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Abstract

Dielectric elastomer actuators (DEAs) show promise for robotic and mechatronic applications. However, to date, these
actuators have experienced high rates of failure that have prevented their practical application. Here, large scale modes of
failure of DEAs and their performance limits are studied. The objective is to provide design guidelines and bound the per-
formance of DEAs that avoid failure. An idealized DEA is modeled and its failure is predicted as a function of film pre-
stretch used during actuator fabrication, actuation voltage, and stretch rate. Three failure modes are considered: pull-in,
dielectric strength, and material strength. Each failure mode is shown to dominate for different combinations of pre-stretch
and stretch rate. High stretch rates lead to dielectric strength failure while low stretch rates lead to pull-in failure. Material
strength failure is less important for most cases. Model predictions are validated experimentally using practical DEAs
operating under load. This study suggests that DEAs cannot be operated reliably under load for long periods of time
or low stretch rates due to pull-in failure limitations. To be reliable, DEAs must be used for short periods of time with
high stretch rates.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Dielectric elastomer actuators (DEAs) represent a promising alternative to existing large displacement actu-
ators for use in mechatronic devices such as DC motors and pneumatic or hydraulic cylinders. They are sim-
ple, potentially low cost, and lightweight, see Kornbluh et al. (1995), Pelrine et al. (1998), Kornbluh et al.
(1999), Wingert (2002), Wingert et al. (2002a,b). DEAs consist of an elastomeric film (thickness � 100 lm)
coated on both sides with compliant electrodes, see Fig. 1. Maxwell stresses are generated in the film when
a differential voltage is applied across the two compliant electrodes. The resulting film thickness reduction
causes the film to expand in area. The film is kept in tension (to prevent buckling) by pre-stretching it. The
tensile loading due to the initial pre-stretching of the film plays a fundamental role in the actuator design
by significantly affecting the film properties.
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Fig. 1. DEA operating principle. Adapted from Wingert (2002).
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A number of different DEA designs have been implemented in the past decade, see for example: Kornbluh
et al. (1995), Pelrine et al. (1998), Wingert et al. (2002b), Pei et al. (2003), Vogan et al. (2004) and Plante et al.
(2005). Some of these proof-of-concept actuators have shown extensions up to three times their initial lengths,
acceptable efficiencies and specific energy densities. However, our experimental work has shown that actuator
life is a serious concern. In order for this technology to be practical, dielectric elastomer actuation needs to be
robust, reliable, and long lived. To date, little research has addressed these issues. The objective of this paper is
to understand the nature of DEA failure with respect to their working conditions and to bound the perfor-
mance in order to avoid failure.

1.1. Background

The first physical models of DEAs developed by Kornbluh et al. (1995) and Pelrine et al. (1998) suggested
that the effect of the Maxwell stresses can be lumped into an equivalent Maxwell pressure, P, given by:
P ¼ �ede0

V
t

� �2

ð1Þ
where e0 is the permittivity of free space (8.85 · 10�12 F/m), ed is the material dielectric constant, V is the volt-
age applied across the electrodes, and t is the thickness of the actuated film. The minus sign indicates that the
equivalent pressure is compressive.

Eq. (1) is valid for uniform electrical charge distribution on infinitely large electrodes and uniform film
thickness. Kofod and Sommer-Larsen (2005) experimentally verified the validity of Eq. (1) for DEAs. The
simplicity and accuracy of Eq. (1) makes it the generally accepted electromechanical coupling model for
DEAs. It should be noted that Eq. (1) represents only an approximation of the real film loading. McMeeking
and Landis (2005) have addressed some of the details of the complete electromechanical coupling.

Early failure analysis done by Pelrine et al. (1998), Kornbluh et al. (1999), and Sommer-Larsen et al. (2001)
used linear (Hookean) stress/strain relationships to investigate a failure mode known as pull-in failure. A pull-
in failure occurs when the film thickness falls below a certain threshold and the equivalent Maxwell pressure
becomes always greater than the compressive stress of the elastomer film. This positive feedback leads to an
unstable compression of the elastomer material with catastrophic failure. In these studies, the one-dimensional
models with linear stress/strain relationships predicted pull-in threshold values of about half of the extensions
reported in the literature, see for example Pei et al. (2003) and Plante et al. (2005). Hence, linear models are
inadequate to deal with the significant nonlinear behavior of DEAs (large deformation and nonlinear
elasticity).

Analytical methods that account for large deformation and nonlinear elastic properties have been used
widely in the field of continuum mechanics, see for example Ogden (1984), Anand (1996), Holzapfel (2000),
and Anand and Gurtin (2003). Researchers including Pelrine et al. (2000a), Kofod (2001), and Goulbourne
et al. (2003, 2004) have successfully applied such continuum models for hyper-elastic materials to DEAs
but have not studied their failure modes.
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The viscoelastic behavior of DEA films has been investigated by Larsen et al. (2002) using a Mooney–
Rivlin model with Maxwell viscosity. This model was applied to a film element made of VHB 4905/4910 under
uniaxial extension of 1.8 times its initial length. Other similar studies were conducted by Yang et al. (2005) up
to stretches of 3.0. These models did not address failure and used stretches substantially lower than those
found in typical DEA applications, which can be as high as 5.0.

Recently, Wissler and Mazza (2005) studied the deformation of dielectric elastomer circles using various
hyper-elastic models coupled with quasi-linear viscoelasticity within finite element models. These models were
not validated over a wide range of experimental parameters and suggested pull-in failure is not a concern for
DEA, which contradicts experimental observations presented here. Hence, the role of viscoelasticity on DEA
failure modes was not completely understood.

Other constitutive models of nonlinear viscoelastic materials undergoing large deformation have been
developed but have not been applied to DEA materials, for example: Bergström and Boyce (1998, 2000)
and Drozdov and Dorfmann (2002).

The role of film dielectric strength on extension performance of DEA was studied by Sommer-Larsen et al.
(2001) and its important effect on DEA extension is illustrated by a figure of merit:
k / E2

Y
ð2Þ
where k is the actuator’s output stretch, E is the maximum electric field or dielectric strength, and Y is the
apparent Young’s modulus. Since the dielectric strength is squared, it strongly affects DEA performance limits.
Pelrine et al. (2000b) and Kofod et al. (2001) showed the dielectric strength of VHB 4905/4910 to increase from
about 40 MV/m to 240 MV/m when stretched to 36 times its initial area, a major variation when viewed in light
of Eq. (2). However, models have not yet been developed that include this effect to predict DEA failure.

