice”.

Lemma 6.2. (See [14, Lemma VIII.3.1].) Let R be a ring, and let

η′ : η : η′′ :

ηA : A′ A A′′

ηB : B′ B B′′

ηC : C ′ C C ′′

be a commutative diagram of R-modules, where the three rows ηA, ηB and ηC , as well 
as the three columns η′, η and η′′, are short exact sequences. Then the elements in 
the extension group Ext1R(C ′′, A′) represented by the composition ηA ◦ η′′ and by the 
composition η′ ◦ ηC are the additive inverses of each other:

[ηA ◦ η′′] = −[η′ ◦ ηC ].

If two bimodules ΛMΣ and ΣNΛ induce a singular equivalence of Morita type with 
level between algebras Λ and Σ, then the Λe-module M ⊗Σ N is a syzygy of Λ. In the 
following lemma, we use Lemma 6.2 to show that under certain assumptions, the tensor 
functors (M ⊗Σ N) ⊗Λ − and − ⊗Λ (M ⊗Σ N) induce isomorphisms of Ext groups in 
almost all degrees. This is afterwards used in the proof of Theorem 6.4.
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Lemma 6.3. Let Λ be a finite-dimensional Gorenstein k-algebra, and let U be a Λe-module 
which is projective as a left Λ-module and as a right Λ-module. Let d ≥ 2 · idΛ Λ. Let K
be an i-th syzygy of Λ as Λe-module, for some i < d. Then the maps

K ⊗Λ − : E>d
Λe (U) → E>d

Λe (K ⊗Λ U) and −⊗ΛK : E>d
Λe (U) → E>d

Λe (U ⊗Λ K)

are isomorphisms of graded nonunital k-algebras.

Proof. We show that the map K⊗Λ− is an isomorphism; the proof for − ⊗ΛK is similar. 
Let

π : · · · → P1 → P0 → Λ → 0

be a projective resolution of Λ as Λe-module, with K as the i-th syzygy, and let

σ : · · · → P1 ⊗Λ U → P0 ⊗Λ U → U → 0

be the result of applying the functor − ⊗Λ U to the sequence π and identifying Λ ⊗Λ U

with U in the last term. This sequence is exact since U is projective as left module, and 
every Pj ⊗Λ U is projective since U is projective as right module. Thus, σ is a projective 
resolution of U , and K ⊗Λ U is an i-th syzygy of U .

By Lemma 3.2, the enveloping algebra Λe of Λ is Gorenstein, and we have idΛe Λe ≤
2 · idΛ Λ ≤ d. Then by Lemma 4.2, the i-th rotation map

ρi : E>d
Λe (U) → E>d

Λe (K ⊗Λ U)

(with respect to the resolution σ) is an isomorphism of graded nonunital k-algebras. We 
show that the map K⊗Λ − is an isomorphism by showing that it is equal to the map ρi, 
up to sign. More precisely, we show that for any homogeneous element [η] ∈ E>d

Λe (U) of 
degree n > d, we have

K ⊗Λ [η] = (−1)in · ρi([η]).

Let [η] ∈ E>d
Λe (U) be a homogeneous element of degree n > d represented by an exact 

sequence

η : 0 → U → En → · · · → E1 → U → 0.

We can assume without loss of generality that all the modules Ej are projective as left 
Λ-modules and as right Λ-modules. Let

πi : 0 → K → Pi−1 → · · · → P0 → Λ → 0

σi : 0 → K ⊗Λ U → Pi−1 ⊗Λ U → · · · → P0 ⊗Λ U → U → 0
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0 0 0 0

0 K ⊗Λ U K ⊗Λ En · · · K ⊗Λ E1 K ⊗Λ U 0

0 Pi−1 ⊗Λ U Pi−1 ⊗Λ En · · · Pi−1 ⊗Λ E1 Pi−1 ⊗Λ U 0

...
...

. . .
...

...

0 P0 ⊗Λ U P0 ⊗Λ En · · · P0 ⊗Λ E1 P0 ⊗Λ U 0

0 U En · · · E1 U 0

0 0 0 0

Fig. 1. Commutative diagram used in the proof of Lemma 6.3.

be truncations of the projective resolutions π and σ. We construct the commutative 
diagram in Fig. 1 by tensoring πi with η over Λ and identifying Λ ⊗Λ− with the identity 
in the last row. The rows and columns of the diagram are exact sequences.

