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ABSTRACT Solid-state 2H-NMR of [2H31]-N-palmitoylsphingomyelin ([2H31]16:0SM, PSM*), supplemented by differential
scanning calorimetry, was used for the first time, to our knowledge, to investigate the molecular organization of the sphingolipid
in 1:1:1 mol mixtures with 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine (16:0–18:1PE, POPE) or 1-palmitoyl-2-
docosahexaenoyl-sn-glycero-3-phosphoethanolamine (16:0–22:6PE, PDPE) and cholesterol. When compared with 2H-NMR
data for analogous mixtures of [2H31]16:0–18:1PE (POPE*) or [2H31]16:0-22:6PE (PDPE*) with egg SM and cholesterol, molecular
interactions of oleic acid (OA) versus docosahexaenoic acid (DHA) are distinguished, and details of membrane architecture
emerge. SM-rich, characterized by higher-order, and PE-rich, characterized by lower-order, domains ,20 nm in size are formed in
the absence and presence of cholesterol in both OA- and DHA-containing membranes. Although acyl chain order within both
domains increases on the addition of sterol to the two systems, the resultant differential in order between SM- and PE-rich domains
is almost a factor of 3 greater with DHA than with OA. Our interpretation is that the aversion that cholesterol has for DHA—but not for
OA—excludes the sterol from DHA-containing, PE-rich (nonraft) domains and excludes DHA from SM-rich/cholesterol-rich (raft)
domains. We attribute, in part, the diverse health benefits associated with dietary consumption of DHA to an alteration in membrane
domains.

INTRODUCTION

The disease-countering benefits and necessity for neurologic

function of the v-3 family of polyunsaturated fatty acids

(PUFA) are well documented (1,2). Docosahexaenoic acid

(DHA, 22:6D4,7,10,13,16,19), which is the longest (22 carbons)

and most unsaturated (6 double bonds) member of this family

found naturally, is particularly influential (3). The numerous

varieties of human affliction that it alleviates include heart

disease, cancer, rheumatoid arthritis, asthma, lupus, and

schizophrenia (3–5). To participate in so many seemingly

unrelated processes, DHA must function at a fundamental

level that is common to most cells. We (3–5), and others

(6,7), have proposed that the plasma membrane is a major site

of action. According to our model, low affinity of DHA for

cholesterol accentuates the formation of liquid-disordered

regions enriched in DHA-containing phospholipids and

liquid-ordered lipid rafts enriched in sphingomyelin (SM)

and cholesterol. Introduction of DHA from the diet enhances

the lateral segregation of these two distinct types of domains

and the accompanying changes in location of signaling pro-

teins, for which rafts serve as the platform, then modulate

cellular events.

Initially, biological membranes were envisaged in the fluid

mosaic model as a phospholipid bilayer matrix within which

lipids and proteins were mixed homogeneously (8). A re-

finement of this picture has evolved during the last decade,

whereby the biological membranes contain functional do-

mains characterized by different composition and spatial ar-

rangement of the membrane-constituting lipids (9–11). These

domains are the result of unequal affinities between lipids

species or between lipids and membrane proteins. A lipid do-

main that has received a great deal of attention is the lipid raft,

liquid-ordered regions 10–200 nm in size and enriched in

cholesterol and sphingolipids that float in a ‘‘sea’’ of liquid-

disordered phospholipids (10–13). When clustered together,

they serve as a site for the function of essential cell-signaling

proteins such as glycosylinositol phospholipid (GPI)-linked

proteins in the outer leaflet of the plasma membrane (14).

Raft formation is attributed to the saturated nature of sphin-

golipid acyl chains (15). Their predominantly all-trans ex-

tended conformation packs well with the rigid steroid moiety

of cholesterol; raft stability is conferred further by hydrogen

bonding of the sphingosine backbone amide to the hy-

droxyl group of an adjacent sphingolipid, as well as to the

hydroxyl group of the sterol (16). Phospholipids containing

DHA, in contrast, represent the opposite extreme to sphin-

golipids in affinity for cholesterol. Close proximity to the

steroid moiety is deterred by the wide variety of rapidly vary-

ing conformers that are adopted because polyunsaturated

chains are tremendously disordered, and affinity for the sterol

is low (4). We hypothesize that, when DHA-containing phos-

pholipids are introduced into mixed membranes that include

the lipid raft molecules SM and cholesterol, they enhance the

segregation of cholesterol into SM-rich/sterol-rich rafts and
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away from DHA-rich domains that exclude the sterol (3–5).

A modulation of cellular events is produced by movement of

signaling proteins in and/or out of rafts due to changes in

plasma membrane architecture that occur after phospholipids

incorporate the DHA that comes from diet. This modulation,

in part, is the origin to which we attribute the myriad of health

benefits associated with consumption of the PUFA.

Evidence in support of our hypothesis has been garnered by

applying a range of biophysical methodologies to a membrane

model that we have developed comprised of 1-palmitoyl-2-

docosahexaenoyl-sn-glycero-3-phosphoethanolamne (16:0-

22:6PE, PDPE) in mixtures with SM and cholesterol (17). PE,

which is the second-most abundant phospholipid in mam-

malian plasma membranes after phosphatidylcholine (PC)

(18), was selected; it is preferred over PC for the uptake of

DHA that occurs at the sn-2 position while a saturated chain

occupies the sn-1 position (19,20). PE also possesses a re-

duced affinity for cholesterol relative to PC and SM that is

exemplified by the smaller solubility measured for the sterol

in DHA-containing PE versus PC (21). Differential scan-

ning calorimetry (DSC), detergent extraction, and solid-state
2H-NMR spectroscopy are among the principal techniques

that we have applied to PE/SM and PE/SM/cholesterol mix-

tures in a series of studies (17,22). Detergent extraction of

PDPE/egg SM/cholesterol (1:1:1 mol) membranes showed

that egg SM and cholesterol phase separate almost exclu-

sively (.90%) into a detergent-resistant membrane (DRM)

fraction (the biochemical hallmark of lipid rafts (11)),

whereas PDPE predominantly phase separates (70%) into a

nonraft detergent-soluble membrane (DSM) fraction (17).

In contrast, much less phase separation (22%) into DSM

was observed for 1-palmitoyl-2-oleoyl-sn-glycero-3-phos-

phoethanolamine (16:0–18:1PE, POPE) in POPE/egg SM/

cholesterol (1:1:1 mol) in which polyunsaturated DHA was

replaced by more ‘‘typical’’ monounsaturated oleic acid (OA)

(18) at the sn-2 position of PE. As in the DHA-containing

system, egg SM and cholesterol were found almost entirely

(.90%) in DRM in the control OA-containing system. Solid-

state 2H-NMR spectra comparing the effect of cholesterol

on [2H31]16:0–22:6PE (PDPE*)/egg SM (1:1:1 mol) and

[2H31]16:0–18:1PE (POPE*)/egg SM (1:1:1 mol) demon-

strated a diminished interaction between the sterol and DHA-

relative to OA-containing PE (17). The increase in the average

order parameter �SCD of the perdeuterated [2H31]16:0 sn-1 chain

for the polyunsaturated component (D�SCD ¼ 0:039) in the

mixed membrane was more than a factor of 2 less than for

the monounsaturated component (D�SCD ¼ 0:100) following

the addition of cholesterol at 40�C.

