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Fuzzy Sets and Decision Theory 
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Via Toiano, 2 (80072) Arco Felice, Naples, Italy 

The problem of making decisions to classify the objects of a certain universe 
into two or more suitable classes has been considered in the setting of fuzzy 
sets theory. A measure of the total amount of uncertainty that arises in making 
decisions has been proposed in the general case. This quantity reduces to the 
"entropy" of a fuzzy set in the case of two classes. Other quantities which 
play a relevant role in this theory are the "energy" and the "effective power" 
of a fuzzy set, defined as 

N N 

Z-,J, and * ES,, 
t=1 l~ l  

respectively, where w is a nonnegative weight function and ¢ a nonnegative 
constant. If go = constant and ~ q= 0, the energy is proportional to the effec- 
tive power and, therefore, to the "power" of the fuzzy set. The maximum of 
the uncertainty has been calculated in some cases of interest, keeping constant 
the total energy and effective power. In particular the Maxwell-Boltzmann, 
Fermi-Dirac, and Bose-Einstein distributions are derived. Some applications 
to decision theory are considered in the case of both deterministic and prob- 
abilistic decisions. Finally, the analogies that exist between the previous 
concepts and the thermodynamic ones are discussed. 

1. INTRODUCTION 

T h e  theory of "making decisions," that plays a fundamental role in 

many scientific branches, has been mainly developed in the setting of 

probability theory. Although probabilistic decision-methods (see, for instance, 

Wald (1971)) often work very well in many fields, such as pattern recognition, 
there exist cases in which these methods are ineffective. This  occurs whenever 

the standard probabilistic formalism is not appropriate for the description 

of the considered situations; for instance, when the latter are not really 

random so that the introduction of probabilities as measures of empirical 

frequencies in a large number  of identical experiments may become meaning- 
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less. Often the "source" of uncertainty that arises irt decision-making may 
be in part or even completely deterministic (De Luca and Termini, 1972). 

In  this paper we shall provide a general analysis of such deterministic 
sources of uncertainty, in the setting of "fuzzy sets" theory. As we will 
try to show, this theory introduced by Zadeh (1965) is of great importance 
in decision theory where, as we said above, sometimes the usual concepts 
and methods of probability theory either are not appropriate or do not yield 
relevant results. 

In a previous paper (De Luca and Termini, 1972) a global measure of 
the "degree of fuzziness" of a fuzzy set has been proposed. This quantity 
has been called "entropy" of a fuzzy set even though its meaning is quite 
different from the one of Shannon's information theory (Shannon and Weaver, 
1962). Indeed no random experiments are needed in order to define it. 
This entropy can also be interpreted as measuring the total "amount of 
uncertainty" that arises if, considering a fuzzy set defined on a class of 
objects, one has to make decisions in order to attribute to them the "presence" 
or "absence" of a certain property. It  is also possible to associate to this 
entropy a "quantity of information" received when the decisions have 
been taken, so that the previous uncertainty vanishes. 

This approach to fuzzy sets theory has been extended providing a measure 
of uncertainty in the case of more properties, which satisfy a condition 
called of "orthogonality" (see also Capocelli and De Luca, 1972b). Moreover, 
other "thermodynamic" concepts such as the "energy" or the "effective 
power" of fuzzy sets are introduced. The maximum of the uncertainty 
has been calculated in some cases of interest keeping constant the total 
energy and the effective power of the fuzzy sets thus obtaining, in particular, 
the Maxwell-BoItzmann distribution and the intermediate statistics, particular 
cases of which are the Fermi-Dirac and the Bose-Einstein distributions. 
Even though these distributions are derived in a way similar to the one 
followed in statistical-thermodynamics, the interpretation of the quantities 
involved differs from the particle-physical one and, generally, does not 
require a probabilistic-frequentistic context. 

I t  seems to us that by means of the concepts of "energy" and "power," 
it is possible to give a thermodynamic-like treatment of the "fuzziness" 
which has not been done so far for the "information process" in the setting 
of Shannon's information theory, since a concept equivalent to thermo- 
dynamic energy has not been introduced. 

Some applications to decision theory are considered in the case of both 
deterministic and probabilistic decisions. In the latter the probability distribu- 
tion of the energy of the classical set obtained has an average value equal 
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to the energy of the fuzzy set and an upper bound for the variance proportional 
to the entropy. In conclusion the analogies that exist between our approach 
to fuzzy sets theory and thermodynamics are briefly discussed. 

2. MEASURABLE PROPERTIES 

One of the most typical "sources" of uncertainty in the classification 
of the objects of a certain universe into two or more classes occurs when 
the objects may enjoy to a different degree the properties which characterize 
the classes themselves. In this section we introduce a mathematical formalism 
that enables us to describe this kind of uncertainty which occurs very 
frequently in decision theory and, generally, is not related to random 
experiments. Indeed, here we are not considering objects which may belong 
to the given classes, and only to them, with certain probabilities, but objects 
which belong to either or none of the given classes (for instance, the grey 
objects which are neither white nor black). Of course, this uncertainty may 
be reduced or eliminated if one changes the language of the description 
by including in it new concepts or classes. As stressed in De Luca and 
Termini (1971), the previous situation very often occurs in making physical 
and cybernetical models: I f  we try to describe new situations in terms of 
some classical concepts one has to use a language that yields an unavoidable 
lack of information about the considered system. 

Let a set U be given and a property P defined in it. We denote by PI(U) 
and P#I(U) the subsets of U formed by the elements for which P is true 
and false, respectively. Let further Po(U) be a subset of P#I(U); we can 
then consider the property ~ ,P  defined in U as 

~P(x)  +-> x e Po(U). (2.1) 

I f  -raP denotes the complementary property of P, in U there results 

~-~P(x) -*  --~P(x); (2.2) 

whereas, the inverse implication is true only in the subset of U given by 
A(U) ==- Pl(V) c; Po(U). 

In this way by any subset Po(U) of P#I(U) we can obtain a further property 
~-~P such that if ,--~P is true P is false but the converse holds only in the 
subset A(U) of U. We shall now see how to specify a subset Po(U) of P~I(U ). 
To  this purpose, we assume that the elements of U can enjoy, to a different 
degree, the property P. Furthermore, we suppose we shall be able to provide, 
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for each element x of U, a measure of how much x enjoys the property P. 
Formally we can give a map 

~ :  u ~ [0, 1] (2.3) 

from U to the interval [0, 1] of the real line such that 

P(x) ~ (~be(x) =- 1). (2.4) 

For any x, 4Jp(x) is called a measure of the property P in x and interpreted 
as degree to which x enjoys the property P, or degree to which x belongs to 
the set PI(U). For this reason ~bp is also named membership function. If  
~bp(x) = 1 we say that the property P is "present" in x. I f  ~bp(x) = 0 we 
say that the property P is "absent" in x. In the following we shall identify 
Po(U) with the subset of P~I(U) formed by the elements of U in which 
the property P is absent. A property P defined in U, such that the previous 
assumptions are satisfied will be called "measurable" in U. If, in addition, 
we suppose that PI(U) is not empty, P will be said to be "completely 
measurable." 