In summary, to predict DEA failure modes, the models need to include the effects of very large deforma-
tions, nonlinear elastic behavior, viscoelasticity, and variable dielectric strength.

1.2. Approach

This paper presents an analytical model of dielectric elastomer actuation that incorporates these four fun-
damentals effects. The model predicts DEA area expansion (stretch) as a function of film mechanical pre-
stretch, applied voltage, speed of actuation (stretch rate), and working load. Viscoelastic effects are included
by defining hyper-elastic models from experimental data obtained a various stretch rates. The analysis does
not include localized effects such as defects, voids, inclusions, mechanical stress concentration, electric field
concentration and time dependent failures such as creep or fatigue. These local failure modes are considered
in Vogan (2004) and Plante (2006).

The model is then used to investigate three failure modes of DEAs made from VHB 4905/4910 elastomer:
(1) pull-in, (2) dielectric strength and (3) material strength. Experimental data validates the model perfor-
mance at both low and high stretch rates for a class of practical DEA (diamond actuators) operating under
working loads. It is shown that the effect of working load on actuator failure is very substantial and cannot be
ignored as in many past studies that addressed DEA failure, like Pelrine et al. (1998), Kornbluh et al. (1999),
Sommer-Larsen et al. (2001), and Wissler and Mazza (2005). It is also shown that, due to the film’s viscoelas-
ticity, each failure mode dominates under different conditions of stretch rates. At high stretch rates, dielectric
strength is the dominant mode of failure. At low stretch rates, pull-in is the dominant mode of failure. An
important practical result of this study is that DEAs made from VHB 4905/4910 elastomer can reliably
achieve large working loads at large extensions only if operating at high stretch rates.

2. Analytical model development

2.1. Problem definition

The majority of DEA designs are variants of what can be called rolled and planar classes, see Pelrine et al.
(2001), Kornbluh et al. (2002), Wingert et al. (2002a,b), Pei et al. (2004), and Plante et al. (2005). These designs
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provide good mechanical energy conversion, but as pointed out by Pei et al. (2004) and Plante et al. (2005),
they are sensitive to localized failure modes such as stress concentrations at the film bonding interface. To min-
imize these local effects, this study develops a basic actuation model based on a circular actuator that consists
of a small conductive circle located in the center of a large pre-stretched film as shown in Fig. 2. Under Max-
well pressure, the expanding circle’s radius increases from its pre-stretched value, rpre, to its actuated value,
ract. The film deformation of this circular actuator occurs far from the film’s rigid ring (rrig > ract) and local
failures due to the film bonding interface are minimized; putting emphasis on fundamental or large-scale fail-
ure modes. Local failure modes are addressed by Vogan (2004) and Plante (2006).

The circular actuator model considers the following: very large deformations, nonlinear elastic behavior,
viscoelasticity, working loads, and varying dielectric strength. The analysis is based on the following assump-
tions and restrictions:

• The study focuses on VHB 4905/4910 elastomer because, to date, it gives the largest displacements and
work outputs of all tested materials, see for example Cameron et al. (2004), Kornbluh et al. (1995, 1999,
2000), Sommer-Larsen and Ladeggard Larsen (2004). Also, this material is commercially available as an
adhesive tape that does not require elaborate fabrication processes.

• The film is modeled as a hyper-elastic material. The film’s viscoelasticity is included in the analysis by defin-
ing two elastic material models at two highly different stretch rates. The parameters of these models are
defined under uniaxial extensions of: _kUNI ¼ 3:3� 10�4 s�1 and 0.094 s�1 (see Appendix A). The low stretch
rate of _kUNI ¼ 3:3� 10�4 s�1 is taken as the quasi-equilibrium stretch rate where viscoelastic effects are
small enough to be negligible (see Appendix A). The high stretch rate of _kUNI ¼ 0:094 s�1 is typical of many
robotics and mechatronics applications. The analysis is limited to these two stretch rates and all deforma-
tions are assumed to take place at constant stretch rates. Compared to constitutive viscoelastic modeling,
the proposed approach is simpler and, as shown in Section 4, presents useful results for unidirectional
stretches up to 6.0.
Fig. 2. Circular actuator.
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• The film is incompressible. The rubber-like material VHB 4905/4910 used here has a Poisson’s ratio of 0.49,
which is very close to the incompressible value of 0.5, see 3M (2001).

• The film mechanical properties are isotropic before pre-stretching (verified experimentally up to stretches of
7).

• Equivalent Maxwell stress predictions are made using a dielectric constant for VHB 4905/4910 films of
ed = 4.5. Kofod et al. (2001) showed good prediction performance with this value.

• Circular actuators cannot provide mechanical work because they have no physical connections to outside
systems. Nonetheless, the effect of working loads is included in the analysis by superposing a radial loading
stress acting around the expanding circle’s perimeter to block its expansion. Typical loading stress values
are estimated from practical actuators called diamond actuators such as shown in Fig. 3.

• The dimensions of the studied circular actuator (see Fig. 2) are kept constant at: rpre = 5.6 mm and
rrig = 100 mm. With these proportions, the expanding circle is small compared to the rigid ring and the film
can be viewed as quasi-infinite. The effect of radii proportions on failure is not studied.

The objective of the circular actuator model is to find the actuation stretches, ki,act, for any given voltage, V,
mechanical pre-stretch, ki,pre, constitutive model stretch rate, _kUNI, and loading stress, rload:
ki;act ¼ f ðV ; ki;pre; _kUNI;rloadÞ ð3Þ

The model to be developed here will not have an explicit closed-form solution; therefore the actuation
stretches, ki,act, given by Eq. (3) will be solved numerically.

The circular actuator model is separated into two distinct regions: the active region and the passive region,
see Fig. 4. Each region is modeled separately and boundary conditions are applied between the two. The
model and the failure criteria are developed in the following sections.
Fig. 3. Diamond actuator showing linear extensions of 100%.