In this study, we switch the focus from PE to SM in

our model system. Solid-state 2H-NMR, complemented by

DSC, is used to compare [2H31]-N-palmitoylsphingomyelin

([2H31]16:0SM, PSM*) in PDPE/PSM* (1:1 mol) with

POPE/PSM* (1:1 mol) in the absence and presence of cho-

lesterol (1:1:1 mol). PSM is the major constituent (;85%) of

egg SM (23). Thus, the results obtained provide information

about the impact of the sterol on the molecular organization

of the SM component in mixed membranes that closely ap-

proximate those membranes for which the PE component

was observed previously. We examine whether our hypoth-

esis–the aversion of cholesterol for DHA promotes the for-

mation of PUFA-rich/sterol-poor domains, as implied by the

spectra recorded for PDPE* versus POPE* in PE/egg SM/

cholesterol (1:1:1 mol) mixtures (17)—is corroborated by the

spectra observed for PSM* in the corresponding PE/PSM/

cholesterol (1:1:1 mol) mixtures.

MATERIALS AND METHODS

Materials

POPE, PDPE, and egg SM were purchased from Avanti Polar Lipids (Ala-

baster, AL). Cholesterol and deuterium depleted water were obtained from

Sigma Chemical (St. Louis, MO). Cambridge Isotope Laboratories (And-

over, MA) was the source of [2H31]palmitic acid. Lipid purity was confirmed

by thin-layer chromatography.

PSM* synthesis

PSM* was synthesized by N-acylation of D-erythro-sphingosylphos-

phocholine with the p-nitrophenyl ester of [2H31]palmitic acid in dichloro-

methane/N,N-dimethylformamide (2:5 vol/vol) at room temperature under

nitrogen (24). The volatiles were removed under vacuum, and the product

was purified by column chromatography (elution with chloroform/methanol/

water 65:35:5 v/v) followed by filtration through a Cameo filter (Fisher

Scientific, Pittsburgh, PA) to remove suspended silica gel and lyophilization.

PSM isolation

PSM was isolated from egg SM by reverse-phase high-performance liquid

chromatography (HPLC) (25). In brief, egg SM was run through a dual-pump

HPLC setup (Beckman Coulter, Fullerton, CA) using an analytical reverse-

phase column (5-mm particle size, 250 mm 3 10 mm) (Alltima C-18 RP;

Alltech Associates, Deerfield, IL) and methanol with 6 vol % water as the

eluent (4.2 mL/min at 40�C). Purity of the PSM obtained was verified by
1H-NMR spectroscopy and mass spectrometry.

2H-NMR sample preparation

Lipid mixtures (75–90 mg total lipid) comprised of POPE/PSM* (1:1 mol),

POPE/PSM*/cholesterol (1:1:1 mol), PDPE/PSM* (1:1 mol), and PDPE/

PSM*/cholesterol (1:1:1 mol) were codissolved in chloroform. The organic

solvent was evaporated under a gentle stream of argon followed by vacuum

pumping to ensure removal of solvent traces. Each lipid mixture was hy-

drated to 50 wt % with 50 mM Tris buffer (pH 7.5) and vortexed vigorously.

Deuterium depleted water (;2 mL) was added to allow measurement of pH,

which was adjusted to 7.5. Three lyophilizations in the presence of excess

deuterium depleted water were then performed to remove naturally abundant
2HHO. After finally hydrating to 50 wt %, the resultant samples were

transferred to a 5-mm NMR tube that was sealed with a Teflon-coated plug.

They were stored at �80�C and equilibrated at room temperature before the

experiments. Precautions to prevent oxidation were taken throughout sample

preparation. All manipulations were performed in an argon atmosphere

within a homebuilt glovebox; buffer and deuterium depleted water were

degassed thoroughly, and exposure to light was minimized (22).
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2H-NMR spectroscopy

Solid-state 2H-NMR experiments were performed on a homebuilt spec-

trometer operating at 27.6 MHz with a super-conducting magnet (Nalorac

Cryogenics, Martinez, CA) operating at 4.2 T (26). A computer (Compaq,

Houston, TX) controlled the spectrometer. Pulse programming was accom-

plished with an in-house assembled programmable pulse generator, while

signals were acquired in quadrature using a digital oscilloscope (R1200 M

dual channel; Rapid Systems, Seattle, WA). Sample temperature was regu-

lated to 60.5�C by a temperature controller (1600 Series; Love Controls,

Michigan City, IN). A phase-alternated quadrupolar echo sequence (90�x �
t� 90�y� acquire� delay)n that eliminates spectral distortion due to receiver

recovery time was implemented to collect spectra (27). Unless otherwise

stated, spectral parameters were 90� pulse-width �6 ms; separation between

pulses t ¼ 50 ms; delay between pulse sequences¼ 1.0 s (gel phase) or 1.5 s

(liquid crystalline phase); sweep width ¼ 6250 kHz (gel phase) or 6100

kHz (liquid crystalline phase); dataset ¼ 2 K; and number of transients ¼
2048.

Analysis of 2H-NMR spectra

First moments M1 were calculated from 2H-NMR spectra for PSM* in POPE/

PSM* (1:1 mol), POPE/PSM*/cholesterol (1:1:1 mol), PDPE/PSM* (1:1:1

mol), and PDPE/PSM*/cholesterol (1:1:1 mol) mixtures with the following:

M1 ¼
RN

�N
jvjf ðvÞdvRN

�N
f ðvÞdv

; (1)

where v is the frequency with respect to the central Larmor frequency v0 and

f ðvÞ is the lineshape (28). In practice the integral was a summation over the

digitized data. The expression in the following:

M1 ¼
pffiffiffi

3
p e

2
qQ

h

� �
jSCDj (2)

relates M1 to the SCD of the perdeuterated palmitoyl amide side chain via the

static quadrupole coupling constant ðe2qQ=hÞ ¼ 167 kHz in the lamellar

liquid crystalline phase.