In the following we shall confine ourselves to considering only the case 
when U is such that its elements enjoying neither P nor ~,~P have features 
"intermediate" between those of PI(U) and P0(U). We can mathematically 
express this circumstance by supposing that P and ~-~P are completely 
measurable and such that 

~~~(x) = 1 -- ~v(x), for all x ~ U. (2.5) 

Two measurable properties satisfying (2.5) will be named "orthogonal," 
rather than complementary. Indeed they are complementary, from a lattice- 
theoretic point of view, only in the subset A(U) of U; whereas, in A --  A(U), 
supposed to be nonempty, the condition P(x)v ~-~P(x) = T (v denoting 
the disjunction and T the property always true) is not satisfied but replaced 
by the condition on the measures (2.5). We can easily see that in U, ~-~(~P) 
is equivalent to P and that ~-~(-nP(x)) ~ -~(~-~P(x)) so that the two operations 
-7 and ~ do not commute except when x belongs to A(U), where --7 and ~-~ 
are equivalent. 

Let P and ~-~P be measurable in U; while we can decide, for any element 
x of U, whether x enjoys either P or -~P, this is possible for P and ~--~P 
only in the subset A(U) of U. This fact arises whenever, starting from a 
given universe A(U) =-- PI(U) u (~P) I  (U) on which two complementary 
properties P and ~--~P are defined, we enlarge A(U) by including other objects 
which enjoy neither P nor ~-~P. A noteworthy case is when P and ~.op 
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are completely measurable and the condition (2.5) holds: Tha t  is the added 
objects have intermediate features between those enjoying P and ~ P .  In  
such a situation if we have to decide whether to attribute an object x to 
PI (U)  or to P0(U), an "ambigui ty"  or "uncertainty" arises which is maximum 
when ~bp(x) takes the value 1/2 and decreases when ¢~(x) goes to 0 or 1; 
in these two cases the ambiguity vanishes and x ~ A(U).  

We remark that  generally one has to "measure"  the presence of a certain 
property P (that is, to evaluate the map ~bp) only over finite subsets of a 
given universe U. I f  I ~ {x 1 .... , XN} is such a subset, let us denote by f 
the restriction of ~b, to I, that is the map 

f : l ~  [o, 1] 

such that f (xk)  = ~b2,(x~) (h = 1,..., N).  We shall call f measure of P in I. 
In  general it is difficult to give an interpretation to f in I without taking 
Uinto  account. For instance, PI(I) or Po(I) or both could be empty. Moreover,  
the property P(I)  defined in U as P(I,  x) +-+ x ~ PI(I) might determine in U 
a completely measurable subproperty of P such that  the degree to which 
some elements o f / e n j o y  P(I)  is different with respect to the degree to which 
they enjoy P. T h e  same holds for ,-~P(1) defined in U as ~-~P(I, x) +-+ x ~ Po(I). 

However,  it is possible to interpret f (x i )  (i = 1 , . ,  N )  as the degree to 
which x i belongs to PI(I )  (or enjoys P(I))  if the measure ¢~(I) of the completely 
measurable property P(I)  restricted in I coincides with f ,  that  is 

ee(,)(xi) = ~be(xi) = f (x , ) ,  (i = 1 .... , N) .  

Furthermore,  to speak of ambiguity in a decision P(I ) ,  ~-~P(I) requires the 
validity in I of the conditiorz (2.5), which becomes 

~b~po)(x, ) = 1 - - e e ( x , )  ---- 1 - - f ( x , ) ,  (i = 1,..., N) .  

T h e  extension of the previous considerations to the case of M properties 
is straightforward. M measurable properties po,..., pM-a on U will be called 
orthogonal if their measure functions ¢0 ..... ¢~t-1 satisfy the conditions 

M--1 

2 eJ(x) = l, for all x ~ U. (2.6) 
j=O 

Moreover,  if the properties PJ ( j  = 0,..., M - -  1) are completely measurable 
and we have to attribute an object x to PI°(U) or Pll(U),..., or to PM-X(U) 
an uncertainty arises that is max imum when ~bJ(x) - -  1/M ( j  = 0,..., M - -  1) 

M--I 
and is 0 on the set A(U)  ~ 1.)~=o Plk(U) • In  such a case, f rom (2.6), only 
one of eJ(x) holds 1 all the others being 0. 
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To conclude this section, we stress that in order to introduce measures 
of uncertainty in decision-making, that will be the subject of the next 
section, we do not need further assumptions on the property measures ~b~ 
(j  = 0,..., M - -  1). However, we note that in many cases it is meaningful 
to compose the measurable properties in the following way: I f  P and Q 
are two measurable properties, so are the disjunctionP v Q and the conjunction 
P A Q with respect to the measures ~bvv o and ~be. o defined as 

~bevo(X ) ~ max{~bv(x), ~b o(X)}, 

~v,o(X) =~ min{~v(x), ~o(X)}, for all x E U. 
(2.7) 

The previous operations have been used by Zadeh (1965) to define union 
and intersection of fuzzy sets. 1 From (2.7)1 we see that, in place of the 
addition rule for probabilities, one has that the measure of a disjunction 
equals the largest of measures of components. In such a way it follows 
that, apart from interpretative problems, there are substantial differences 
between the previous formalism and the one of probability theory. 

3. MEASURE OF UNCERTAINTY 

Let us consider a finite subset I of a universal class U on which a certain 
number of completely measurable and orthogonal properties are defined. 
Our aim is to give a measure of the total amount of uncertainty that arises 
in deciding for every object of I which of the considered properties is 
enjoyed. We make the assumption that the next decisions are "independent" 
in the sense that any decision does not yield changes in the uncertainty 
present before the others. In the case of two properties a measure of the 
total uncertainty has been given in De Luca and Termini (1972) by means 
of the concept of entropy of a fuzzy  set. 

Subsequently, a generalization and extension of the previous measure 
to the case of more than two orthogonal properties has been proposed 
(Capocelli and De Luca, 1972b). Along this line, we shall consider here, 
in a more general and rigorous way, the problem of the measure of the 
uncertainty in decision-making in the setting of fuzzy sets theory. 

Let  P~ ( j  = 0,..., M --  1) be M completely measurable properties defined 
in U and f f  ( j  = 0,..., M --  1) their measures in I, which are fuzzy  sets 

1 An algebraic analysis of fuzzy sets which respect the previous operations and the 
relationships existing with probability theory can be found in De Luca and Termini 
(1970). 
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defined in L We shall denote by f the ~ad-tuple f0,..., fM-1 and by ~£¢(I) 
the class of all fuzzy sets definable in L We suppose that the properties 
PJ ( j  = 0,..., M - -  1) are orthogonal, so that for any element xi o f / ,  the 
fuzzy se t s f f  ( j  = 0,..., M -  1) satisfy the condition, 

M - I  

Z f ; (x i )  ~- 1, (i = 1,..., N ) .  (3.1) 
J=O 

For any integer M,  we now introduce the following functional 

N 

u ( / )  =- u(f°,... ,/M-O - ~ u(f,). (3.2) 