The bottom row in the diagram is the sequence η, the top row is the sequence K⊗Λ η, 
and the first and the last column are both equal to the sequence σi. By using Lemma 6.2
repeatedly, we get the equality

[(K ⊗Λ η) ◦ σi] = (−1)in[σi ◦ η]

in the extension group Extn+i
Λe (U, K ⊗Λ U). By the definition of the rotation map ρi (see 

Definition 4.1), we then get

K ⊗Λ [η] = [K ⊗Λ η] = (−1)in · ρi([η]).

Since the map ρi is an isomorphism, this means that the map K⊗Λ− is an isomorphism 
as well. �

We now show that a singular equivalence of Morita type with level between Gorenstein 
k-algebras preserves the Hochschild cohomology in almost all degrees. A weaker form 
of this result, stating that a singular equivalence of Morita type preserves Hochschild 
cohomology groups in almost all degrees (but not necessarily the ring structure of the 
cohomology), appears in [20, Remark 4.3].

Theorem 6.4. Let Λ and Σ be finite-dimensional Gorenstein k-algebras which are singu-
larly equivalent of Morita type with level. Then we have the following.
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1. The Hochschild cohomology rings HH∗(Λ) and HH∗(Σ) are isomorphic in almost all 
degrees, with isomorphisms that respect the ring structure.

2. Let ΛMΣ and ΣNΛ be bimodules which induce a singular equivalence of Morita type 
with level l ≥ 1 (see Remark 6.5) between Λ and Σ, and let d = max{l, 2 · idΛ Λ, 2 ·
idΣ Σ}. Then there are isomorphisms

HH>d(Λ)

N⊗Λ−⊗ΛM ∼=

ρl

∼=
E>d
Λe (M ⊗Σ Σ ⊗Σ N)

E>d
Σe (N ⊗Λ Λ ⊗Λ M) HH>d(Σ)

M⊗Σ−⊗ΣN∼=

ρ′
l

∼=

of graded nonunital k-algebras, where the maps ρl and ρ′l are rotation maps.

Proof. We show part (2). Part (1) then follows directly.
Since M and N induce a singular equivalence of Morita type with level l, the module 

M ⊗Σ Σ ⊗Σ N ∼= M ⊗Σ N is an l-th syzygy of Λ as a Λe-module. Let

ρl : HH>d(Λ) → E>d
Λe (M ⊗Σ Σ ⊗Σ N)

be the l-th rotation map with respect to a projective resolution of Λ with M ⊗Σ Σ ⊗Σ N

as the l-th syzygy. By Lemma 3.2, the enveloping algebras Λe and Σe are Gorenstein 
algebras, and we have idΛe Λe ≤ 2 · idΛ Λ and idΣe Σe ≤ 2 · idΣ Σ. By Lemma 4.2, the 
rotation map ρl is an isomorphism, since

max{l, idΛe Λe, idΣe Σe} ≤ max{l, 2 · idΛ Λ, 2 · idΣ Σ} = d.

We can similarly define the rotation map ρ′l and show that it is an isomorphism.
We now show that the maps N ⊗Λ − ⊗Λ M and M ⊗Σ − ⊗Σ N are isomorphisms. For 

any n > d, we can make the following diagram:

HHn(Λ)

N⊗Λ−⊗ΛM

ρl

∼=
En
Λe(M ⊗Σ Σ ⊗Σ N)

En
Σe(N ⊗Λ Λ ⊗Λ M) HHn(Σ)

M⊗Σ−⊗ΣN

ρ′
l

∼=

(6.1)

Consider the map N⊗Λ− ⊗ΛM in this diagram. We construct the following commutative 
diagram with this map at the top:
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HHn(Λ)
N⊗Λ−⊗ΛM

(M⊗ΣN)⊗Λ− ∼=

En
Σe(N ⊗Λ Λ ⊗Λ M)

M⊗Σ−⊗ΣN

En
Λe(M ⊗Σ N ⊗Λ Λ)

−⊗Λ(M⊗ΣN)

∼= En
Λe(M ⊗Σ N ⊗Λ Λ ⊗Λ M ⊗Σ N)