Spectra were also fast Fourier transform depaked to enhance resolution in

the lamellar liquid crystalline phase (26). This numerical procedure extracts a

spectrum from the powder pattern signal that is representative of a planar

membrane of single alignment. The depaked spectra consist of doublets with

quadrupolar splittings DnðuÞ that equate to order parameters by the follow-

ing:

DnðuÞ ¼ 3

2

e
2
qQ

h

� �
jSCDjP2ðcosuÞ; (3)

where u ¼ 0� is the angle the membrane normal makes with the magnetic

field and P2ðcosuÞ is the second-order Legendre polynomial. Smoothed

profiles of order along the perdeuterated palmitoyl amide side chain then

were constructed on the basis of integrated intensity assuming monotonic

variation toward the disordered center of the bilayer (29). Constraints

imposed on the initial orientation of the chain render the C2 position an

exception to this assumption, and SCD values there were assigned on the basis

of intensity and comparison with previous work on selectively deuterated

analogs of PSM (30).

DSC

DSC experiments were conducted as described previously (31). The prepa-

ration of aqueous dispersions of 0.5 wt % POPE/PSM (1:1 mol), POPE/PSM/

cholesterol (1:1:1 mol), PDPE/PSM (1:1 mol), and PDPE/PSM/cholesterol

(1:1:1 mol) in 10 mM phosphate buffer (pH 7.4) was similar to that used to

prepare the NMR samples, except that lyophilization to remove natural abun-

dance 2HHO was unnecessary. Degassing in particular was critical because

dissolved gases have the potential to attack PUFA and contribute noise to

high-sensitivity calorimetry measurements. Heating and cooling scans for

500-mL samples were run at 0.125�C/min from �10�C to 60�C against a

lipid-free control buffer on a multicell differential scanning calorimeter

(Calorimetry Sciences, Lindin, UT). Only the cooling scans are presented,

although data derived from both scans appeared nearly identical. Baseline

subtraction was performed with CpCalc version 2.1 (Applied Thermody-

namics, Longwood, FL) software, and analysis of endotherms was carried

out using graphing software (Origin 7.0; OriginLab, Northampton, MA).

RESULTS

Phase behavior

2H-NMR

Solid-state 2H-NMR spectra for 50 wt % aqueous dispersions

of POPE/PSM* (1:1 mol), PDPE/PSM* (1:1 mol), POPE/

PSM*/cholesterol (1:1:1 mol), and PDPE/PSM*/cholesterol

(1:1:1 mol) in 50 mM Tris (pH 7.5) were obtained as a

function of temperature to study the phase behavior of the

perdeuterated sphingolipid in lipid mixtures with OA- and

DHA-containing PE in the absence and presence of choles-

terol. The spectra were collected from �30�C to 50�C. This

range of temperature encompasses the gel to liquid crystalline

transition for single component membranes of PSM at 41�C

(32), POPE at 25.5�C (22), and PDPE at 2.2�C (22). Only one

study of PSM* has been published to date, which used mem-

branes aligned between glass slides to improve spectral res-

olution (30). We use multilamellar dispersions and apply

lineshape analysis to observed powder patterns that are com-

prised of a superposition of signals from the random orien-

tational distribution of membranes that exists within a sample.

Representative examples of the spectra for POPE/PSM*

(1:1 mol) are shown in Fig. 1 (left panel). They display

changes in the spectral shape that accompany the transition

between gel and liquid crystalline states as the suspension is

heated. The wide, relatively featureless spectrum with edges

at 663 kHz that was recorded at �23�C is typical of a

lamellar gel phase (Fig. 1 a). The [2H31]16:0 chains of PSM*

are rigid, and their slow rotational diffusion confers nonaxial

symmetry on the spectral shape (17). On raising the tem-

perature, additional molecular motions are introduced that

result in spectral narrowing. Inspection of the spectrum at

12�C reveals that, although still broad and gel-like, there is

less intensity in the wings (Fig. 1 b). At higher temperature,

shoulders around 620 kHz appear superposed on the broad

gel component and grow at the expense of the broad com-

ponent that has disappeared by 27�C (Fig. 1 c). The shoulders

indicate the initiation of fast axial rotation for PSM* at the

onset of its transition to the liquid crystalline phase within the

mixture with POPE. As shown by the spectrum observed at

52�C that characterizes the lamellar liquid crystalline state

(27), a further increase in temperature leads to the resolution

of peaks within the spectrum (Fig. 1 d). Rapid isomerization
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about C–C bonds in the [2H31]16:0 chains of PSM* is re-

sponsible. A superposition of doublets with similar splitting,

corresponding to the plateau region of relatively constant

order in the upper part of the chain, produces the well-defined

edges at 619 kHz. Less-ordered methylenes in the lower part

of the acyl chain primarily give rise to doublets with dis-

similar splitting that appear as the individual peaks within the

spectrum, whereas the highly mobile terminal methyl is

represented by the central pair of peaks.

Fig. 1 (right panel) presents spectra for a 50 wt % aqueous

dispersion of POPE/PSM*/cholesterol (1:1:1 mol) in 50 mM

Tris (pH 7.5) that illustrate the effect of cholesterol on the

phase behavior of PSM* in the OA-containing PE lipid

mixture. Although gel-like in form, substantial narrowing

due to the presence of cholesterol is apparent in the spectrum

at �23�C (Fig. 1 e). This spectral narrowing reflects the

sterol-induced disruption to the organized packing of acyl

chains in the gel state. Even greater perturbation is apparent

in the spectrum obtained at 12�C (Fig. 1 f). Whereas the

spectrum is entirely attributable to gel-phase lipid in the ab-

sence of cholesterol (Fig. 1 b), the spectrum for PSM* in the

mixture with POPE can be assigned completely to the lamel-

lar liquid crystalline phase after the addition of sterol (Fig.

1 f). The spectra observed for POPE/PSM*/cholesterol (1:1:1

mol) on heating to 27�C and 52�C (Fig. 1, g and h) are

similarly characteristic of the liquid crystalline state. There is

spectral broadening associated with a reduction in gauche-

trans isomerization along the fluid [2H31]16:0 chain of the

sphingolipid by the rigid steroid moiety; this is exemplified

by an increase from 619 to 626 kHz in the width of the sharp

edges that the spectra without (Fig. 1 d) and with (Fig. 1 h)

cholesterol possess at 52�C.