i=1 

N is the number  of elements of I and u(f~) is the function 

M-1 
u(/,) -= u(/?, . . . , / ,  ~-~) =- Y v(f/) ,  (3.3) 

i=0 

where f j  stands for f f (x i )  and v is a continuous strictly concave function 2 
(Hardy, Littlewood and P61ya, 1967) in the interval (0, 1) such that v(1) = 
v(O) = O. I t  is also possible to express v as v(x) = xL(1/x),  L being a con- 
tinuous concave function in [1, + o o )  such that L(1) = 0 and 

~ xLC1/x) = o. 

In  such a way (3.3) becomes 

M--1 

u(A ) = ~ fi~JL(1/ftO. (3.4) 
j=0 

L functions that satisfy the previous assumptions are, for instance, Lt(x ) = In x 
and L~(x) -~ 1 - -  1/x. 

In  these cases (3.4) becomes 

M - 1  

ul(f,) = -Y~ f / I n / /  (3.5) 

A measure like as (3.3), with v continuous and concave in (0, 1), has been recently 
considered by some authors within the framework of a statistical approach to pattern 
recognition problem (see, e.g., Vajda, 1969). 
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and 
M--1 

u2(fl ) = ~ f,J(1 --fiO, (3.6) 
j=O 

respectively. 
In the case M = 2, (3.5) reduces to S(fi)  where S(x) is Shannon's function 

- -x  In x - -  (1 - -  x) ln(1 --  x), and u ( f )  to the entropy of a fuzzy  set (De Luca 
and Termini,  1972) 

N N 

d( f )  -~ Z S(f i)  = - - Z  [ / i l n f i  + (1 - - / , )  ln(1 - - f i ) ] .  (3.7) 
i=I i=i 

Let  us now assume the universe U to be such to include, for all the 
properties P~ ( j  ----- 0,..., M -  1), elements which enjoy them to all possible 
degrees, such that (3.1) is verified; u(fi) , for every i, satisfies the property. 

Pl--for any i, one has 0 ~ u(f~) ~ L(M).  The value 0 is taken if, and 
only if, all f j ( j  = 0,..., M -- 1) equal O, except one which equals 1; the value 
L(M)  is taken if, and only if, f j  -- 1/M ( j  = 0,..., M --  1). 

We assume u(f~) as a measure of the uncertainty that arises in deciding 
which of properties p5 ( j  = 0,..., M -  1) is enjoyed by the object x i ,  
and u ( f )  as a measure of the total amount of uncertainty for all the decisions, 
in the hypothesis of independent decisions. 

Apart from the property /)1, which insures that the maximum of the 
uncertainty u(f~) is reached when all the degrees f j  ( j  = 0,..., M -- 1) are 
equal, in order for u ( f )  to be a "good" measure of uncertainty, one must 
verify that it decreases for any intuitively less ambiguous situation, such 
as the one obtained by increasing the maximum of t h e f j  ( j  = 0,..., M -- 1) 
and reducing all the others. 

We can prove that the following property holds. 

P~--I f  yi  (i = 0,..., ;VI r - -  1) and ~i (i -~ 0,..., M - -  1) are two sets of 
nonnegative numbers such that 

M--1 M--1 

i=O i=o  

andyO <~y~ ... <~yM-l, f f  < ~ j ( i  -~ 0,..., k ) , f f  ~ y ( j  -~ k + i,..., M -  I), 
that u ( f  0 < u(y). 

Indeed, the function v, being a continuous concave function in (0.1), 
has everywhere left and right derivatives v( and v /  both nonincreasing 
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and such that v((x)>/v/(x),  for aU x e (0, 1) (Hardy, Littlewood, and 
P61ya, 1967, Chapter 3, pp. 91-94). We can then derive that 

/e M - 1  

u(¢) -- u(y) ---- Z [of.f0 - -  v(y0] + Z [v(¢') - -  o(y')l 
i = 0  i= /e+ l  

;~ M--1 

v((y~) Z (29' --Y') + v/(y~) 2 (9' - -Y' )  
i=o  i=k+l  

M--* 

<~ v~'(y~) ~ -- y~ = O. 

In particular, if yi  = 1/M (i = 0,..., M - -  1) and 3~ ° = 0, y = 1/M -- 1 
(i = 1,..., M - -  1), it follows that L ( M -  1) ~ L(M) so that L(M) is a 
nondecreasing function of M. 

From (3.2) and P1 we have that, for all M and N, 

0 <~ u(f) <~ NL(M). 

We now wish to point out some further properties of the uncertainty 
u(f) that follow directly from definition (3.2). 

P3--u(f) = u(Pf) when Pf  denotes any permutation of the M-tuple 
(fO,...,fM-1). Moreover u( f )  = u(Qf) where Qf  denotes any M-tuple obtained 
from (fo,..., fM-1) by permuting the elements of L 

P4--Venoting by P( fO the power ~=lf~ j of the fuzzy set f f  (De Luca 
and Termini,  1972), one has from concavity of the function xL(1/x) 

u(f) <~ ~ P(fOL . (3.8) 
j=O 

Ps--Denoting by h(ff) (j = 0,..., M -- 1) the quantity 

N 

h(ff) =~ E T(fj),  (3.9) 
/=1  

having set 
T(x) ~ xL(1/x) + (1 - -  x)L(1/1 - -  x), 

one has 
M--1 

u(f) <~ ~ h(ff), 
5=0 

where the equality holds if and only if  u(f) = O. 

(3.10) 

(3.11) 
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I f  A and I are two subsets of U one can consider the uncertainties u(A,fA) 
and u(I, fi), where fA ~ ( fA°, . . . , f~ -1) and fx ~ (f1°,...,f~-l); fA t and fB j 
( j  = 0,..., M - -  1) denote the restriction of ~ to A and B, respectively. 
I f  A C_ I, from the definition (3.2) we get 

u(I, fi) = u(A,f~) -}- u ( I -  A,f,_~). (3.12) 

In particular we have 
u(I, / i)  = u(A,fA,  

where fs is a M-tuple of fuzzy sets defined in I such that f~ ~ f~ ill A and 
all the ]J vanish in I - -  A. 

Let us now make the following strong requirement on the total uncertainty 

u(f). 
Rl--for all the integers M and N the maximum of the total uncertainty 

in making N decisions on M orthogonal properties is equal to the maximum 
uncertainty in making one decision on M ~ orthogonal properties. 

L(YF) must then equal NL(M); in such a case it is easy to prove (c£. for 
instance, Khinchin (1957), pp. 10-12) that L(x) must be equal to ~ in x, 
where ~ is a positive constant. 

Many mathematical properties of the uncertainty u(f) that we shall 
analyze in the following and many aspects of the decision theory that is 
possible to develop, do not depend on this requirement, even though the 
use of the logarithm function often simplifies the mathematical formalism; 
in the following we shall always refer to the general expression (3.4) of the 
uncertainty, except in Sections 5 and 6. 

We conclude the section emphasizing that even if we assume L(x) = In x, 
the uncertainty u(f) we have introduced has a completely different meaning 
from Shannon's entropy since no random experiments are needed in order to 
define it. Indeed, u(f) is a measure of the total amount of uncertainty 
in making decisions on the objects of I ;  whereas, Shannon's entropy gives 
a measure of the (statistical) average uncertainty in foreseeing the event 
that will occur in a random experiment. 

4. ENTROPY, ENERGY, AND EFFECTIVE POWER oF A Fuzzy SET 

In this section we shall introduce some macroscopic quantities associated 
to the fuzzy sets such as "entropy," "energy," and "effective power" which 
allow us to interpret some properties of the uncertainty, introduced in 
the previous section, in a thermodynamic-like fashion. 

643123[5-5 
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This analogy with thermodynamics will appear more clear m Section 5 
where, in a context of decision theory, some classical and quantum distribu- 
tions are derived. Moreover, in Section 6 we shall see how the previous 