Fig. 4. Circular actuator decomposed into active and passive regions.
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2.2. Active region

2.2.1. Kinematical description

The deformations of the active region and its key parameters are illustrated in Fig. 5. The total deformation

is decomposed in two separate and consecutive deformations: the pre-stretch deformation and the actuation

deformation. Fig. 5 shows how the active region’s radius and thickness evolve from the reference configuration,
R,U, to the pre-stretched configuration, rpre,upre, and finally to the actuated configuration, ract,uact. The dimen-
sions in the reference configuration are expressed in the R,H,Z system while those of the pre-stretched and
actuated dimensions are expressed in the r,h,z system. The active region experiences a pure stretch deforma-
tion (no angular or shear deformations), and the r,h,z directions of Fig. 5 coincide with the principal stresses
and stretches directions denoted by the indices 1, 2, 3. Under these conditions, the principal stretches of the
pre-stretch (pre), actuation (act) and total (tot) deformations of the active region are defined from the follow-
ing dimensionless ratios (see Fig. 5):
1 In
identifi
other i
k1;pre ¼ k2;pre ¼
rpre

R
k3;pre ¼

upre

U
ð4Þ

k1;act ¼ k2;act ¼
ract

rpre

k3;act ¼
uact

upre

ð5Þ

k1;tot ¼ k2;tot ¼ k2;prek2;act k3;tot ¼ k3;prek3;act ð6Þ
The pre-stretches are equibiaxial: k1,pre = k2,pre. Equibiaxial pre-stretches combined with the material’s isot-
ropy (before pre-stretching) and the system’s axisymmetry ensure that the actuation deformation is also equ-
ibiaxial: k1,act = k2,act. The kinematical description is reduced to a single unknown principal stretch for each
deformation by making use of the incompressibility assumption (detF = J = 1), which imply the product of
the principal stretches to be one for all deformations:
k1;prek2;prek3;pre ¼ k1;actk2;actk3;act ¼ k1;totk2;totk3;tot ¼ 1 ð7Þ
2.2.2. Stress balance

As shown in Fig. 5, the pre-stretch deformation creates principal stresses1 in the pre-stretched configura-
tion, r1,pre, r2,pre, r3,pre. The pre-stretched configuration is then perturbed by the equivalent Maxwell pressure,
this paper, ‘‘true’’ stresses or Cauchy stresses are identified by ‘‘r’’ while engineering stresses or First Piola–Kirchoff stresses are
ed by ‘‘S’’. The difference is the area ‘‘A’’ defining the stress: one is expressed in the reference configuration: S = F/Areference, and the
n a deformed configuration: r = F/Adeformed.
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P, resulting from voltage application. The film further deforms and the principal stresses in the actuated con-
figuration reach a new equilibrium to r1,act, r2,act, r3,act.

The actuation stretches, ki,act, are reached when the equivalent Maxwell pressure, P, of Eq. (1) is in equi-
librium with the active region’s third principal stress:
2 Fo
called
P ðV ; ki;pre; ki;actÞ ¼ r3;actðki;pre; ki;actÞ i ¼ 1; 2; 3 ð8Þ

The third principal stress, r3,act, is found from a stress/stretch constitutive model based on Ogden’s formula-
tion for rubbery materials, see Ogden (1972, 1982). Ogden’s model defines a material’s Helmoltz free-energy2

by:
w ¼ ~wðk1; k2; k3Þ ¼
XN

p¼1

lp

ap
ðkap

1 þ kap

2 þ kap

3 � 3Þ ð9Þ
where lp and ap are experimentally determined material parameters and N is the model order (see Appendix
A). Kofod (2001) used a second order model for VHB 4905/4910 with good prediction capabilities.

Taking the derivative of the Helmoltz free energy function of Eq. (9) with respect to the deformation gra-
dient tensor leads to the constitutive stress/stretch formulation in the reference configuration (Holzapfel,
2000):
Si ¼ �
p
ki

� �
þ
X2

p¼1

lpk
ðap�1Þ
i i ¼ 1; 2; 3 ð10Þ
where p is a Lagrange multiplier defined by the boundary conditions. Physically, p can be viewed as a hydro-
static pressure.

The Piola transformation between the engineering stress (reference configuration) and true stress (deformed
configuration) tensors is given by (Holzapfel, 2000):
r ¼ J�1SFT ð11Þ

where r is the true stress tensor and S is the engineering stress tensor. For incompressible materials
(det F = J = 1) under pure stretch deformations, Eq. (11) written in components reduces to:
ri ¼ Siki i ¼ 1; 2; 3 ð12Þ

Applying the Piola transformation to Eq. (10) yields:
ri ¼ �p þ
X2

p¼1

lpk
ap
i i ¼ 1; 2; 3 ð13Þ
Eq. (13) written for the active region in the actuated configuration gives:
r1;act ¼ �p þ l1k
ða1Þ
1;tot þ l2k

ða2Þ
1;tot

r2;act ¼ r1;act

r3;act ¼ �p þ l1k
ða1Þ
3;tot þ l2k

ða2Þ
3;tot

ð14Þ
The first principal stress, r1,act, of Eq. (14) defines the hydrostatic pressure, p:
p ¼ l1k
ða1Þ
1;tot þ l2k

ða2Þ
1;tot � r1;act ð15Þ
which is inserted back into the third principal stress:
r3;act ¼ r1;act � ðl1k
ða1Þ
1;tot þ l2k

ða2Þ
1;totÞ þ ðl1k

ða1Þ
3;tot þ l2k

ða2Þ
3;totÞ ð16Þ
The numerical value of the first principal stress, r1,act, is determined from the boundary condition between the
active and passive regions.
r hyper-elastic materials, the Helmoltz free-energy only depends on the deformation of the material and is therefore sometimes
the strain-energy function.
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2.3. Passive region

2.3.1. Kinematical description

The stresses and stretches of the passive region are not uniform. The passive region is modeled as an annu-
lar membrane with imposed inner and outer radial displacements. This approach allows solving a 1D axisym-
metric problem and is convenient to the present analysis that studies widely varying input conditions (stretch
rate, load, pre-stretch). The development is based on the general membrane analysis proposed by Yang and
Feng (1970). Yang et al. (2005) also presented a treatment of annular dielectric elastomer membranes. Fig. 6
shows a cross-section of the passive region with associated radial dimensions in the reference (stress free) and
actuated configurations.

The membrane assumption only allows one principal stretch to be matched at its boundaries (otherwise the
problem is 2D axisymmetric). This limitation results in a thickness discontinuity at the interface with the active
region and is accounted for by developing an empirical boundary condition.