The spectra in Fig. 2 (left panel) were recorded for a 50

wt % aqueous dispersion of PDPE/PSM* (1:1 mol) in 50 mM

Tris (pH 7.5) (1:1) under the same experimental conditions

used with the spectra shown for POPE/PSM* (1:1 mol) in

Fig. 1. Differences in the phase behavior of PSM* when

mixed with DHA- versus OA-containing PE are revealed by

comparing the spectra. The lineshape for PDPE/PSM* (1:1

mol) (Fig. 2 a), as for POPE/PSM* (1:1 mol) (Fig. 1 a), is gel-

like at �23�C. Greater restriction to chain motion is implied

for PSM* in the mixture with PDPE by enhanced intensity in

the wings of the spectrum. At 12�C, the spectrum for PDPE/

PSM* (1:1 mol) (Fig. 2 b), unlike POPE/PSM* (1:1 mol)

(Fig. 1 b), no longer contains the shoulders at 663 kHz that

designate gel phase. Instead, a component of width 625 kHz

representing methylene groups undergoing axial rotation

together with a central methyl component comprises the

entire spectrum. An additional rise in temperature introduces

gauche-trans isomerization into the perdeuterated chain of

PSM* and leads to the appearance of individual peaks within

the methylene component of the spectrum acquired at 27�C

(Fig. 2 c). These peaks become better resolved on heating,

resulting in the observation of the characteristic liquid crys-

talline powder pattern at 52�C (Fig. 2 d). The spectra for

PSM* in the mixed membrane with polyunsaturated PDPE at

these latter two temperatures resemble those seen with POPE

at the equivalent temperatures (Fig. 1, c and d).

In Fig. 2 (right panel), 2H-NMR spectra that were acquired

for an aqueous dispersion of PDPE/PSM*/cholesterol (1:1:1

mol) in 50 mM Tris buffer (pH 7.5) demonstrate how adding

cholesterol affects the phase behavior of PSM* in the DHA-

containing PE mixed membrane. They are qualitatively

similar to the spectra seen for POPE/PSM*/cholesterol (1:1:1

mol) (Fig. 1, right panel). As in the OA-containing PE

mixture, the response to sterol consists of a disordering and

ordering of gel-state and liquid crystalline–state PSM*, re-

spectively. Compared to the spectrum for PDPE/PSM* at

�23�C (Fig. 2 a) that is typical of solely gel phase, a spectral

component with shoulders at 625 kHz, indicating the onset

of fast axial rotation for the perdeuterated [2H31]16:0 chain of

PSM*, is apparent on the broad gel-like background when

cholesterol is present (Fig. 2 e). The spectrum becomes

completely liquid crystalline–like on heating to 12�C (Fig.

2 f), displaying the peaks within the methylene envelope that

signify rapid isomerization. Such peaks are not discernible at

the corresponding temperature in the spectrum obtained in

FIGURE 1 2H-NMR spectra for a 50 wt % aqueous dispersion in 50 mM

Tris buffer (pH 7.5) of POPE/PSM*(1:1 mol) (left panel) and POPE/PSM*/

cholesterol (1:1:1 mol) (right panel). Spectra were recorded at�23�C (a and

e), 12�C (b and f), 27�C (c and g), and 52�C (d and h).

206 Soni et al.

Biophysical Journal 95(1) 203–214



the absence of sterol (Fig. 2 b) and, as illustrated by the

spectra at 27�C (Fig. 2 c) and 52�C (Fig. 2 d), do not appear

and subsequently grow in resolution until a higher tempera-

ture is reached. In contrast, the spectrum for PDPE/PSM*/

cholesterol (1:1:1 mol) changes little other than modestly nar-

rowing over the same temperature interval (Fig. 2, g and h).

The differential in spectral width (625 kHz vs. 618 kHz)

with (Fig. 2 h) and without (Fig. 2 d) cholesterol at 52�C is

symptomatic of the sterol-induced increase in order for liquid

crystalline PSM* in PDPE/PSM* (1:1 mol).

The spectra shown in Figs. 1 and 2 are representative of

data obtained in each case over a temperature range that

extends from �30�C to 50�C. They illustrate the sensitivity

of spectral lineshape to membrane phase. To quantify the

shape of all of the spectra, and thereby monitor phase be-

havior, first moments M1 were calculated according to Eq. 1;

they are plotted against temperature in Fig. 3 for POPE/

PSM* (1:1 mol) and for PDPE/PSM* (1:1 mol) in the ab-

sence and presence of cholesterol (1:1:1 mol). Slowly vary-

ing moments of magnitude M1 . 103104 s�1 (signifying gel

phase) and , 83104 s�1 (signifying liquid crystalline phase)

were measured for POPE/PSM* (1:1 mol) at temperatures

,19�C and .24�C, respectively (Fig. 3 a). The sharp drop in

the value of M1 that accompanies the transition between

states is ;5�C in width and centered at 22.5�C. No discon-

tinuity in the variation of M1 with temperature remains for

PSM* in the OA-containing PE mixture after the addition of

cholesterol (Fig. 3 a). A broadening of the phase transition to

near elimination is indicated by M1 values that gradually

decrease from 10:5� 8:73104 s�1 over the entire �30�C–

50�C span of temperature studied.

The variation with temperature of the first moments M1

plotted for PDPE/PSM* (1:1 mol) (Fig. 3 b) takes the same

form as that observed for POPE/PSM* (1:1 mol) (Fig. 3 a).

There is an abrupt reduction in the M1 value centered at

13.7�C and ;4�C in width that is indicative of a precipitous

increase in molecular motion. The moments otherwise vary

slowly from 13.4 3 104 s�1 at �32�C to 10.4 3 104 s�1 at

12�C and from 8.2 3 104 s�1 at 15�C to 6.2 3 104 s�1 at

52�C. It should be noted that, in the region where the dra-

matic change occurs most markedly (at 12�C), the moments

depend on the delay time t between the two 90� pulses in the

quadrupolar echo sequence. The values plotted there were

obtained by extrapolation to zero delay of M1 measured as a

function of t. We attribute this behavior to the presence of

(intermediate) exchange of PSM* between motionally dis-

tinct environments in the PDPE/PSM* mixture on a time-

scale comparable to the delay between pulses. As with POPE/

PSM* (Fig. 3 a), the moments presented in Fig. 3 b for PSM*

in the DHA-containing mixed membrane no longer exhibit a

discontinuity on the addition of 1:1:1 mol cholesterol. They

slowly fall from 10:33104 s�1 at �32�C to 8:2310�4s�1 at

52�C. The small range of the M1 values is consistent with a

sterol-associated smearing out of changes in molecular or-

ganization with temperature.