quantities play a relevant role in decision theory. 

L e t f  be a fuzzy set defined on a finite set I; we give the following definitions. 

DEFINITION 4.1. 
defined by (3.9), 

The entropy of f is the nonnegative functional h(f) 

N 

h(f) = ~ T(f,), (4.1) 
i=1 

where T is given by (3.10). 
From this definition it follows that the entropy of a fuzzy set is taken 

equal to the total uncertainty in making decisions in the case of two orthogonal 
properties P and ~-~P. If  L is equal to the logarithm function, h(f) reduces 
to the entropy d(f) given by (3.7). In the following, to avoid misleadings, 
we shall call d(f) logarithmic entropy off .  

Often it is more meaningful to refer, instead of to the entropy h(f), to 
the normalized entropy v(f) defined as 

v(f) -~ l h(f), (4.2) 

which gives a measure of the average uncertainty or uncertainty per decision. 

DEFINITION 4.2. If  W is a nonnegative weight function defined on I, 
the energy E(w, f )  of the fuzzy set f is the quantity (Capocelli and De Luca, 
1972a) 

N 

E(w,f) =-- Z w,f,. (4.3) 

DEFINITION 4.3. If  ¢ is a nonnegative constant the effective power o f f  
is the quantity 

P(C, f )  =- ~P(f), (4.4) 

where P(f) = ~N=zf , is the power of f .  
If  w is a constant then the energy is proportional to the power and, if 

q~ :/: 0, to the effective power. 
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In the following we shall call Will, fi  , and Ofi (i = I,..., N)  the energy, 
the power, and the effective power of the ith element, respectively. 

As discussed in De Luca and Termini (1972) the power of a fuzzy set 
is an extension to fuzzy sets of the concept of number of elements of an 
ordinary set. The  energy and the effective power of a fuzzy set are more 
general and useful concepts when the elements of I or the powers of some 
fuzzy sets can be differently weighted. As an example, let us consider a 
bundle of N wires each of which may or may not carry a signal of a fixed 
voltage amplitude. To each wire one can associate a variable x with values 
1 or 0 according to whether the wire is active or inactive• 

The quantity ~i=~ xi gives the total number of active wires; it coincides 
with the total amplitude of the signals carried by the bundle. I f  the wires, 
as in a threshold elements, go through a weight-system which changes 
the amplitude xi of the ith wire into wix i , the total amplitude, after the 

N 
weight-system is ~2~=1 wixi. Let us now suppose that there exist some 
"disturbances" or malfunctions in the wires so that the amplitudes of the 
signals carried by the wires are between 1 and 0. In  this case the bundle 
can be described by a fuzzy set and the total amplitude carried by the bundle 
coincides with the power P ( f )  and the energy E(w, f )  before and after 
the weight-system. 

Let us now suppose that instead of weighting the individual wires of 
a bundle, one weights the output lines 0, 1,..., M --  1 of a set of bundles, 
carrying the total amplitudes of each bundle measured by p(fo),  p(fl), . . . ,  
p ( f v -1) .  If  d2°,..., gpv-1 are the weights, the total amplitude of the set of 
bundles after the weight-system will be given by 

M-1 M--1 

Z 4 P(f = Z 
j=0 j=0 

that is it equals the sum of the effective powers P((~,fJ) (j = 0,..., M -- 1). 
In  this section we confine ourselves to the case when the weight function 

w of the energy of a fuzzy set is a constant w, so that the energy of a fuzzy 
set is measured by the effective power wP(f) .  From the property P4 of the 
previous section follows this noteworthy proposition. 

PROPOSITION 4.1. The maximum of the uncertainty u( f )  keeping the 
powers P( fO (J = 0,..., M -  1) (or the energies) equal to constants P~ 
( j  = 0,..., M - -  1), 

M--1 

£ P J = N ,  
i=o 
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is reached when 

PJ E~ 
f ?  = - ~  = w W  (i = 1,..., N;  j = 0,..., M - -  1), 

that is when the energies E~ = wJP~ ( j  = 0 ..... M - -  1) are equidistributed 
over the N objects of  L 

Denoting by Umax(E°,..., E M-l) the maximum of the uncertainty u ( f )  
in the case of constant energies, the max imum of Uma x for all possible 
energies is reached for EJ = N w ~ / M  ( j  : 0,..., M - -  1) or, equivalently, 
for f j  : 1]M (i : 1,..., N;  j : 0,..., M - -  1) so that it coincides with the 
max imum of u( f ) .  

T h e  results previously obtained can be widely generalized taking into 
account more complex situations like, for instance, those in which the 
energies are constant only for some fuzzy sets on all or in some part  o f / .  As 
an example, if the energies of k fuzzy sets f f  ( j  ---- 0,..., k - -  1) are constant 
then the max imum of u ( f )  is reached for 

E~ 
f i  j = N w  j (i = 1,..., N;  j = 0 ..... k - -  1), 

f d  = 1 - -  ~ o  ~ E s / N w  s (i = 1,..., N;  j = k,..., M - -  1). 
M - - 1  - - k  

Fur thermore,  if we fix to be a constant not the total energy of a fuzzy set 
but  only the energy of a subset of I formed by k elements (k ~ N)  then 
under the condition of max imum uncertainty the previous amount of  energy 
is equidistributed over the considered subset. 

F rom the property P5 of the previous section it follows that  the total 
uncertainty u ( f )  = u ( f °  "" f M-l) is less or equal to the sum of  the entropies 

of  the f u z z y  sets f f  ( j  = 0,..., M - -  1). 
At the end of the section we introduce some other quantities associated 

to a fuzzy set that we call "moments"  of a fuzzy set whose interpretation 
will be made clearer in the next sections. 

DEFINITION 4.4. For any positive integer h the moment  of h-order 
of the fuzzy set f is the quantity 

~ f~n(1 - - f , )  -{- (1 -- f~)nf~ 
M n ( f )  i=lZ'a 2 

(h ---- 1, 2,...). (4.5) 
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From this definition it follows that the entropy h( f )  is zero, that is f is 
classical, if and only if all moments vanish. Finally we note that the first 
order moment, that we shall also denote by re(f): 

N 

re(f) ~ ~, f~(1 -- f~), (4.6) 
i=1  

can itself be assumed as a measure of the entropy of a fuzzy set. 

5. A PARTICULAR CASE 

As we said in the previous section, in the case of only two orthogonal 
properties, the uncertainty u(f)  reduces to the entropy of the fuzzy set f 

N 

h( f )  = ~ T(f~). (5.1) 
i = l  

The maximum of h( f )  keeping the power P ( f )  (or the energy in the case 
w = constant) equal to a constant P, is given by NT(P /N)  which is a 
monotonically increasing function of P in the interval [0, N/2], monotonically 
decreasing in IN/2, IV] with a maximum at P -= N/2. 

Identifying T(x) with Shannon's function, (5.1) reduces to the logarithmic 
entropy d( f )  of a fuzzy set. In this case the maximum D(N, P) of the entropy 
is given by 

having 

D(N, P) ~ - - P i n  P /N  -- (N --  P) In (N -- P)/N, (5.2) 

3D(N, P) _ In 1 -- P/N 
~P P/N ' 

which is a monotonically decreasing function from + oo (at P = 0) to --co 