In the passive region problem, the relevant principal stretch to match is the radial one. The membrane’s
initial radii, Ra and Rb, are thus imposed to assure radial continuity with the active region and rigid ring.
The inner radius, Ra, projected in the pre-stretched configuration must be equal to the active region’s radius
Ra k1,pre = rpre (see Fig. 4). Similarly, the outer radius, Rb, projected in the pre-stretched configuration must be
equal to the rigid rings’ radius Rbk1,pre = rrig. These conditions lead to:
Ra ¼
rpre

k1;pre

Rb ¼
rrig

k1;pre

ð17Þ
The principal stretches of an annular membrane in the 1, 2, 3 directions (corresponding to the r,h,z and
R,H,Z directions) are:
k1 ¼
or
oR

k2 ¼
r
R

k3 ¼
1

k1k2

ð18Þ
where k3 is obtained from the incompressibility relation: k1k2k3 = 1.
Reference Configuration Actuated ConfigurationCL

Z,z

R

R,r

bR

aR

r

ar

r∂R∂

br

Fig. 6. Deformation of the passive region model.



J.-S. Plante, S. Dubowsky / International Journal of Solids and Structures 43 (2006) 7727–7751 7735
2.3.2. Stress balance

The principal stresses associated with the principal directions must satisfy Cauchy’s equation of equilib-
rium, divr = 0. This equation resolved in the actuated configuration reduces to:
or1

or
þ 1

r
ðr1 � r2Þ ¼ 0 ð19Þ
Eqs. (18) and (19) are combined into two first order differential equations:
ok1

oR
¼ k1

Rk2

� r2 � r1

or1

ok1

� k1 � k2

R
�

or1

ok2

or1

ok1

ok2

oR
¼ k1 � k2

R

ð20Þ
where the principal stresses are found from a second order Ogden model given by:
r1 ¼ l1 ðk1Þa1 � 1

ðk1Þa1ðk2Þa1

� �
þ l2 ðk1Þa2 � 1

ðk1Þa2ðk2Þa2

� �

r2 ¼ l1 ðk2Þa1 � 1

ðk1Þa1ðk2Þa1

� �
þ l2 ðk2Þa2 � 1

ðk1Þa2ðk2Þa2

� �

r3 ¼ 0

ð21Þ
The pair of differential equations of Eq. (20) is solved numerically by transforming the boundary value problem
into an initial condition problem as suggested by Yang and Feng (1970). In the transformed problem, the
stretches are calculated iteratively from the inner radius Ra to the outer radius Rb until the calculated outer ra-
dius (in the actuated configuration) converges to the rigid ring radius rb = rrig. The inner hoop stretch k2 is equal
to the active region’s value: k2 = k2,tot. The inner radial stretch k1 is unknown and is the iterated variable.

2.3.3. Solution example

Consider a film pre-stretched to k1,pre = 1.96 and actuated to k1,act = 2. The calculated principal stretches
and stresses are shown, respectively, in Figs. 7 and 8. Compared to the pre-stretched configuration, Fig. 7
shows that, near the inside radius, Ra, the polymer chains in the hoop direction are further extended k1 > k1,pre

while those in the radial direction are relaxed, k2 < k1,pre. Accordingly, Fig. 8 shows that the second principal
stress (hoop) increase while the first principal stress (radial) decrease. The stresses and stretches both rapidly
converge toward the pre-stretched values in the far field when R! Rb. Fig. 9 shows the predicted deformed
shape of the active/passive regions interface using the membrane approximation.
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2.4. Boundary condition

The thickness discontinuity at the active/passive regions interface resulting from the membrane approxima-
tion (see Fig. 9) does not faithfully represent the true deformed shape which is continuous. The continuous
case implies extra material deformation to force the edges of the active and passive region together. This extra
energy must come from higher Maxwell pressures, and higher Maxwell pressures means lower (more compres-
sive) first principal stresses in the active region.

A finite element (FE) model of the passive region was developed to study the effect of the thickness discon-
tinuity. The FE model was implemented in Adina� using axisymmetric 2D Solid elements and the Ogden
material model parameters for high stretch rates ð _kUNI ¼ 0:094 s�1Þ, see Appendix A. Both the membrane (dis-
continuous) and continuous cases were run with pre-stretches of k1,pre = 1.96 and actuation stretches of
k1,act = 1.05, 1.2, 2 and 3. The resulting deformed shapes for both cases are shown in Fig. 10 for k1,act = 2.

The FE simulation results were used to compute the active region’s first principal stress for the discontin-
uous and continuous cases. Results are shown in Fig. 11. Looking at the FE results only, as expected, the first
principal stress decreases significantly faster in the continuous case because it requires more deformation



Fig. 10. Passive region’s deformed shape computed with FE models when inner face is: (a) discontinuous and (b) continuous (not to scale).

1 1.5 2 2.5 3
—0.25

—0.2

—0.15

—0.1

—0.05

0

0.05

0.1

0.15

λ1,act

S 1,
ac

t (M
Pa

)

Discontinuous-Analytical
Discontinuous-FE
Continuous-FE
Continuous-Analytical

Fig. 11. Active region planar stress in function of actuation stretch for analytical and FE models.

J.-S. Plante, S. Dubowsky / International Journal of Solids and Structures 43 (2006) 7727–7751 7737
energy. The Continuous-FE case of Fig. 11 is closer to the true continuous interface geometry and is set as the
reference case that should be matched by the circular actuator model.

Fig. 11 shows negative first principal stresses at large actuation stretches. When such negative values are
reached, the film theoretically buckles out of plane in a complex 3D shape. These deformations are not han-
dled by the models presented here. In practice, rare buckling occurrences of circular actuators can be observed
at low pre-stretches, typically for k1,pre < 2. This limitation is not expected to have a significant impact on the
results of this study.

The FE results of Fig. 11 are now used as benchmarks for two analytical solutions of the passive region’s
membrane model using different boundary conditions.

The first solution is the Discontinuous-Analytical, see Fig. 11, and its purpose is to assess the validity of
the membrane approximation. The membrane model and Discontinuous-FE cases both show discontinuous
interfaces and should therefore develop similar first principal stresses. The boundary condition is found from
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a radial force balance across the interface leading to equal first principal stresses in the reference
configuration:
S 1;act
discontinuous

¼ S1ðRaÞ ð22Þ
where S 1;act
discontinuous

is the first principal stress in the active region and S1(Ra) is the first principal stress of the

passive region at the inner radius. As shown by Fig. 11, the Discontinuous-Analytical solution using Eq.
(22) matches the Discontinuous-FE case reasonably well. This suggests that the membrane model yields valid
results.