DSC

DSC cooling scans for 0.5 wt % aqueous dispersions of

POPE/PSM (1:1 mol) (Fig. 3 c) and PDPE/PSM (1:1 mol)

(Fig. 3 d) in 10 mM phosphate buffer (pH 7.4) are included in

Fig. 3 for purposes of comparison. The scan for POPE/PSM

(1:1 mol) consists of an endotherm that peaks at 25.8�C and is

2.7�C in width at half height (Fig. 3 c). It closely resembles

the scan recorded using egg SM instead of PSM in our earlier

work (17); on the basis of this similarity, the broad endotherm

is interpreted as a superposition of two transitions ascribed to

POPE-rich/SM-poor and POPE-poor/SM-rich regions that

possess very similar transition temperatures. Consistent with

this interpretation, the mid-point in the discontinuity of the

spectral moments measured in this study for the melting of

PSM* in POPE/PSM* (1:1 mol) at 22.5�C (Fig. 3 a) is close

to that measured previously for POPE* in POPE*/egg SM

(1:1 mol) at ;23�C (17). The temperature for the peak of the

FIGURE 2 2H-NMR spectra for a 50 wt % aqueous dispersion in 50 mM

Tris buffer (pH 7.5) of PDPE/PSM* (1:1 mol) (left panel) and PDPE/PSM*/

cholesterol (1:1:1 mol) (right panel). Spectra were recorded at -23�C (a and

e), 12�C (b and f), 27�C (c and g), and 52�C (d and h).
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composite endotherm lies slightly above the temperatures

identified from NMR. A lowering by 3�C–4�C of the tran-

sition temperature due to perdeuteration (30) is likely re-

sponsible for the difference. No endotherm is observed on

addition of cholesterol at 1:1:1 mol concentration (data not

shown), in agreement with the behavior previously reported

for POPE/egg SM/cholesterol (1:1:1 mol) (17).

The cooling scan for PDPE/PSM (1:1 mol) shown in Fig.

3 d, in contrast to POPE/PSM (1:1 mol) (Fig. 3 c), displays

two separate endotherms, as we previously observed with

PDPE/egg SM (1:1 mol) (17). The peak temperature of the

lower transition assigned to a PDPE-rich/PSM-poor phase is

11.6�C, whereas that of the higher transition assigned to a

PDPE-poor/PSM-rich phase is 26.8�C. The temperature of

the former transition is near that of an abrupt drop in first

moment recorded at ;7�C for PDPE* in PDPE*/egg SM (1:1

mol) in our earlier work (17). The latter transition, however,

is much higher in temperature than the precipitous drop

centered at 13.7�C revealed in this study by spectral moments

for PSM* in PDPE/PSM* (1:1 mol) (Fig. 3 b). This diver-

gence, which is too great to be explained by isotopic sub-

stitution, is due to the inherently different nature of the two

types of measurement. Whereas the transition detected by

DSC directly represents the excess specific heat absorbed

when lipid acyl chains melt, other molecular motions can

lead to the narrowing of NMR spectra reflected in a reduction

in moment. This issue will be discussed later. Addition of

cholesterol in 1:1:1 mol eliminates both endotherms (data not

shown), as was observed in a similar manner when the same

concentration of cholesterol was added to PDPE/egg SM (1:1

mol) (17).

Acyl chain order

The liquid crystalline phase is representative of the biological

state of lipid molecules. In this phase, during which rapid

reorientation of lipid molecules results in spectra sympto-

matic of axially symmetry, the first moment M1 calculated

from 2H-NMR spectra for perdeuterated lipid chains is

related to the SCD for the entire chain via Eq. 2. Table 1 lists

the SCD values obtained at 35�C for POPE/PSM* (1:1 mol),

POPE/PSM*/cholesterol (1:1:1 mol), PDPE/PSM* (1:1

mol), and PDPE/[2H31]PSM*/cholesterol (1:1:1 mol). In-

spection reveals that, as expected, cholesterol restricts the

molecular motion of PSM* in both POPE/PSM* and PDPE/

PSM*. In the former, mixture order increases by D�SCD ¼
0:059 from �SCD ¼ 0:237 to 0.296, whereas in the latter mix-

ture, order increases by D�SCD ¼ 0:064 from �SCD ¼ 0:227

to 0.291.

The relatively modest distinction between the response of

the molecular organization of SM to the addition of sterol in

the two systems contrasts with the markedly different in-

crease in order revealed for the PE component by �SCD values

for POPE*/egg SM (1:1 mol) and PDPE*/egg SM (1:1 mol)

(4), which also are included in Table 1. The data demonstrate

that, although the [2H31]16:0 sn-1 chain of POPE*

(�SCD ¼ 0:167) in POPE*/egg SM (1:1 mol) and PDPE*

(�SCD ¼ 0:165) in PDPE*/egg SM (1:1 mol) possesses almost

identical order, there is an appreciable differential in the

effect of cholesterol (1:1:1 mol). Whereas D�SCD ¼ 0:099

characterizes the elevation in order of the OA-containing PE

owing to the sterol, the corresponding change of D�SCD ¼
0:043 for the DHA-containing PE is substantially less.

FIGURE 3 Variation of the first moment M1 as a func-

tion of temperature for (a) POPE/PSM* (1:1 mol) in the

absence (solid squares) and presence (solid circles) of

cholesterol (1:1:1 mol), and (b) POPE/PSM* (1:1 mol) in

the absence (solid squares) and presence (solid circles) of

cholesterol (1:1:1 mol). M1 is plotted logarithmically for

clarity and the ‘‘X’’ designates the midpoint of the sharp

drop in moment observed when the sterol is absent. DSC

cooling scans for (c) POPE/PSM (1:1 mol) and (d) PDPE/

PSM (1:1 mol). The scans are inverted so that transitions

appear as positive peaks.
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To elaborate on the distribution of order along the per-

deuterated [2H31]16:0 amide chain of PSM* in the mixed

membranes, the NMR signals were fast Fourier transform

depaked (26). The result of the application of this algorithm

to POPE/PSM* (1:1 mol) (Fig. 4, a and b) and PDPE/PSM*

(1:1 mol) (Fig. 4, c and d) in the absence and presence of

cholesterol (1:1:1 mol), respectively, at 44�C is shown in Fig.

4. The depaked spectra consist of an outermost composite

doublet, representing comparably ordered methylene groups

in the upper part of the chain, and a series of four doublets

with smaller splittings, predominantly corresponding to in-

creasingly less ordered methylene groups and terminal

methyl group in the lower portion of the chain. The vast

enhancement in resolution achieved relative to the powder

pattern facilitates the generation of a profile of order pa-

rameter with the aid of Eq. 3. The procedure, apart from the

C2 position, consists of assigning equal intensity to each

methylene group and assuming a continuous decrease of

order toward the terminal methyl (29). Constraints imposed

on the initial orientation of the amide chain of SM (30), like

with the sn-2 chain of phospholipids (33), render the C2

position an exception to the assumption that order varies

monotonically. The two motionally inequivalent deuterons at

this position possess different splittings that were assigned as

indicated in Fig. 4 on the basis of intensity and comparison

with work on selectively deuterated PSM (30).

The order parameter profiles created from the depaked

spectra in Fig. 4 are shown in Fig. 5. It is apparent that the

same general form is observed in each case. There is a plateau

region of approximately constant order in the upper portion

of the chain (C3–C12) followed by progressively less order

toward the bottom of the chain (C13–C16). This shape is

characteristic of phospholipids (34) and sphingolipids (30) in

the lamellar liquid crystalline phase. It is retained when

cholesterol is added to POPE/PSM* (1:1 mol) (Fig. 5 a) and

PDPE/PSM* (1:1 mol) (Fig. 5 b), with the increase in �SCD

calculated from M1 (Table 1) manifest as higher SCD values

throughout the chain.