(at P -~ N) vanishing at P = N/2. From the general property of logarithm 
function 

it follows that 

In x ~ x --  1, (5.3) 

N 

- - ~  (1 -- f i ) ln(1 - - f i )  ~ P ( f ) ;  (5.4) 
i = l  
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hence, 

--PlnP--[- P l n N  <~ D(N,P) ~ P +  P l n N - -  P lnP.  (5.5) 

That is D(N, P) is a monotonically (concave) increasing function of N 
vanishing at N = P and logarithmically diverging for N - +  or. For a very 
large N, or equivalently, for a sufficiently small P/N, D(N, P) can be 
approximated as 

D(N, P) ~__ PIn N, (5.6) 

and the finite variation D(N + 1, P ) -  D(N, P) with the partial derivative 

OD(N, P) = In 
~N N -- P " 

From (5.4) we obtain the following upper bound for d(f) 

d(f) <~ H(f)  + P(f), 

2v 1 , where H(f)  =--- --~.,=xf~ n f~ and the lower bound 

(5.7) 

d(f) >~ 2re(f), (5.8) 

with re(f) defined by (4.6). 
The lower bound (5.8) is only the first order approximation of a series 

expansion of d(f) in terms of the moments Ml~(f ) (h = 1, 2,...). More 
precisely the following proposition holds. 

PROPOSITION 5.1. The logarithmic entropy d(f) of a fuzzy set f can be 
expressed in terms of the moments by the following series expansion: 

d(f) = 2 ~ Ma(f) (5.9) 
h 

The proof of the proposition is a direct consequence of the following 
series expansion of 8hannon's function: 

S(x) = ~ x"(1 - x) + (1 - ~)-x  
n ~ [ x l ~ l .  
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It is, moreover, easy to verify that the series 

,~=, -7  M~(f), I z l ~ l  

is convergent to the function 

so that 

and 

N 

G(z , f )  = - - ~  [f~ ln[1 --  z(1 - - f , ) ]  -l- (1 --f~) ln(l --  zfd], (5.10) 
~=1 

1 d'~G ,=o (n = 1, 2 , . . . )  (5 .11)  
M,~(f) = 2 ( n -  1)! dz ~ 

d( f )  = G(1,f).  (5.12) 

In such a way, by means of G and (5.12) and (5.11), we can generate the 
entropy and the moments of f.  In order to have a unique function generating 
the entropy, the power, the energy and the moments it suffices to change 
(5.10) into 

N 

O(w, z, f )  = - - ~  {k ln[1 --  z(1 --fi)] + (1 - - f i )  ln(1 --  ffi) --  w,f,}. (5.13) 
i = l  

We get 

G(w,O,f)=E(f), 
O(w,l,f)--O(w,O,f)=d(f), 

1 d . O ( ~ , ~ , f )  ~=o 
2 ( n - l ) !  dz ~ = M ~ ( f )  

0(1, O, f )  ~- P ( f )  

(n = I, 2,...). 

6. -?~AXIMUM OF THE UNCERTAINTY 

In this section we wish to calculate the maximum of the uncertainty u 
by imposing suitable constraints on the energies, powers or effective powers 
of the fuzzy sets. We shall assume the L function in (3.4) coincident with 
the logarithm function. To realize the relevance of such a problem let us 
start maximizing the logarithmic entropy d( f )  of a fuzzy set keeping the 
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energy and the power equal to two constants E and P, respectively. The  
max imum of d( f )  is reached for f equal to the fuzzy set 

1 
f~ = 1 + caW, - "  (i ---- 1 '." N) ,  (6.1) 

)~ a n d / z  being constants whose values depend on E and P. This  formula 
is identical to the Fermi-Dirac distribution law for a system of noninteracting 
particles when the spin is half-odd integral, in which case f i  is the "proba-  
bility" that a state of energy w~ is occupied, tz/A is the so-called chemical 
potential and ~ is proportional to the inverse of the absolute temperature.  
In  the case w 1 = w 2 . . . .  = w N = W, then E ~ wP and 

P E 
f* = -N = w N  (i = 1,..., N) ,  (6.2) 

that  is the max imum of d( f )  is reached when the energy E is equidistributed 
on the N elements, finding again the result expressed in Proposition 4.1. 

More generally, let us consider the problem of maximizing the uncertainty 
u(fO,..., f i - 1 )  under the constraints 

M--1 M--1 

E(wJ, fO  = E; ~ P(g~,f~) = P, (6.3) 
j=0 j=0 

where E(wJ, fO  and P ( ~ ,  f 0  are the energy and the effective power of the 
fuzzy set f~, respectively. T h e  fuzzy sets that maximize u can be expressed, 
using the Lagrange's  multipliers method, as 

f j  = e",-1-w, '+"~' (i - -  1 "'" N;  j = 0,..., M - -  1), (6.4) 

vi ,  ~, and/z  being constants whose values depending on E and P, have to be 
determined by the equations 

vi = 1 - -  In Z i  ( i  = 1, . . . ,  N )  (6.5) 

In Z ~ In Z 
= E, o - ~  = P, (6.6) / z v  

N Z where Zi ---- ~=oX~M-1 e-aWd+"~ and Z = 1-It=1 i . I f  1,/~ is a solution of (6.6), 
urea x can be expressed as 

Umnx = In Z + ~tE - - / , P .  (6.7) 
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Consider now the following particular cases: 

(i) CJ = 1; wfl = wJ, that is P is equal to the total power and the 
weights of the energies depend only on the considered fuzzy set but  not 
on the elements of L From (6.4) it follows that 

/fl - -  e ~-~j ( j  = 0,..., M -- 1), (6.8) 

with v = - - l n ~ o l e  -~wj. Equation (6.8) coincides with the Maxwel l -  

Boltzmann distribution for a gas of noninteracting molecules. 

(ii) d?~ = j ,  wiJ - - j w i ,  that is the weight function of the energy for 
t he j t h  fuzzy set i s j  times the one off1;  moreover the weights of the effective 
powers on (6.3) are equal to the order numbers  of the fuzzy sets. 

X~ M - 1  ;~" i In  this case a meaningful quantity is n i = z..~=o J]i; indeed it allows 
to write (6.3) as 

N N 

n,w, = E; Z n, = P (6.9) 
i=i 4=i 

SO that niw i and ni have the meaning of the total energy and total effective 
power of the ith element of I.  We then obtain that in condition of maximum 
uncertainty, under the constraints (6.9), ni is given by 

- - M e  Mei @ e -v~ @ ( M  - -  1) e -(M+l)v/ 

nt = (1 - -  e-M'0(1 - -  e-" 0 
( i  = 1 . . . .  , X ) ,  ( 6 . 1 0 )  

where 7~ ~ - A w i -  ~. Equation (6.10) coincides with the "intermediate 
statistics" of Gentile (1940). As particular cases of (6.10), one obtains for 
M = 2 and M ~ co the Fermi-Dirac  and the Bose-Einstein distributions. 

I t  is worthwhile to note the possibility of deducing, in an easy and unique 
manner,  the previous classical and quantum distributions in a context of  
decision theory. In  such a theory the above distributions have an unusual 
interpretation, in particular, as it is known (Miinster, 1969), the intermediate 
statistics have no physical meaning if 2 < M < 0% since the eigenfunctions 
of quantum particles can only be symmetric  or antisymmetric. I f  one inter- 
pretes f f l  as probability that the ith element of I enjoys the property P~, 
then the previous distributions have a statistical meaning. In  the physical- 
statistic interpretation f j  is, in the derivation of the Maxwell-Boltzman 
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distribution, the probability that the ith particle is in theflh level o~ energy w j, 
and in the case of the intermediate statistics the probability that a level of 
individual energy w, is occupied by a group o f j  particles ( j  = 0,..., M --  1); 
ni is the average number of particles at the level wi. The maximum of the 