The second solution is the Continuous-Analytical, see Fig. 11, and its purpose is to match the stress level of
the Continuous-FE case, the reference case, in order to be used in the circular actuator model. This second
boundary condition uses an empirical argument explained by Fig. 12 showing a schematic of Fig. 11. In
Fig. 12, the discontinuous line represents the Discontinuous-Analytical case obtained with Eq. (22), and
the continuous line represents the Continuous-FE case. For a given actuation stretch, the difference between
the discontinuous and continuous stresses, DS2, is assumed proportional to the difference between the discon-
tinuous and pre-stretch stresses, DS1. The quasi-linearity of the results of Fig. 11 suggests that the proportion-
ality approximation is valid over significant actuation stretches. The proportionality relationship DS2 / DS1 is
written with the terms of Fig. 12 as:
S 1;act
discontinuous

� S 1;act
discontinuous

¼ k S1;pre � S 1;act
discontinuous

� �
ð23Þ
where k is the proportionality constant. Substituting S 1;act
discontinuous

from Eq. (22) and rearranging gives the
boundary condition used in the circular actuator model:
S 1;act
discontinuous

¼ S1ðRaÞ � kðS1;pre � S1ðRaÞÞ ð24Þ
The proportionality constant was chosen to be k = 1.6 based on two criteria: (1) the predictions should follow
the Continuous-FE levels of Fig. 11 and (2) the predictions should give realistic actuation area expansion lev-
els compared to experimental values (see Fig. 19).

The boundary condition of Eq. (24) is expressed in the actuated configuration by the Piola transformation,
see Eq. (12):
r1;act ¼ ½S1ðRaÞ � 1:6ðS1;pre � S1ðRaÞÞ�k1;tot ð25Þ

The effect of working load is included in the boundary condition by adding a radial loading stress, rload, to Eq.
(25):
r1;act ¼ ½S1ðRaÞ � 1:6ðS1;pre � S1ðRaÞÞ�k1;tot þ rload ð26Þ
act,1λ

preS ,1

Discontinuous

Continuous

2SΔ

1SΔ

continous
actS ,1

discontinuous
actS ,1

1S

Fig. 12. Evolution of the planar stress in the active region during actuation.
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This loading stress is compressive (negative) and thus block the film’s expansion. Typical values of this load-
ing stress at low and high stretch rates are estimated from diamond actuators (see Fig. 3) in Appendix C.
Finally, the boundary condition of Eq. (26) is inserted back into Eq. (16) to complete the circular actuator
model.

2.5. Failure criteria

Three failure modes are considered independently: material strength, dielectric strength, and pull-in, see
Fig. 13. This paper uses simple descriptions of these failure modes to keep the analytical model tractable. Each
of these failure modes should be investigated in greater detail by future studies. Failures that result from local-
ized effects such as material defects, stress concentration, and field concentration are not considered here (for
more information, see Vogan, 2004; Plante, 2006).

The failure modes study focuses on the active region of the film. The discussion is made in terms of area
expansion ratio, which is equal to the inverse of the third principal stretch and to the square of a first principal
stretch:
Afinal

Ainitial

¼ 1

k3

¼ k2
1 ð27Þ
2.5.1. Material strength

In first approximation, material strength failure is assumed to be affected principally by film stretch. Effects
of stress and stretch rate are not considered. The proposed failure mechanism is that film tearing occurs when
folded polymer chains are straightened beyond their unfolded length. Hence, film deformation is limited to an
experimentally determined maximum area expansion. Experiments suggest a value of 36 for VHB 4905/4910,
leading to the following failure criterion:
k2
1;tot > 36 ð28Þ
Kofod et al. (2001) and Larsen et al. (2002) have also proposed 36 as a safe practical area expansion limit for
this material.
2.5.2. Dielectric strength

The breakdown voltage limit of a dielectric material is generally obtained experimentally. Polymer conduc-
tivity such as described by Whithead (1953) suggests that predicting dielectric failure requires representing
complex molecular and atomic interactions and is not tractable. Dielectric failure is thus predicted from an
empirical breakdown voltage vs. area expansion obtained for rigid, non-deforming electrodes (see Fig. 16).
The maximum actuation area expansion as limited by dielectric strength is obtained when the model’s electric
field is higher than the mean experimental dielectric strength:
E > EEXPðk2
1;totÞ ð29Þ
+ + + + + + +

- - - - - - - -

Pull-in

Material
Strength

Dielectric
Strength

Fig. 13. Failure modes of DEA.
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2.5.3. Pull-in instability

Pull-in instability appears when the equilibrium condition of Eq. (8) cannot be reached because the Max-
well pressure, P, becomes always greater than the film third principal stress, r3,act. The film typically collapses
into complex 3D wrinkling patterns such as shown in Fig. 14. These wrinkles are seen before pull-in failure,
although stable wrinkles can be observed under particular conditions (high pre-stretch, no working load). The
excessive local deformations caused by pull-in eventually lead to either material or dielectric strength failures.
It is the unstable approach to failure that makes pull-in a mode of its own. This study considers a simplified
one-dimensional model that predicts the onset of pull-in instability. Further, it is assumed that if pull-in insta-
bility starts, voltage will not be removed and pull-in will eventually lead to failure.

For a given pre-stretch, the pull-in threshold is found by analyzing the equilibrium between the two stresses
as shown in Fig. 15 for _kUNI ¼ 3:3� 10�4 s�1 and k2

1;pre ¼ 3:86. The third principal stress, r3,act, obtained from
Eq. (16) is plotted as a function of actuation stretch. Also shown are the equivalent Maxwell pressures, P,
obtained from Eq. (1) at three different voltages as a function of actuation stretch. The location of the ultimate
actuation stretch before pull-in is at the value of the tangent point of the last Maxwell pressure curve, P, to
intersect the film’s third principal stress curve, r3,act. Voltages below the critical pull-in voltage are stable while
those above are unstable. Fig. 15 shows that voltage V1 has a stable solution, V3 would result in pull-in, and
voltage V2 is the critical pull-in voltage for this material and pre-stretch.
~ 3mm 

Wrinkled
Regions

Fig. 14. Film geometry during pull-in instability.
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Fig. 15. Example of pull-in failure criterion.
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As shown in Fig. 15, the location of the equilibrium point determining the occurrence of pull-in failures is
very sensitive to the material’s third principal stress response. At the same time, VHB 4905/4910 is a highly
viscoelastic material whose stress levels are strongly affected by stretch rate, see Appendix A. Hence, it is rea-
sonable that pull-in failure is strongly affected by stretch rate.