DISCUSSION

A diverse collection of health benefits accrues from the die-

tary consumption of PUFA, the most notable of which is

DHA (35). We have hypothesized that changes in membrane

architecture in response to elevated levels of DHA-contain-

ing phospholipids are, in part, responsible for these benefits

(3–5). Our hypothesis juxtaposes the tremendously high

disorder of PUFA chains, for which close proximity to cho-

lesterol is incompatible, with the highly ordered conforma-

tion adopted by the mostly saturated chains of sphingolipids

in sterol-enriched lipid rafts. Due to the differential in affin-

ity, cholesterol further segregates into lipid rafts away from

PUFA-rich domains that form when polyunsaturated phos-

pholipids substitute for bulk less unsaturated phospholipids

in the plasma membrane. It is the concomitant movement of

signaling proteins into and out of rafts and the resultant

modulation of cell signaling to which the relief of disease

states by DHA is ascribed.

Mixtures of PDPE with SM and cholesterol are a model

membrane system that we have developed to characterize the

sorting of lipids into PUFA-rich/sterol-poor (nonraft) and

SM-rich/sterol-rich (raft) domains. Early DSC work on ter-

nary lipid/lipid/cholesterol mixtures indicated that choles-

terol associates with PE less strongly than with PC and SM

(36). This finding, as well as a diminished affinity for poly-

unsaturated phospholipids, was confirmed by an assay with

cyclodextrin of partition coefficients for cholesterol in uni-

lamellar vesicles (37). Unequivocal substantiation of aver-

sion for the sterol is provided by the substantially lower

solubility measured for cholesterol in PDPE (32 mol %)

compared to the equivalent DHA-containing PC and PE or

PC that does not possess a PUFA chain ($50 mol %) (21).

A greater propensity for PDPE* than for monounsaturated

TABLE 1 Average order parameters �SCD derived from 2H-NMR

spectra for POPE/PSM* (1:1 mol) and PDPE/PSM* (1:1 mol) in the

absence and presence of cholesterol (1:1:1 mol) at 35�C

No cholesterol With cholesterol

Membrane composition �SCD D�SCD

POPE/PSM* 0.237 0.296 0.059

POPE*/egg SMy 0.167 0.266 0.099

PDPE/PSM* 0.227 0.291 0.064

PDPE*/egg SMy 0.165 0.208 0.043

Corresponding values for POPE*/egg SM (1:1 mol) and PDPE*/egg SM

(1:1 mol) are included for comparison.
yValues taken from Wassall et al. (4)

FIGURE 4 Fast Fourier transform depaked spectra for POPE/PSM* (1:1

mol) in the absence (a) and presence (b) of cholesterol (1:1:1 mol), and for

PDPE/PSM* (1:1 mol) in the absence (c) and presence (d) of cholesterol

(1:1:1 mol) at 43�C. The arrows specify assignment of the C2 position.
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POPE* to separate into nonraft domains when mixed in 1:1:1

mol ratio with SM and cholesterol was inferred, in particular,

on the basis of 2H-NMR data gathered in an earlier study

(17). In this report, we investigate the same system from a

different perspective. We compare 2H-NMR spectra for

PSM* in 1:1:1 mol combination with PDPE or POPE and

cholesterol, complemented by DSC, to elucidate molecular

organization of the SM-component in the mixed model

membrane system.

Segregation into SM-rich and PE-rich
nanosized domains

The DSC results presented in Fig. 3 reveal two separate en-

dotherms in the scan for PDPE/PSM (1:1 mol) with peaks at

11.6�C and 26.8�C (Fig. 3 d), indicating that the two lipids

mix inhomogeneously. Because the transition temperatures

do not match those for single-component PDPE and PSM

membranes for which Tm ¼ 2.2�C (22) and 41�C (32), re-

spectively, the demixing is considered incomplete. The lower

temperature endotherm that is elevated 9�C with respect to

pure PDPE is assigned to a PE-rich/SM-poor phase, whereas

the higher temperature endotherm that is depressed 14�C

with respect to pure PSM is assigned to a PE-poor/SM-rich

phase. This assignment corresponds to the one made in our

previous DSC work on PDPE/egg SM (1:1 mol) (17). Al-

though, in contrast, only one endotherm with a peak at

25.8�C is observed for POPE/PSM (1:1 mol) (Fig. 3 c), in-

homogeneous mixing into PE-rich/SM-poor and PE-poor/

SM-rich domains also is concluded in mixtures with the

monounsaturated PE. Thermograms recorded for different

relative concentrations of lipid in the highly similar POPE/

egg SM system exhibit two individual transitions that overlap

at 1:1 mol ratio (17). We attribute this overlap to the higher

transition temperature of pure POPE (Tm ¼ 25.5�C) (22)

compared to PDPE. The result is a smaller differential in

temperature between the endotherms ascribed to PE-rich and

SM-rich phases for mixtures of SM with OA- compared with

DHA-containing PE.

Table 1 provides further insight into the segregation of PE

and SM into domains. Average order parameters �SCD derived

from 2H-NMR spectra at 35�C are shown for PSM* mixed at

1:1 mol with PDPE or POPE and for PDPE* or POPE*

mixed at 1:1 mol with egg SM, both in the absence and

presence of cholesterol at 1:1:1 mol concentration. Higher
�SCD values for SM than for PE are exhibited in each mixture,

exemplified by �SCD ¼ 0:291 for PSM* in PDPE/PSM*/

cholesterol versus �SCD ¼ 0:208 for PDPE* in PDPE*/egg

SM/cholesterol. The implied motional inequivalence is

consistent with our interpretation of the DSC data for PE/SM

mixtures in terms of separation into domains. Moreover, the

distinction in �SCD value that remains with PE/SM/cholesterol

(1:1:1 mol) mixtures for which the addition of cholesterol

broadens endotherms beyond DSC detection demonstrates

that the separation of PE and SM into domains persists in the

presence of the sterol.

Despite incomplete demixing of PE and SM, a superpo-

sition of individual spectral components from PSM* in

SM-rich/PE-poor and SM-poor/PE-rich domains is not dis-

cernible in the spectra for the various mixtures with PE and

cholesterol (Figs. 1 and 2). The same assessment applies to

our previously published spectra for PDPE* and POPE* in

corresponding mixtures with egg SM and sterol (17). The

implication is a fast exchange of lipids in and out of domains

occurring at a rate greater than the differential in quadrupolar

splitting between the environments when the mixed mem-

brane is entirely liquid crystalline. The resultant spectrum is

a time average in which the lipid contributes intensity that

is weighted according to its population in each domain.