uncertainty corresponds to the equilibrium situation and the constraints (6.9) 
express the conservation of the total energy and particle number. 

7. SOME APPLICATIONS TO DECISION THEORY 

In this section we shall refer to the particular case of two orthogonal 
properties only; however, the arguments we develop can be easily extended 
to the general case. As we have seen, the uncertainty in making decisions, 
in the case of two orthogonal measurable properties P and ~ P ,  reduces 
to the entropy h(f) of the fuzzy set f obtained by considering the measure 
function of one of the two properties. We have also seen that a macroscopical 
description of a fuzzy s e t f  can be obtained by quantities such as "entropy," 
"power," and "energy." We shall now show how it is possible to use these 
quantities in decision theory. 

A decision m a y b e  regarded as any transformation of a fuzzy set into a 
classical set. Since after the decision has been taken the uncertainty vanishes, 
such a transformation yields a quantity of information that can be measured 
by h(f) (De Luca and Termini, 1972). 

A decision is generally determined by a set of rules by which one is able 
to transform ~ ( I ) ,  the class of all fuzzy sets defined o n / ,  or only some 
subsets of it, into classical sets. 

If D(I) is a subset of ~c°(I) (in particular ~ ( I )  itself) and C(I) the subset 
formed by the classical subsets of I, one may formally define a decision 
as any transformation F from D(I) to C(I): 

F: D(I)--~ C(I). (7.1) 

We distinguish between deterministic and probabilistic decisions; in the 
first case the decision rules uniquely determine the map F, whereas in the 
second case, they only determine the conditioned probability distributions 
that a decision transform a given fuzzy set into a classical set. Furthermore, 
decision rules may depend on "local" and/or "macroscopical" properties 
of the fuzzy sets, as for instance entropy, energy, power, etc. We shall see, 
although only in particular cases, that the previous quantities play an 
important role both in deterministic and probabilistic decisions. 
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I. Deterministic Decisions 

A typical way of defining deterministic decisions is by a comparison of 
f (x)  with a given threshold 0 (0 ~ 0 ~< 1). Formally such a kind of decision 
cart be defined by the transformation: 

F(f, O)(x) = l[f(x) - -  6], x e l  (7.2) 

where l[x] is the unit step-function, l[x] = 1 if x / >  0, l[x] = 0 if x < 0. 
More generally we can consider transformations in which 0 is a function 
of x. In both cases the decision depends on local properties of f only. 
Furthermore, if for instance 0 is itself a function of the entropy and/or 
energy of the given fuzzy set then the decision will depend on both local 
and global properties off .  

Going back to (7.2) let us introduce the following subsets of I:  

f a = (x ~ I If(x) >/0), F ° = (x ~ I [ f(x)  < 0). (7.3) 

Let us now assume the number of elements of F a to be greater or equal 
to a fixed integer M (0 ~ M <~ N). By (7.2) this implies that the fuzzy 
sets one has to consider are only those such that 

P( f )  ) MO. (7.4) 

We now want to analyze whether there are some conditions that the entropy 
h(f) has to satisfy in order to be #F* > / M .  

In the case 0 >~ 1/2 one gets 

h(f) <~ #FaT(O) -t- ( N -  # F  a) T(1/2) 

<~ NT(1/2) -- M[T(1/2) -- T(0)] ~< NT(1/2). (7.5) 

Therefore, in the case # F  a />  M the values of M and O, 0 >~ 1/2, determine 
a lower bound for the energy and an upper bound for the entropy given by 
(7.4) and (7.5), respectively. 

Let us now denote by a(M, O) the function 

a(M, O) = NT(1/2) -- M[T(1/2) -- T(0)]; (7.6) 

a(M, O) is a linearly decreasing function of M assuming the minimum value 
at M = N where a(N, O)= NT(O). This quantity becomes as small as 
one wishes as 0 approaches 1. Therefore, if  F a has to contain a large fraction 
of the elements of I then the fuzzy sets must ha~;e a suitable high power and 
be suitably sharp. 
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In  Table  I are repor ted the values of the function a(M, O)/N in the case 
T(x) -~ S(x), for different values of the threshold 0 and the fraction M/N. 
We get, for instance, that  for N = 103 and M = 900 and 0 = 0.95 

P(f) >/855; d(f) <~ 248. 

In  this case the upper  bound  248 for the logarithmic entropy is less than 
half the  absolute maximum which holds ~ 693. 

TABLE I 

M/N 0 0.95 0.90 0.80 0.70 0.60 0.50 

0.90 0.248 0.362 0.520 0.619 0.675 0.693 
0.80 0.297 0.399 0.539 0.627 0.677 0.693 
0.70 0.347 0.436 0.558 0.636 0.679 0.693 
0.60 0.396 0.472 0.578 0.644 0.681 0.693 
0.50 0.446 0.509 0.597 0.652 0.683 0.693 
0.40 0.495 0.546 0.616 0.660 0.685 0.693 
0.30 0.545 0.583 0.635 0.668 0.687 0.693 
0.20 0.594 0.620 0.655 0.677 0.689 0.693 
0.10 0.644 0.656 0.674 0.685 0.69l 0.693 

L e t  us now fix the  number  of elements of F i to be exactly equal to M. 
Then  for the power, in addit ion to the lower bound  (7.4), one also gets 
the upper  bound:  

P(f) ~ Z fi + Z fJ < ( N -  M)O + Z fi 
i~F i j~  F o i e F  1 

<~ (N -- M)O + M. (7,7) 

Therefore,  the power of a fuzzy set can vary only in the interval 
[11//0, ( N  - -  M)0  + M] .  

F o r  the entropy h(f) we get the following limitations 

h(f) <~ MT(O) + (N -- M) T(1/2), for 0 ~ 1/2 

and 
h(f) <~ (N--  M) T(O) + MT(1/2), for 0 ~ 1/2. 

In  the  case of a constant power P(f) = P we may always satisfy (7.4) 
by  choosing a threshold 0 such that  

0 <P/M.  
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I f  0 >~ 1/2, which implies P >~ M/2, then T(P/M) ~ T(O) and 

a ( M ,  O) >~ (IV - -  M) T(1/2) + MT(P/M). (7.8) 

T h e  right side of the previous formula gives a min imum for the upper  bound 
of the entropy in the case of a constant power P and # F  ~ > P. 

I I .  Statistical Decisions 

a. We shall consider now statistical decisions performed by a universe 
of  decision makers on a given fuzzy set f ,  with (stationary) probabilities 
which are related to the function f.  

Le t  us introduce for any element o f / t h e  random variablefi* (i = 1 .... , N)  
that assumes the values 1 and 0 with probabilities Pi and 1 - - P i .  T h e  
most natural way of relating Pi to f~ is to assume 

p,  = f ,  (i = 1,..., N) .  

In  such a case the (statistical) average of f i  is given by 

( f i* )  = f ~ ,  (i -- 1,..., N)  

and the standard deviation ai ~ by 

a, ~ = f d l  --f~),  (i = 1,..., N).  

T h e  power P( f* )  and the energy E(f*)  iv -~ ~i=1 wifi* of the classical set 
obtained after the decision are random variables whose average values are 
given by 

( P ( f * ) )  = P ( f ) ;  ( E ( f * ) )  = E( f ) ;  

that is they coincide with the power and the energy of the fuzzy  set f. I f  we 
suppose that the decisions performed on the elements of I are statistically 