By Lemma 6.3, the maps (M ⊗Σ N) ⊗Λ − and − ⊗Λ (M ⊗Σ N) in this diagram are 
isomorphisms, since M ⊗Σ N is an l-th syzygy of Λ as Λe-module. Therefore, the map 
N ⊗Λ − ⊗Λ M in diagram (6.1) is a monomorphism. By a similar argument, the map 
M⊗Σ− ⊗ΣN in diagram (6.1) is a monomorphism. Since HHn(Λ) and HHn(Σ) are finite-
dimensional over k, it follows that these monomorphisms must be isomorphisms. �
Remark 6.5. In Theorem 6.4 (2), we assumed that the level l is positive. The reason for 
this is that if we had allowed l = 0, then we could not have made the rotation maps 
ρl and ρ′l. This assumption does not strongly affect the applicability of the theorem, 
since any equivalence with level 0 implies the existence of an equivalence with level 1. In 
general, if two bimodules ΛMΣ and ΣNΛ induce a singular equivalence of Morita type 
with level l between algebras Λ and Σ, then the bimodules Ω1

Λ⊗kΣop(M) and N induce 
a singular equivalence of level l + 1 between Λ and Σ.

7. Finite generation

Support varieties for modules over artin algebras were defined by Snashall and Solberg 
in [18], using the Hochschild cohomology ring. In [9], Erdmann, Holloway, Snashall, Sol-
berg and Taillefer defined two finite generation conditions Fg1 and Fg2 for the Hochschild 
cohomology ring of an algebra. These conditions ensure that the support varieties for 
modules over the given algebra have good properties. In [10], these conditions were re-
formulated as a new condition called (Fg) which is equivalent to the combination of Fg1
and Fg2. We use the definition from [10].

In this section, we describe the finite generation condition (Fg). We then show the 
main result of this paper (Theorem 7.4): A singular equivalence of Morita type with level 
between finite-dimensional Gorenstein k-algebras preserves the (Fg) condition.

In order to define the (Fg) condition, we first describe a way to view extension rings 
over an algebra as modules over the Hochschild cohomology ring. Let Λ be a finite-
dimensional k-algebra and A a Λ-module. We define a graded ring homomorphism

ϕA : HH∗(Λ) → E∗
Λ(A)

as follows. A homogeneous element of HH∗(Λ) can be represented by an exact sequence

η : 0 → Λ → E → Pn → · · · → P0 → Λ → 0
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of Λe-modules, where each Pi is projective. Viewed as a sequence of right Λ-modules, 
this sequence splits. The complex

η ⊗Λ A : 0 → Λ ⊗Λ A → E ⊗Λ A → Pn ⊗Λ A → · · · → P0 ⊗Λ A → Λ ⊗Λ A → 0

is therefore an exact sequence. By composition with the isomorphism μA : Λ ⊗Λ A → A

and its inverse, we get an extension

μA ◦ (η ⊗Λ A) ◦ μ−1
A : 0 → A → E ⊗Λ A → Pn ⊗Λ A → · · · → P0 ⊗Λ A → A → 0

of A by itself, and thus a representative of a homogeneous element in the extension ring 
E∗
Λ(A). The map ϕA is defined by the action

ϕA([η]) = [μA ◦ (η ⊗Λ A) ◦ μ−1
A ]

on homogeneous elements. By the map ϕA, the graded ring E∗
Λ(A) becomes a graded 

HH∗(Λ)-module.

Definition 7.1. Let Λ be a finite-dimensional k-algebra. We say that Λ satisfies the (Fg)
condition if the following holds.

1. The ring HH∗(Λ) is Noetherian.
2. The HH∗(Λ)-module E∗

Λ(Λ/ radΛ) is finitely generated. (The module structure is 
given by the map ϕΛ/ rad Λ, as described above.)

By [17, Proposition 5.7], the (Fg) condition as defined here is equivalent to the com-
bination of the conditions Fg1 and Fg2 defined in [9].

The following result describes why Gorenstein algebras are important in connection 
with the (Fg) condition.

Theorem 7.2. (See [9, Theorem 1.5 (a)].) If an algebra satisfies the (Fg) condition, then 
it is a Gorenstein algebra.

Our aim is to show that if two Gorenstein k-algebras are singularly equivalent of 
Morita type with level, then the (Fg) condition holds for one of the algebras if and only 
if it holds for the other. We use the following result, which describes a relation between 
two algebras ensuring that (Fg) for one of the algebras implies (Fg) for the other.

Proposition 7.3. Let Λ and Σ be finite-dimensional k-algebras. Let A = Λ/ radΛ, and 
assume that we have a commutative diagram
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HH>d(Λ)
ϕA

f∼=

E>d
Λ (A)

g ∼=

HH>d(Σ)
ϕB E>d

Σ (B)

(7.1)

of graded nonunital k-algebras, for some Σ-module B and some positive integer d, where 
the vertical maps f and g are isomorphisms. Assume that Σ satisfies the (Fg) condition. 
Then Λ also satisfies (Fg).