Assuming that the spectra for deuterated SM and PE are

approximately representative of SM- and PE-rich environ-

ments, respectively, an upper estimate to the size of domains

then may be deduced with the aid of the average order pa-

rameters in Table 1. The calculation employs 0.08 for the

difference in �SCD value between domains, referring to PDPE/

PSM*/cholesterol versus PDPE*/egg SM/cholesterol for

which the divergence is greatest and would yield the most

generally applicable estimate for domain size. This difference

in �SCD equates to a difference of Dy ¼ 10 kHz in average

FIGURE 5 Order parameter profiles generated from depaked spectra for

(a) POPE/PSM* (1:1 mol) in absence (solid circles) and presence (open

circles) of cholesterol (1:1:1 mol), and for (b) PDPE/PSM* (1:1 mol) in

absence (solid circles) and presence (open circles) of cholesterol (1:1:1 mol)

at 43�C.
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splitting, according to which the lifetime for the residency

of lipid molecules in a domain must be less than t ¼
ð2pDnÞ�1 ¼ 2x10�5 s: The exchange of lipids between do-

mains is presumed to be mediated by lateral diffusion with

D ;5 3 10�12 m2s�1 (38), so that an upper limit of ,20 nm

is placed on the radius of domains via the root mean-square

displacement r ¼ ð4DtÞ1=2
associated with the lifetime. Such

domains, if treated as circular, would contain ,1800 lipid

molecules of mean cross-sectional area 70 Å2 (22) in each

leaflet. They could certainly accommodate estimates of 52

and 75 for the number of PDPE and PSM molecules, re-

spectively, undergoing a cooperative transition evaluated on

the basis of the ratio of van ’t Hoff and calorimetric enthalpies

(39) from the transitions ascribed to PE-and SM-rich do-

mains in the DSC cooling scan for PDPE/PSM (Fig. 3 d).

The size obtained in this study for domains falls at the low

end of the 10–200 nm range reported for sphingolipid- and

sterol-enriched membrane rafts (13) and is comparable with

estimates for PUFA-rich patches in model membranes (6,40).

1-stearoyl-2-docosahexaenoylphosphatidylcholine (SDPC)/

cholesterol clusters ,25 nm in radius were identified in PC/

PE/PS (4:4:1 mol) membranes on the basis of an appraisal

of 2H-NMR data for perdeuterated analogs of each phos-

pholipid (6). 2H-NMR powder pattern spectra recorded for

1,2-diarachidonylphosphatidylcholine (DAPC)/1-stearoyl-2-

arachidonylphosphatidylcholine (SAPC)/[3a-2H1]cholesterol

(1:1:2 mol) were analyzed in terms of the partitioning of

DAPC and SAPC into regions that extend for ,16 nm,

the sterol preferentially sequestering away from the dipo-

lyunsaturated phospholipid (40). An assumption of fast

exchange of lipid back-and-forth between domains, as in this

work, is central to spectral interpretation in these previous

studies.

Exchange of SM among SM-rich/PE-poor and SM-poor/

PE-rich domains offers a possible explanation for the ap-

parent discrepancy in transition temperature identified by
2H-NMR spectral moments (Fig. 3 b) and by the DSC cool-

ing scan (Fig. 3 d) for mixtures with DHA-containing PE.

The abrupt drop in value of M1 for PSM* in PDPE/PSM*

centers on 13.7�C (Fig. 3 b). This temperature is 13�C lower

than that of the endotherm at 26.8�C assigned to the SM-rich

phase, but only just above that of the endotherm at 11.6�C

assigned to the PE-rich phase in DSC cooling scans for

PDPE/PSM (Fig. 3 d). We attribute the reduction in M1 to the

movement of PSM* between gel-like SM-rich/PE-poor and

liquid crystalline–like SM-poor/PE-rich regions. The de-

pendence on delay between pulses in the quadrupolar echo

sequence used to acquire data for M1 values in the vicinity of

the discontinuity in their temperature variation implies an

exchange rate that is intermediate in rate on a timescale

comparable to the delay time. Slower lateral diffusion is

presumably responsible. Only at higher temperatures that are

above those ascribed to the transition for the SM-rich/PE-

poor phase by DSC scans do the 2H-NMR spectra for PSM*

in PDPE/PSM* attain the resolution characteristic of the

liquid crystalline state (Fig. 2 c and d). Exchange of PSM*

between gel- and liquid crystalline–like phases does not

complicate spectral interpretation for POPE/PSM* because,

in contrast, the transitions due to PE-rich/SM-poor and PE-

poor/SM-rich phases coincide in temperature for 1:1 mol

mixtures with the OA-containing phospholipid (Fig. 3 c).

PUFA-cholesterol aversion excludes sterol from
DHA-containing PE-rich domains

The impact of cholesterol on the acyl chain order of each

component in the mixtures of OA- and DHA-containing PE

with SM (1:1:1 mol) is elaborated by the collation of average

order parameters �SCD shown in Table 1. An increase in �SCD

value for all membrane constituents due to sterol is apparent,

which is indicative of incorporation into SM-rich and PE-rich

domains for both systems. This effect is manifest throughout

the acyl chain, as demonstrated by the order parameter pro-

files shown for PSM* with POPE or PDPE in Fig. 5 and

previously reported for POPE* or PDPE* with egg SM (17).

The plateau region of slowly varying order in the upper

portion of the chain is elevated, and the overall shape of the

profile is retained. A significant difference in the pattern that

the cholesterol-induced change in average order DSCD has

undergone exists between the system containing the poly-

unsaturated phospholipid and the control containing the

monounsaturated phospholipid. There is a slightly larger rise

in order for PSM* in PDPE/PSM* (DSCD ¼ 0:064) than in

POPE/PSM* (DSCD ¼ 0:059). The differential, however, is

comparable with the uncertainty (60:005) that accompanies

the reproducibility (61%) typically encountered with the

measurement of first moments. In stark contrast, the SCD

values provided in Table 1 from our previous work exhibit a

substantially smaller increase due to the presence of sterol for

PDPE* in PDPE*/egg SM (DSCD ¼ 0:043) than for POPE*

in POPE*/egg SM (DSCD ¼ 0:099) (4).