independent then the variances ae2(f *) and aE2(f *) are given respectively by 

N 

~ee(f *) = ~ f i( l  - - f i )  : re(f), 

(7.9) 
N 

~ ( f * )  = y~ w?f;(1 - f i )  <~ W=m(f), 
i=1 

having denoted by W the max imum of w 1 ,..., w~z. So that recalling (5.8) 
the variances of the energy (power) o f f *  can be as small as one wants if f is 
sufficiently sharp. Furthermore,  the moments  M s ( f )  (N -= 1, 2,...) appearing 
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in the expansion (5.9) of the logarithmic entropy d(f) coincide in this case 
with the sum of the absolute moments of order n of the random variable 
(Cramer, 1963) 

~e~ -~A* - <f,*) = f , *  - f , .  

Since P(f*) and E(f*) are the sum of N independent random variables, 
we consider now the case when the number N of the elements of I goes to 
the infinity in order to make use of asymptotic theorems of probability 
theory as the central limit theorem. 

From the general theory (Cramer, 1963; see also De Luca and Ricciardi, 
1967) it follows that P(f*)  is normally distributed for N--~ oo if and only 
if the series 

oo 

Z f,(1 - -  fi) (7.10) 
i = l  

is divergent. Under this hypothesis the probability density function #(P) 
of P(f*) is given, for large AT, by 

--(P -- P(f))~ (7.11) ¢(P)  ~ [2~rm(f)]-l/~ exp 2m(f) 

If  we make the further hypothesis that, for all N, 0 < w ~ wi ~< W 
(i = 1,...,N), E(f*) is also normally distributed having a probability 
density function 'Y(E) given, for large N, by 

T(E) ~--- [2~raE(f*)]-l/~ exp (E -- E(f)) 2 (7.12) 
2 ~ ( f  *) 

Since for all N, 

d(f) >/2re(f) ~> (2/W 2) e 2(f , )  (7.13) 

we have that the energy and power o f f  determine the average values of the 
Gaussian (7.11) and the logarithmic entropy an upper bound for their variances; 
in other words, the normal distributions of the energy and power of the 
classical set thus obtained are as "sharp" as one wishes if d(f) is sufficiently 
small. 

b. Let us now consider the case of only one decision maker D and a set 
I formed by a very large number N of dements; we suppose that the functionf 
can assume only a finite number k of possible values in the interval [13, 1]: 
/31,/32 ,...,/3k. If N1, N~ ,..., N~ are the numbers of elements assuming the 
values/31, [32 ,...,/3~ respectively, we have 

P ( f )  = y ,  N,/3, , ~V = y~ N , .  
i=I i=i 
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Under the hypothesis that N1, N~ ,..., N~ are very large, let us furtkermore 
suppose that D makes decisions on the elements of each group with probabilities 
P8 just equal to the values off; that is, 

p~ = ~ (s = 1,..., k). 

p,  is, of course, the probability that D will decide 1 on the elements of 
the sth group. In  the sth group the average statistical value of l 's  is given by 

n~ = pflV~ = fi,N~ (s = 1 ..... k) (7.14) 

and the standard deviation by 

%~ = Ntis(1 -- fi~) (s = 1,..., k). (7.15) 

Therefore, to the sth group of elements we associate a random variable 
xs whose average value and standard deviation are given by (7.14) and (7.15). 
We can now consider the random variable X the sum of the xs (s = 1,..., k): 

X =  ~ x s ;  
s=l 

its average value and standard deviation are given by 

( X )  = 2 N , f ,  = P(f) ,  
s=l 

(7.16) 

az = Z a~2 = Z N,/3,(1 --t3,) = re(f). 
s=l /=1 

(7.16) shows that the expected value of number of l 's  produced coincides 
with the power of the fuzzy set and the statistical standard deviation with 
the first order moment re(f). 

8. THERMODYNAMICAL ANALOGIES AND CONCLUDING REMARKS 

The aim of this section is to stress, even though in an intuitive more 
than formal manner, the analogies which exist between some concepts and 
the formalism developed in the previous sections, and the thermodynamics. 

The  concept of "entropy" plays a fundamental role in both thermo- 
dynamics and Shannon's information theory. The entropy of a finite scheme 
of events is identical to the physical one of a mechanical system, if the 
events are just the possible states of the system and the probability of an 
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event is in terpreted as probabil i ty  of the system of occupying a state of 
suitable energy. However,  in spite of this analogy a thermodynamical  
t reatment  of information processes in the context of Shalmon's  information 
theory has not  been at tempted,  except recently in some particular cases 
(see, for instance, B ene~, 1963; Mandelbrot ,  1970), 8 since a thermodynamic-  
like energy concept  has not been defined. 

T h e  exigence of a thermodynamics  for information theory was very deep 
in yon Neumann  (1966): 

"I have been trying to justify the suspicion that a theory of information is 
needed and that very little of what is needed exists yet. Such small traces of it 
which do exist, and such information as one has about adjacent fields indicate 
that, it found, it is likely to be similar to two of our existing theories: formal 
logics and thermodynamics. It is not surprising that this new theory of 
information should be like formal logics, but it is surprising that it is likely to 
have a lot in common with thermodynamics . . . .  " 

I n  the  previous sections we have seen how it is possible to introduce 
in the setting of fuzzy sets theory some thermodynamic-l ike quantities such 
as entropy, energy, power and the role that they play in decision theory. 
Fur thermore  we have seen in Section 6 that  the power and energy of a fuzzy 
set correspond to the number  of particles and to energy of a physical system; 
the condition of maximum uncertainty corresponds to the  thermodynamical 
equilibrium. In  the end of the section we shall briefly outline some links 
existing between the maximum uncertainty conditions and the "learning 
processes;" we now want to show that  by  means of the concepts of entropy, 
energy, power. I t  is possible to develop a formalism similar to the one of 
thermodynamics,  even though the interpretat ion of quantities is, generally, 
completely different from the physical one. 

Le t  us denote by  U(E, P, x,) the maximum uncertainty in making 
decisions keeping the total energy and effective power equal to the constant 
values E and P;  {x~} denote the set of  external parameters  describing the 
system (as w j  or CJ, N etc.). I f  the conditions are slightly changed bu t  in 
a way to reach another condit ion of maximum uncertainty,  we have 

0 U  a U  0 U  
dU = -~-~ dE + -~ff dP + ~ - ~  dx~ (8.1) 

8 V. E. Bene~ (1963) introduced a thermodynamic theory of random traffic in 
connecting networks. In this theory the number of "calls in progress" in a state of 
the net is analogous to the energy of a physical system. B. Mandelbrot (1970) makes 
use of a thermodynamical approach to linguistics assuming that the "energy of a word" 
coincides with the "number of letters" in the word. 
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o r  

having set 