Proof. This follows from Proposition 6.3 in [16]. �
We are now ready to prove the main result of this paper.

Theorem 7.4. Let Λ and Σ be finite-dimensional Gorenstein algebras over the field k. 
Assume that Λ and Σ are singularly equivalent of Morita type with level. Then Λ satisfies
(Fg) if and only if Σ satisfies (Fg).

Proof. We show that if Σ satisfies (Fg), then Λ satisfies (Fg). The opposite implication 
then follows by symmetry. Let ΛMΣ and ΣNΛ be bimodules which induce a singular 
equivalence of Morita type with level l ≥ 1 (see Remark 6.5) between Λ and Σ. Let 
d = max{l, 2 · idΛ Λ, 2 · idΣ Σ}. Let A be the Λ-module Λ/ radΛ.

The Λe-module M ⊗Σ Σ ⊗Σ N ∼= M ⊗Σ N is an l-th syzygy of Λ as Λe-module. Let π
be a projective resolution of Λ with M ⊗Σ Σ ⊗Σ N as the l-th syzygy. Then the complex 
π⊗Λ A is a projective resolution of Λ ⊗Λ A, with M ⊗Σ Σ ⊗Σ N ⊗Λ A as the l-th syzygy. 
We construct the commutative diagram in Fig. 2, where the maps ρl and ρ′l are the 
l-th rotation maps with respect to the resolutions π and π ⊗Λ A, respectively. These 
maps are isomorphisms by Lemma 4.2. The map M ⊗Σ − ⊗Σ N in the diagram is an 
isomorphism by Theorem 6.4, and the map M⊗Σ− is an isomorphism by Proposition 5.4. 
The isomorphisms f and g are defined to be the appropriate compositions of the other 
isomorphisms in the diagram. By Proposition 7.3, this diagram shows that if the algebra 
Σ satisfies (Fg), then Λ also satisfies (Fg). �

We now show that the assumption of both algebras being Gorenstein is necessary in 
the above theorem. Example 5.5 in [16] contains two singularly equivalent algebras where 
one algebra satisfies (Fg) and the other is not Gorenstein. We use the same algebras, 
and show that there exists a singular equivalence of Morita type with level between 
them.

Example 7.5. Let Λ = kQ/〈ρ〉 and Σ = kR/〈σ〉 be k-algebras given by the following 
quivers and relations:
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HH>d(Λ)
−⊗ΛA

ρl ∼=

ϕA

f ∼=

E>d
Λ (Λ ⊗Λ A)

∼=

ρ′
l

∼=

E>d
Λ (A)

g∼=E>d
Λe (M ⊗Σ Σ ⊗Σ N)

−⊗ΛA

E>d
Λ (M ⊗Σ Σ ⊗Σ N ⊗Λ A)

HH>d(Σ)

M⊗Σ−⊗ΣN ∼=

−⊗Σ(N⊗ΛA)

ϕN⊗ΛA

E>d
Σ (Σ ⊗Σ N ⊗Λ A)

∼=

M⊗Σ− ∼=

E>d
Σ (N ⊗Λ A)

Fig. 2. Commutative diagram used in the proof of Theorem 7.4.

Q : 1α
β

2 ρ = {α2, βα}

R : 3γ σ = {γ2}

The tensor algebra Λ ⊗k Σop has the following quiver and relations:

Q×Rop : 1 × 3op

α×3op

1×γop

β×3op

2 × 3op 2×γop

⎧⎪⎨
⎪⎩

(α × 3op)2, (β × 3op)(α × 3op),
(1 × γop)2, (2 × γop)2,

(α × 3op)(1 × γop) − (1 × γop)(α × 3op),
(β × 3op)(1 × γop) − (2 × γop)(β × 3op)

⎫⎪⎬
⎪⎭

The tensor algebra Σ ⊗k Λop has the following quiver and relations:

R×Qop : 3 × 1op3×αop

γ×1op

3 × 2op3×βop

γ×2op

⎧⎪⎨
⎪⎩

(3 × αop)2, (3 × αop)(3 × βop),
(γ × 1op)2, (γ × 2op)2,

(3 × αop)(γ × 1op) − (γ × 1op)(3 × αop),
(3 × βop)(γ × 2op) − (γ × 1op)(3 × βop)