3. Experimental data

Laboratory experiments were performed to measure the maximum area expansion at failure of DEAs in
order to validate the model and failure criteria developed in this paper. Experiments were done at both low
ð _kUNI ¼ 3:3� 10�4 s�1Þ and at high ð _kUNI ¼ 0:094 s�1Þ stretch rates, for circular actuators (no working load)
and diamond actuators (with working load). Priority was set on high stretch rates where actuation periods are
on the order of seconds rather than hours. Such time scales are representative of most practical robotic and
mechatronic applications.

3.1. Circular actuators

Circular actuators were created in the center of large pre-stretched films. Electrodes were created as
10 · 10 mm squares instead of circles because they can reliably and rapidly be generated by intersecting
two lines, one on each side of the film. The shape difference is not expected to be significant for the precision
required by this study. The necessity for rapid actuator manufacturing is motivated by the fact that, at high
stretch rates ð _kUNI ¼ 0:094 s�1Þ, the film must be pre-stretched, electrodes created and voltage applied in a rel-
atively short time (�5 min) in order to respect the constant stretch rate assumption.

In all tests, a sample of VHB 4905/4910 was pre-stretched in two perpendicular directions as described in
Appendix B. Compliant electrodes were created with a conducting water based gel. Voltage was applied to the
electrodes and increased with a Matsusada U3A-10P DC–DC voltage converter until failure was observed.
The voltage application rate was selected to match the uniaxial test stretch rates.

At low stretch rates, electrode expansion is slow enough to enable continuous measurement of compliant elec-
trode dimensions directly on the film. However, at high stretch rates, the electrode boundary is constantly mov-
ing and its dimensions at failure are difficult to measure. Optical methods are cumbersome and do not detect any
film out-of-plane deformation (wrinkling) that might occur at high actuation stretches. Hence, an indirect
method was developed here to infer area expansion at failure from breakdown voltage measurements.

In this method, the polymer film is stretched to given values and then sandwiched between a set of rigid
electrodes. A voltage is then applied and gradually increased until arcing occurs across the material (dielectric
breakdown). In this way the material’s breakdown voltage as function of stretch state can be determined. The
rigid electrodes maintain the constant stretch state of the material. In contrast, if voltage is applied with com-
pliant electrodes, its stretch state will change. The stretch states at failure can be estimated from the calibration
obtained with the rigid electrodes that gives the breakdown voltage vs. stretch states. The difference in stretch
states between the rigid and compliant cases is the actuation stretch.

Fig. 16 shows the experimental voltage as a function of area pre-stretch for rigid and compliant electrodes
at high stretch rate. The compliant electrodes curve was obtained from 28 points. The rigid electrode curve was
determined from 45 points and is compared with data extrapolated from Kofod et al. (2001). The comparison
shows good agreement except at k2

1;pre ¼ 1:0, which is off by a factor of two due to an error in the presentation
of the paper (Verified by private communication with Kofod, 4/11/2003).

The experimental actuation area expansion to failure is plotted vs. pre-stretch area expansion at high
stretch rates is shown in Fig. 17 with error boundaries of ±30% representing an estimate of experimental data
scatter range. The mean curve of Fig. 17 appears smooth because it is obtained from the two data curve-fits of
Fig. 16. The experimental curve of Fig. 17 appears lower than best values reported by Pelrine et al. (2000a,b).
The experimental curve may represent a conservative average of DEA performance, assuming the reported
values in the literature were obtained at similar stretch rates.

At low stretch rates, experimental data was obtained at three different pre-stretches. Each case was repeated
four times and the average values are presented in Table 1. Table 1 and Fig. 17 show that experimental actu-
ation area expansion is maximized for pre-stretches of about 10 for both low and high stretch rates.



0 5 10 15 20 25 30 35 40
2

4

6

8

10

12

14

16

18

20

λ1, pre
2

Br
ea

kd
ow

n 
Vo

lta
ge

 (k
V)

Compliant Electrodes
Rigid Electrodes
Rigid Electrodes  (Kofod et al.)
Fitted Curves (Log/Log)

Fig. 16. Experimental breakdown voltages for rigid and compliant electrodes measured at high stretch rate ð _kUNI ¼ 0:094 s�1Þ.

0 5 10 15 20 25 30 35
1

1.5

2

2.5

3

3.5

4

λ 1,
ac

t
2

λ1,pre
2

Experimental
Experimental ± 30%
Best (This Study)
Best (Pelrine et al.)

Fig. 17. Experimental ultimate actuation area expansion vs. pre-stretch area expansion at high stretch rate ð _kUNI ¼ 0:094 s�1Þ.

Table 1
Experimental area expansion at failure for low stretch rate, _kUNI ¼ 3:3� 10�4 s�1

k2
1;pre k2

1;act minðk2
1;actÞ maxðk2

1;actÞ Observed failure mode

5 1.77 1.60 1.92 Pull-in
10 4.29 3.50 4.60 Dielectric or material
16 2.86 2.25 3.36 Dielectric or material
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3.2. Diamond actuators

Ten diamond actuators using 1.5 mm thick laminates of 4905 films were manufactured. Film pre-stretches
of [k1,pre,k2,pre] = [5,2.2] in the major/minor axis directions were used for a total pre-stretched area expansion
ratio of 11. Experience in designing and manufacturing these actuators showed pre-stretches of 11 to give
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maximum expansion before failure. Interestingly, this value is almost identical to the optimum value of 10 sug-
gested in Fig. 17 and Table 1 for circular actuators.

The diamond actuators were pulled at constant velocity (see Plante (2006) for more details on the testing
apparatus) with an applied voltage of 10 kV up to an area expansion of 2.28 (linear actuator strain of 150%).
The samples were first pulled at high stretch rate and none of them failed. The same samples were then pulled
for a second time at low stretch rate and it was observed that all 10 failed. Cumulative damage is considered
negligible over only two cycles. At low stretch rates, the average area expansion at failure was 1.28 (linear
actuator strain of 30%) with a lowest value of 1.05 (linear actuator strain of 6%). All failures showed the char-
acteristic wrinkles of Fig. 14.

4. Model validation

The circular actuator model and its failure criteria were used to predict the ultimate actuation expansion vs.
pre-stretch, with and without loading stresses, at low and high stretch rates ( _kUNI ¼ 3:3� 10�4 s�1 and
0.094 s�1). In these predictions, voltage is increased until any of the three failure criteria are met (if met).
The prediction results are now compared with experimental data. A short discussion about the impact of fail-
ure on DEA technology is provided.