dE = d g  + dR - -  Xv axv , (8.2) 
p 

_ 1 o v  _ a c t  _ x ,  ( 8 . 3 )  

~E ~r ' OP ~ ' axv r 

Equation (8.2) formally coincides with the first law of thermodynamics on 
the condition that • is interpreted as absolute temperature, tz as chemical 
potential, -r dU as heat and the terms --/~ dP and ~v X~ dx~ as the chemical 
and external elementary works, the latter caused by a change in the external 
parameters, which yield changes of the total (internal) energy. I f  the only 
external parameter that can be changed is x~ = N, and supposing the 
change of N to be very small with respect to N, then N is the correspondent 
of the volume and X~ = ~U/ON of the pressure. 

I t  is very important, before any attempt at the interpretation of the 
quantities formally introduced by (8.3), to give an interpretation of the 
"conditions of maximum uncertainty" which, as said before, physically 
correspond to thermodynamical equilibrium. 

We shall refer in the following, for simplicity, to the case of a single 
fuzzy set and consider the normalized entropy (4.2). 

I f  we make the next decisions on a fixed fuzzy set define in I, if the entropy 
is not increasing with the number of decisions, the normalized entropy is 
on the contrary nondecreasing. Let us consider now a procedure in which 
one supposes that a decision maker on a set I of objects described by a fuzzy 
set, changes, after any decision, the membership function according to 
some rules which depend on whether the decision made is considered 
"correct" or "wrong." Let us stress that "correct" and "wrong" have 
a meaning only with respect to a given "teacher system" that is a given 
way of deciding the objects of I. 

Let us consider as teacher a system T whose decision function is a 
threshold function l [ f (x)  - -  0], 0 ~< 0 ~< 1 and a decision maker L: L 
behaves according to the following decision rule. Let us suppose that L 
at the ruth step decides in correspondence of a certain value f(Xo) of the 
membership function; if the decision is 1 and is right [wrong] then L will 
decide in the same way, e.g, 1 [in the opposite way, e.g. 0] at the step m + 1 
for all the other objects of I, such that f (x)  >/f(xo)[f(x) <~ f(x0) ]. 

I f  the decision of L is 0 and right [wrong] thenL will decide at the (m -+- l)th 
step in the opposite way [in the same way] for all the other objects for which 

643/z3/5-6 



4 7 2  CAPOCELLI AND DE LUCA 

f (x)  <~ f(xo)[f(x ) >~ f(x0) ]. In all the other cases the membership function 
will remain unchanged. 

Using the previous decision rule, after a suitable number of steps, it 
will be up to L to decide only a subset 1" of I formed by objects for which 

f*~O. 
The power o f f *  is then given by 

P(I*)  = Z f ,* ~ kO ~ P, 
i e l*  

where k = #1".  The entropies h(f*)  and v(f*) will be given by 

h(f*)  ~ hT(O) -= kT(P/k); v(f*) = T(P/k), 

that is after a suitable number of steps the entropy and the normalized 
entropy will reach the maximum value with respect to all the fuzzy sets 
with a power equal to P = kO, which are the only allowed by the decision 
rule under consideration. 

At an intuitive level the "learning processes" in the context of fuzzy 
sets theory, have to be such as to make the "best" possible use of the 
"information" deriving from the responses of the teacher. In this way a 
"learning system," as in the example we gave, has to be able, from a given 
response, to decide all the less ambiguous situations. This fact produces 
a very rapid decreasing in the total uncertainty, but after a suitable number 
of steps the average uncertainty tends to a constant value, and this because 
the situations which remain to be decided are the most ambiguous ones 
among those which are allowed by the interaction learning system-teacher. 
A deeper mathematical and conceptual analysis of these processes is needed 
and can be the subject of future papers. We limit ourselves here to stressing, 
on the one hand, the noteworthiness of the possibility of characterizing 
the learning processes by means of a variational principle (on the average 
uncertainty) similar to the ones of classical mechanics, and, on the other 
hand, the possibility- of using a formalism as the one of thermodynamics 
which will certainly help in a specification of typical features of learning 
processes. 

ACKNOWLEDGMENTS 

The authors are indebted to Dr. G. Svetlichny, Dr. A. Restivo, and Dr. S. Termini 
for their useful comments and to Professor E. R. Caianiello and Professor M. P. 
Schtitzenberger for their encouragement and suggestions. 

RECEIVED: March 21, 1973 



FUZZY SETS AND DECISION THEORY 473 

REFERENCES 

BENE~, V. E. (1963), A "thermodynamic" theory of traffic in connecting networks, 
Bell System Tech. J. 47, 567-607. 

CAPOCELLI, R. M., AND DE LUCA, A. (1972), Fuzzy sets and decision theory, Notices 
Amer. lVIath. Soc. 19, A.709, abstract. 

CAPOCELLI, R. M., AND DE LUCA, A. (1972), Measures of uncertainty in the context 
of fuzzy sets theory, Atti  del II ° Congresso Nazionale di Cibernetica di Casciana 
Terme, Pisa. 

CI~AMER, H. (1963), "Random variables and probability distributions," Cambridge 
University Press, Cambridge. 

DE Lt;cA, A., AND RlCCIARDI, L. M. (1967), Formalized neuron: Probabilistic descrip- 
tion and asymptotic theorem, J. Theoret. Biol. 14, 206-217. 

DE LUCA, A., ANU TERMII~t, S. (1970), Algebraic properties of fuzzy sets, Notices 
Amer. Math. Soc. 17, 944, abstract; (1972) J. Math. Anal. Appl. 40, 373-386. 

DE LUCA, A., AND TERMINI, S. (1971), Algorithmic aspects in complex systems analysis, 
Scientia 106, 659-671. 

DE LUCA, A., AND TERMINI, S. (1972), A definition of a non-probabilistic entropy in 
the setting of fuzzy sets, Information and Control 20, 301-312. 

HARDY, G . .H ,  LITTL~WOOO, J. E., AND P6LYA, G. (1967), "Inequalities," Cambridge 
University Press, Cambridge. 

KHINCHIN, A. I. (1957), "Mathematical Foundations of Information Theory," Dover 
Publ., New York. 

GENTILE, G. (1940), Osservazioni sopra le statistiche intermedie, Nuovo Cimento 17, 
493-497. 

MANDELBROT, B. (1970), The concept of temperature of discourse, in "A Critical 
Review of Thermodynamics" (E. B. Stuart, B. Gal-or, and A. J. Brainard, Eds.), 
Mono Book Corp., Baltimore, MD. 

Mi3NSTER, A. (1969), "Statistical Thermodynamics," Springer-Verlag and Academic 
Press, New York. 

NEUMANN, V. J. (1966), "Theory of Self-Reproducing Automata," University of 
Illinois Press, Urbana, /L/London. 

SHANNON, C. E., AND WEAVER, W. (1962), "The  Mathematical Theory of Communica- 
tion," University of Illinois Press, Urbana, IL. 

VAJBA, I. (1969), A contribution to the informational analysis of pattern, in "Method- 
ologies of Pattern Recognition," pp. 509-519, Academic Press, New York. 

~VALD, A. (1971), "Statistical Decision Functions," Chelsea PubL Company, New 
York. 

ZADEH, L. (1965), Fuzzy sets, Information and Control 8, 338-353. 