To interpret the changes DSCD in average order due to

cholesterol listed in Table 1 in terms of the degree of local-

ization of the sterol into a domain, it is necessary to appre-

ciate how each lipid individually responds to the presence of

cholesterol. The ordering effect of a given concentration of

cholesterol on PDPE* and POPE* is comparable, whereas

SM (like PC) is more sensitive (41–43). In a previous study,

we measured a rise in �SCD by 0.04 when 50 mol % cholesterol

was added to PDPE* (41). Recognizing that the solubility

of the sterol in PDPE is ;30 mol % (21), the rise we observed

is similar to the increase of 0.05 in �SCD seen for POPE* with

30 mol % cholesterol (42). Increases of .0.1 in average order

due to 30 mol % sterol were exerted on PSM* (K. Beyer,

unpublished) and bovine brain SM, as detected with 5 mol %

1,2-dipalmitoylphosphatidylcholine (DPPC) perdeuterated

in the sn-1 chain as a probe (43). That the increase DSCD in

average order for PDPE* in PE/SM (1:1 mol) mixtures due to

cholesterol (1:1:1 mol) is less than half that for POPE* (Table

1), thus, implies a greater tendency for PDPE* than POPE* to
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segregate into PE-rich domains depleted in sterol. The

measurements performed on PSM* in this study, however,

belie the simple expectation that the opposite trend might

apply to the DSCDvalues for PSM* in the analogous PE/SM

mixtures. Only a slightly greater increase in order (0.064 vs.

0.059) due to cholesterol is evident for PSM* in the PDPE-

rather than the POPE-containing mixture, and the resultant

order for PSM* in both systems is close (Table 1). We

speculate that the effect of the sterol on the order of PSM* is

modulated by the presence of PE in the SM-rich domains.

Remarkably, the SM-rich, raft-like domains appear almost

equally ordered in the PDPE/PSM*/cholesterol and POPE/

PSM*/cholesterol membranes.

The net effect of DHA versus OA in the presence of

cholesterol is to accentuate the distinction in molecular or-

ganization between the environment within SM-rich (more

ordered) and PE-rich (less ordered) domains. Although the

difference in average order �SCD between the domains re-

vealed by Table 1 in the POPE/SM/cholesterol mixture is

0.030 and modest, the difference in the PDPE/SM/choles-

terol mixture is 0.083 and almost a factor of 3 bigger. These

figures, which underestimate the disparity due to fast ex-

change of lipid molecules between domains, correspond to a

differential of 11 and 33% (relative to the mean �SCD for a

mixture), respectively. Further, physical insight into the

molecular architecture of the domains is gleaned from �SCD by

invoking the following:

ÆLæ ¼ lð0:5 1 j�SCDjÞ (4)

to obtain the average length ÆLæ of [2H31]16:0 chains in a

bilayer, where l ¼ 19:1 Å is the length of the chain projected

onto the bilayer normal in the all-trans configuration (44,45).

The thickness of the bilayer in SM-rich and PE-rich domains

then may be estimated from the data in Table 1. There are two

important assumptions involved: 1), the dominant contribu-

tion to the population-weighted average �SCD values produced

by fast exchange between domains comes from the environ-

ment in which a lipid is enriched, and 2), ÆLæ approximates to

the thickness of a monolayer. The calculation yields esti-

mates of 30.4 Å for PSM* and 29.2 Å for POPE* in their

1:1:1 mol mixtures with cholesterol, as opposed to 30.2 Å for

PSM* and 27.0 Å for PDPE* in their 1:1:1 mol mixtures with

cholesterol. Replacing OA with DHA, thus, increases the

divergence in thickness between SM-rich and PE-rich do-

mains from 1.2 to 3.2 Å.

We attribute the difference in response to cholesterol of the

DHA- and OA-containing PE mixtures with SM to the mu-

tual aversion that PUFA and sterol possess. A graphic de-

piction of our explanation is shown in Fig. 6. In the absence

of cholesterol, PDPE and SM segregate into nanosized do-

mains that are PE-rich and SM-rich (Fig. 6, top left). When

cholesterol is added, it preferentially partitions into SM-rich

domains and tends to further exclude PDPE into PUFA-rich

domains (Fig. 6, top right). This partitioning is due to the

differential affinity the sterol possesses for PDPE versus SM,

not because it has exceeded its solubility in PDPE-rich do-

mains. Exclusion of PUFA-containing phospholipid driven

by incompatibility with the highly ordered matrix formed by

SM and cholesterol is an alternative mechanism that would

produce the same effect, which was recently proposed by

Lindblom and coworkers (46) in a study of lipid diffusion in

PC/SM/cholesterol mixtures. Accordingly, the polyunsatu-

rated phospholipid has less contact with the sterol and ex-

periences only a modest increase in order. POPE and SM

similarly separate into PE-rich and SM-rich domains in a

membrane devoid of sterol (Fig. 6, bottom left), although

FIGURE 6 A graphic depiction of DHA versus OA-

induced lateral segregation of lipid molecules in PE/SM/

cholesterol (1:1:1 mol) membranes. PE-rich and SM-rich

domains coexist in PDPE/SM (top left) and POPE/SM

(bottom left) membranes in the absence of sterol. On

addition of cholesterol to PDPE/SM, the sterol is preferen-

tially taken up into SM-rich domains for which it has high

affinity and further displaces DHA for which it has low

affinity. The formation of DHA-containing PE-rich/choles-

terol-poor nonraft and SM-rich/cholesterol-rich raft do-

mains is the result (top right). On addition of cholesterol

to POPE/SM, in contrast, the sterol incorporates into

OA-containing PE-rich, albeit to a less extent, as well as

SM-rich domains (bottom right). The tremendous aversion

of cholesterol for DHA is not possessed by OA.
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probably not to the same extent as with DHA. When cho-

lesterol is introduced, however, the diminished affinity it has

for monounsaturated POPE relative to SM is less pronounced

than for PDPE. The sterol mixes into OA-containing PE-rich

domains as well as into SM-rich domains (Fig. 6, bottom
right). By virtue of greater proximity, there is then a sub-

stantial sterol-associated increase in order for the monoun-

saturated phospholipid in the mixture. Consistent with this

behavior, fast exchange of sterol between two equally pop-

ulated pools was also inferred from 2H-NMR spectra

recorded for a deuterated analog of cholesterol added to

1-plamitoyl-2-oleoylphosphatidylcholine (POPC)/brain SM

(1:1:1 mol) (47). Quantitative estimation of the partitioning

of cholesterol between domains, an issue complicated by

incomplete demixing of SM and PE and their likely redis-

tribution following the introduction of sterol, cannot be made

with the mixtures studied in our article.

CONCLUSION

The coexistence of PUFA-rich/cholesterol-poor (nonraft)

and SM-rich/cholesterol-rich (raft) domains within plasma

membranes has the potential to be the molecular origin, in

part, of the multitude of health benefits associated with die-

tary consumption of fish oils (5). Movement of signaling

proteins between these organizationally distinct domains

then modulates cellular events via changes in protein con-

formation. The results of this study establish the lipid-driven

formation of such domains. When PDPE substitutes for

POPE in PE/SM/cholesterol mixtures, the differential in or-

der and membrane thickness between PE-rich and SM-rich

domains becomes approximately 33 greater.
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