⎫⎪⎬
⎪⎭

Let ΛMΣ and ΣNΛ be bimodules given by the following representations over Q × Rop

and R×Qop, respectively:

M : k2

( 0 0
1 0

)

( 0 0
1 0

)
( 0 0

1 0

)

k2
( 0 0

1 0

)

N : k2
( 0 0

1 0

)

( 0 0
1 0

)
0
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We show that the bimodules M and N induce a singular equivalence of Morita type with 
level 1 between the algebras Λ and Σ. We first check that these bimodules satisfy the 
first two conditions in Definition 2.4. Considering only the left or right structure of M
and N , we have the following four isomorphisms:

ΛM ∼= Λ NΛ ∼= e2Λ

ΣN ∼= Σ2 MΣ ∼= Σ

Thus the bimodules M and N are projective when viewed as one-sided (left or right) 
modules.

To check the last two conditions in Definition 2.4, we compute the tensor products 
M ⊗Σ N and N ⊗Λ M as representations of quivers, and check that they are syzy-
gies of Λ and Σ, respectively. The enveloping algebra Λe has the following quiver and 
relations:

Q×Qop : 1 × 1op

α×1op

1×αop

β×1op

1 × 2op

α×2op

1×βop

β×2op

2 × 1op2×αop 2 × 2op2×βop

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(α × 1op)2, (β × 1op)(α × 1op),
(α × 2op)2, (β × 2op)(α × 2op),
(1 × αop)2, (1 × αop)(1 × βop),
(2 × αop)2, (2 × αop)(2 × βop),

(α × 1op)(1 × αop) − (1 × αop)(α × 1op),
(α × 1op)(1 × βop) − (1 × βop)(α × 2op),
(β × 1op)(1 × αop) − (2 × αop)(β × 1op),
(β × 1op)(1 × βop) − (2 × βop)(β × 2op)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

The tensor product M ⊗ΣN is the Λe-module given by the following representation over 
Q ×Qop:

M ⊗Σ N : k2

( 0 0
1 0

)

( 0 0
1 0

)
( 0 0

1 0

)
0

k2
( 0 0

1 0

)
0

The algebra Λ considered as a Λe-module has the following representation over Q ×Qop:

Λ: k2

( 0 0
1 0

)

( 0 0
1 0

)

( 1 0 )

0

k0 k
1
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There is an exact sequence

0 → M ⊗Σ N → Λee1×1op ⊕ Λee2×2op → Λ → 0

of Λe-modules, and thus M ⊗Σ N is a first syzygy of Λ.
The enveloping algebra Σe has the following quiver and relations:

R×Rop :
3 × 3op

γ×3op

3×γop {
(γ × 3op)2, (3 × γop)2,

(γ × 3op)(3 × γop) − (3 × γop)(γ × 3op)

}

The algebra Σ considered as a Σe-module has the following representation over R×Rop:

Σ: k2
( 0 0

1 0

)

( 0 0
1 0

)

Its minimal projective resolution is

· · · → Σe → Σe → Σ → 0,

with Σ itself as every syzygy. The tensor product N ⊗Λ M is isomorphic to Σ as 
Σe-module; in particular, it is a first syzygy of Σ.

We have now shown that the bimodules M and N induce a singular equivalence of 
Morita type with level 1 between the algebras Λ and Σ. The algebra Σ satisfies the (Fg)
condition, but Λ does not, and is not even a Gorenstein algebra. This shows that the 
assumption of both algebras being Gorenstein can not be removed in Theorem 7.4.

For stable equivalences of Morita type (which are singular equivalences of Morita type 
with level 0), we can, under some conditions, remove the assumption of Gorensteinness.

Corollary 7.6. Let ΛMΣ and ΣNΛ be indecomposable bimodules that induce a stable equiv-
alence of Morita type between two finite-dimensional k-algebras Λ and Σ. Assume that 
Λ and Σ have no semisimple blocks and that Λ/ radΛ and Σ/ rad Σ are separable. Then 
Λ satisfies (Fg) if and only if Σ satisfies (Fg).

Proof. By [8, Corollary 3.1 (2)], the assumptions in the statement of the result imply that 
(M⊗Σ−, N⊗Λ−) and (N⊗Λ−, M⊗Σ−) are adjoint pairs. Then, by [13, Corollary 4.6], 
it follows that Λ is a Gorenstein algebra if and only if Σ is a Gorenstein algebra. The 
result now follows from Theorem 7.4. �
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