4.1. Model vs. circular actuators (no working load)

At low stretch rates, the model predicts that failure can be caused by any of the three modes, depending on
pre-stretch, see Fig. 18. Dielectric strength failure is only apparent at very low pre-stretches that are not used
in practice. Pull-in failure dominates the low pre-stretch range up to pre-stretches of about 10. For pre-
stretches above 10, the pull-in instability criterion is not met anymore and failure is dominated by material
strength. When pull-in failures are possible, the maximum area expansion is limited to a relatively constant
value of about 1.9. This value is not very far from the linear (Hookean) model predictions discussed in the
introduction, giving a limit of 1.6, see Pelrine et al. (1998), Kornbluh et al. (1999), and Sommer-Larsen
et al. (2001). This is likely because at low rates, the equilibrium stress/stretch curve is almost linear, see
Fig. 22 of Appendix A. The model agrees well with experimental data. On the figure, the vertical lines across
experimental points represent data scatter. As pre-stretch increases beyond a certain threshold of about
k2

1;pre ¼ 9, the pull-in failure mode disappears, allowing very large actuation area expansions, up to 4.29 at
k2

1;pre ¼ 10.
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At high stretch rates, the model predicts that failure can be caused only by two modes, see Fig. 19. Dielec-
tric strength is the limiting factor for pre-stretches below 10. For pre-stretches above 10, material strength is
the limiting factor. The experimental curve is bounded by the failure criteria. Low pre-stretches failures are
bounded by dielectric strength effects and large pre-stretch by material strength. The model and experimental
curves both show an optimum pre-stretch at about 10. In the pre-stretch range of 5–15, the model over-pre-
dicts the maximum actuation area expansion (4.25 vs. 2.7). This discrepancy is principally attributed to the
simplicity of the passive region model that uses an empirical boundary condition not included in the elastic
deformation theory.

4.2. Model vs. diamond actuators (with working load)

The failure predictions are compared with experimental data of the 10 diamond actuators in Figs. 20 and
21, respectively, for low and high stretch rates. The predictions show the same general trends as in Figs. 18 and
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of 10 diamond actuators.
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19. The model predictions corroborate well the data showing severe pull-in limitations at low stretch rates.
Based on these results, it appears that DEAs operating under working loads are severely limited by pull-in
failure compared to unloaded actuators.

4.3. Discussion

In general, model predictions agree well with experimental data, with and without working loads, at both
low and high stretch rates. The model explains the behavior of the three postulated failure modes and explains
observed experimental trends. The model is valid for unidirectional stretches of up to 6.

The principal limitation of the proposed model is its incapacity to represent the geometry of the interface
between the active and passive regions. An in-depth multi-physics FE model coupling electrostatics and solid
mechanics would be required to accurately represent the true interface shape. Also, the model flexibility is lim-
ited as it is only defined for two constant stretch rates.

The key result shown by the model is the positive impact of viscoelasticity on reliability. Viscoelasticity sig-
nificantly affects the amount of viscous impedance at high stretch rates, see Appendix A. These viscous forces
‘‘stiffen’’ the film and protect it from pull-in failures. In contrast, low stretch rates generate less viscous imped-
ance and pull-in failure dominates.

This viscous impedance has a significant impact on performance when working loads are considered. For
example, the maximum linear actuator strains of diamond actuators is five times higher at high stretch rates
compared to low stretch rates: 150% vs. 30% (see Figs. 20 and 21). The difference is not as great for circular
actuators operating without working loads (see Figs. 18 and 19). Hence, working loads cannot be neglected in
DEA analysis and design.

The model shows that pull-in failure is a limitation of DEAs based on VHB 4905/4910. Controlling the
position of such actuators under working loads for long time scales is not likely to be possible at large exten-
sions. One possible application of DEA that does not require continuous state holding is binary robotics using
bi-stable actuators such as proposed by Vogan (2004) and Plante et al. (2005). In this application, DEAs are
powered only for short duration and operate only under high stretch-rate conditions, thus maximizing their
achievable actuation stretches and reliability. Bi-stable elements perform the long-duration position holding.

5. Conclusions

A model of dielectric elastomer actuation was developed using a continuum mechanics framework for
hyper-elastic materials. Rate-dependent effects were captured by specifying different material properties for
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different stretch rates. Three large-scale failure criteria were established: material strength, dielectric strength
and pull-in. These criteria were used in conjunction with the actuation model to predict ultimate area expan-
sion of circular actuators at two different stretch rates, with and without working loads. The predictions were
corroborated experimentally on circular and diamond actuators showing that working loads have a significant
impact on actuator failure and cannot be neglected.

An important conclusion of this study is that DEAs using VHB 4905/4910 (or similar viscoelastic materials)
have failure modes and performance boundaries that depend strongly on stretch rate. Viscoelasticity plays an
important role in preventing pull-in failures by ‘‘stiffening’’ the film. This study leads to the following guide-
lines and performance boundaries defined for DEAs made with VHB 4905/4910:

1. Dielectric strength failure is the dominant mode of failure under high stretch rates. In contrast, pull-in
instability is the performance limiter at low stretch rates.

2. When operating at low stretch rates under load, actuation area expansion is limited to about 1.28 regardless
of the pre-stretch (see Fig. 20), giving linear actuator strains of about 30% for diamond actuators.

3. When operating at high stretch rates under load with pre-stretched area expansions of 10–15, actuation
area expansions of up to 2.5 are possible (see Fig. 21), giving linear actuator strains of about 150% for dia-
mond actuators.

4. Practical actuators can only operate reliably under high loads in fast, intermittent or high-frequency
applications.

Extrapolation of these results to other actuator designs should be done with care. Finally, the failure modes
study presented in this paper revealed the properties of ideal DEA films, which still need to be developed:

1. Properly tuned stress/stretch behavior, just enough to prevent pull-in failures.
2. Little or no viscoelastic effects (unless viscous impedance prevents pull-in failure, like VHB 4905/4910).
3. Highest possible dielectric strength to prevent dielectric strength failures.
4. Highest possible extensions to prevent material strength failures.
5. Highest dielectric constant to maximize Maxwell pressure.
6. Lowest level of defects and contaminants to ensure consistency.
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Appendix A. Material properties

A.1. Uniaxial stress formulation

Consider a rectangular sample in uniaxial deformation along its first principal direction. The principal
stretches for an incompressible material like VHB 4905/4910 are given by:
k1 ¼
l
l0

k2 ¼ k3 ¼ k�0:5
1

ð30Þ
where l0 and l are the sample lengths in the reference and deformed configurations.
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The corresponding stresses in the reference configuration given by a second order Ogden model are:
Fig. 22
and (c

Table
Ogden

Ogden

a1

a2

l1

l2
S1 ¼ l1k
ða1�1Þ
1 þ l2k

ða2�1Þ
1 � l1k

�ð1þ0:5a1Þ
1 � l2k

�ð1þ0:5a2Þ
1

S2 ¼ S3 ¼ 0
ð31Þ
The first principal stress, S1, vs. stretch function of Eq. (31) was fitted on experimental data to by adjusting the
Ogden parameters a1, a2, l1, l2 using the NonlinearRegress function in the Mathematica� Software.

A.2. Experimental data

The specimen’s nominal clamped dimensions were arbitrarily set to 15 · 15 mm and their final dimensions
were measured with a Mitutoyo caliper. Stresses and stretches were measured on a custom tensile test machine
using an Omega LCEB-5 5 lbf load cell.

Uniaxial tests with different stretch rates were performed to investigate viscoelastic effects. Fig. 22 shows
filtered experimental data of the stresses vs. stretches for four different stretch rates, _kUNI, ranging from
3.1 · 10�5 s�1 to 1.8 s�1. The stretch rate _kUNI ¼ 3:3� 10�4 s�1, (c), is interesting because it represents the
equilibrium case where viscoelastic effects are negligibly small and the material response is mostly elastic (inde-
pendent of stretch rate). As shown by Fig. 22, curves (c) and (d) are almost identical despite curve (d) having a
stretch rate 10 times lower. The dashed curves superimposed on (a), (b) and (c) are curve-fitted Ogden models.
Table 2 summarizes the Ogden model parameters that are valid for unidirectional stretches of up to 7.
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2
model parameters from uniaxial tests

parameters Low stretch rate, _kUNI ¼ 3:3� 10�4 s�1 High stretch rate, _kUNI ¼ 0:094 s�1

1.445 1.450
4.248 8.360
43,560 112,200
117.4 0.1045
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Fig. 23. Springs and dash-pot model for viscoelastic elastomers.
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Viscoelastic materials are often represented with a rheologic model such as illustrated in Fig. 23. Under
high stretch rates, significant viscous stresses are generated on the viscoelastic side of the rheologic model.
These viscoelastic stresses add to the baseline elastic stresses and explain the viscous impedance observed in
Fig. 22. For example, compare the stresses of curve (b) to curve (c) at a stretch of about 6. The stress of curve
(c), the equilibrium case, is only 50% of the stress of curve (b). Thus, under high stretch rates, viscous stresses
can account for more than half the total stress.

Appendix B. Stretching technique

B.1. Procedure

Pre-stretching is done with a two axis (Cartesian) stretching device. Pre-stretching must be executed in two
steps due to the very high stretch values. The film sample is first clamped across one axis and the initial dimen-
sions, L and W, are measured such as in Fig. 24a. Next, the length is increased to the desired stretch in the first
direction:
l ¼ Lk1;pre ð32Þ

After obtaining the configuration shown in Fig. 24b, the free edges are clamped with the second set of clamps,
see Fig. 24c. The free width of the sample, wa, and the clamped width, wb, are measured. To account for the
amount of clamped material, the initial length in the secondary axis is linearly scaled:
2

1

(a) (b)

W

l
L

bw w

aw

(c) (d)

Fig. 24. Stretching sequence.
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W 0 ¼ wb

wa

W ð33Þ
By expanding the clamped edges, the film is then brought to its final stretched configuration as shown in
Fig. 24d where the final width is obtained from the second direction stretch:
w ¼ k2;preW 0 ð34Þ
B.2. Validation

Stretching elastomer films to large values causes film slippage problems. Therefore, to verify that the final
stretches are valid, the resulting thickness was measured and compared with the thickness calculated by the
constant volume assumption. Multiple elastomer samples were stretched and their final thickness was mea-
sured with a Mitutoyo torque limited micrometer (model # 293-761-30). The measurements are plotted against
predictions from the constant volume assumption in Fig. 25. The scattering of midrange data is attributed to
slight film slippage from under the clamps, which results in higher measured thickness. The data scattering
disappears for high pre-stretch because film slippage becomes small in comparison with the total film area.
In general, experimental data match well the constant volume curve. Therefore, the stretching technique is
considered adequate for the scope of this work.
Appendix C. Diamond actuator loading stress

A typical loading stress function is estimated from force measurements performed on diamond actuators
such as schematized in Fig. 26 where l is the diamond side length, u is the film thickness and h is the diamond
half angle. The actuators consisted of a single 1.5 mm thick film pre-stretched to [k1,pre,k2,pre] = [5, 2.2] and
mounted to a l = 55 mm diamond actuator frame operating between {u = 0.14 mm, h = 9�} and
{u = 0.06 mm, h = 24�}. Actuation area expansion is 2.28. Experimental measurements (Plante, 2006) showed
that, at 10 kV, the loading force (Fload = FVoltage OFF � FVoltage ON) of these diamond actuators is approxi-
mately constant for a given stretch rate:

• Fload � 1.75 N at low stretch rates, _kUNI ¼ 3:3� 10�4 s�1.
• Fload � 0.875 N at high stretch rates, _kUNI ¼ 0:094 s�1.



x

y

u

l
θ

y

loadσ

loadσ loadF

loadF

Fig. 26. Diamond actuator loading stress.
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The authors showed (Plante, 2006) that the compressive loading stress, rload, of diamond actuators is
related to the actuator loading force, Fload, by
rload ¼ �
F load

lu cos hðtan2 h� 1Þ ð35Þ
According to Eq. (35), the loading stress varies from rload = �0.14Fload in the closed configuration to
rload = �0.42Fload in the opened configuration. The loading stress variation with area expansion is transposed
linearly to circular actuators by:
rload ¼ ½0:56ð1� k1;actÞ � 0:14�F load ð36Þ

where k1,act is the radial actuation stretch. For example, a diamond actuator operating at an actuation area
expansion of 2.28 corresponds to a circular actuator operating at k1;act ¼

ffiffiffiffiffiffiffiffiffi
2:28
p

¼ 1:5 which, when inserted
into Eq. (36), yields the same loading stress of rload = �0.42Fload.
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