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1. INTRODUCTION 

The stability and asymptotic behavior of solutions of an autonomous linear 
differential system x’ = ,4x are determined by the spectrum of the constant 
matrix A. If B(t) is a suitably small perturbation, then the stability and 
asymptotic behavior of solutions of x’ = [-4 + B(t)] x are still determined 
by the limiting system X’ = Ax. For example, if P-lrlP = ~‘1 is a diagonal 
matrix, B(t) is continuous for t > t, , and J-t 1 B(t)1 dt < co, then 
x’ = [-4 + B(t)] x has a fundamental matrix X(t) satisfying, as t + CO, 

X(t) = [P + o(l)] exp(flf). 

The classical theorems of Levinson [8] and Hartman-Wintner [7] are 
deeper results of this nature which describe the asymptotic behavior of 
solutions of the nonautonomous lmear differential system s’ = A(t) x in 
terms of the eigenvalues of the matrix A(t). 

In this note we apply two preparatory lemmas to extend the validity of the 
fundamental results of Levinson and Hartman-Wntner to a wider class of 
systems N’ = A4(t) X. In addition, we discuss the interrelation between the 
basic results and give examples to delineate them. 

Asymptotic integration, of interest in itself, is also a useful tool, for example, 
in the study of stability and boundary value problems. Our interest in the 
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problem was motivated by recent results of Devinatz [3, 41 and Fedoryuk [5] 
in which extensions of Levinson’s basic theorem are presented and utilized to 
determine the deficiency index of certain differential operators. 

2. PREPARATORY LEMMAS 

We are concerned with the linear differential system y‘ = A(t) y, in which 
the matrix A(t) has the form A + V(t), where A is a constant diagonal 
matrix with distinct eigenvalues and V(t) + 0 as t--f co. For t sufficiently 
large, A + V(t) has distinct eigenvalues and there exists a matrix S(t) for 
which 

S-l(t) [A + V(f)] S(t) = A(t), 

where A(t) is a diagonal matrix whose elements are the eigenvalues of A(t) 
and A(t) + A as t + co. Utilizing S(t) as a transformation, y = S(t) u, the 
linear differential system y’ = A(t) y becomes u’ = B(t) u, where 

B(t) = S-l(t) [A + V(t)] S(t) - S-l(t) S(t) = A(t) + P(t). 

If p(t) is “sufficiently regular” (in the sense of integrabilityl), then we can 
determine the asymptotic integration of u’ = B(t) u and hence also that of 
the original system y’ = A(t) y. 

In order to determine the regularity of v(t), we must determine the regu- 
larity of S(t), S-l(t), and S’(t) in terms of the regularity of V(t). Our basic 
preparatory lemma provides a means for studying this problem. 

LEMMA 1. Let A be a constant diagonal matrix with distinct esgenvalues and 
V(t) a continuous matrix for t 3 to such that V(t) -+ 0 as t + CO. Then there 
existsfor t > t,,’ >, to a matrix Q(t), Q(t) -+ 0 as t -+ oc), such that 

[I + Q(W V + WI P + Q(t)1 = 4th 
where A(t) is a diagonal matrix whose elements are the esgenvalues of A + V(t). 
Furthermore, Q(t) may be chosen so that diagQ(t) = 0 and so that Q(t) has the 
same regularity properties as V(t), i.e., Q(t) = O(l V(t)/), Q(t) = O(l V’(t)/), 
etc., as t--t co. 

Remark 2.1. The existence of and an explicit representation for the 
matrix Q(t) can be established through the use of projection matrices of the 
form 

(25ri)-l f [AZ - A(t)]-’ dA, 
Y 

1 I W)l EUkl I 
norm may be used. 

CO) means that J-c I V(t)/” dt < co, where any convenient matrix 
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where y is a suitable contour in the complex h-plane. In particular, we may 
determine the matrix I + Q(t) in the form 

1 + Q(t) = fi [I + QzWl. 
2=1 

where the QE(t) are defined inductively in the following manner. 

where 

Q&) = Pz@> - p,(~)l Ppd~) - 11, 
Z’*(t) = (274-l j- [AZ - A,(t)]-l dh, 

y* 

4(t) = 4, At+&) = [Z + QJW 44 [I + QM, 

and yz is a circle not passing through any eigenvalue of il(co) and containing 
exactly one such eigenvalue, say h, , in its interior. 

Although this representation is not practicable from a computational 
standpoint, it is convenient for determining how the regularity properties of 
Q(t) are inherited from those of A(t). For example, 

11 k-l 

Q’W = 1 n [Z + Q,Wl Qk’W fi [I + QtW 
A=1 r=l z=P+1 

n 

Q%‘(t) = (2~27~ j [AZ - A,(t)]-l A,‘(t) [AZ - A,(t)]-l dh[2Z’,(m) - I], 
y* 

and so Q’(t) = O(] V’(t)l) as t -+ co ( see, e.g. [2, pp. 11 l-l 131 for a discussion 
of this method). 

The matrix Q(t) thus constructed will not in general have diag Q(t) = 0. 
However, I + Q(t) is uniquely determined up to post multiplication by a 
nonsingular diagonal matrix. Hence, writing 

or 

Z + Q(f) = V + C?(t)1 [I + diag Q(t)], 

&(t) = [Q(t) - diag Q(t)1 [I + diag QW’, 

we can determine an appropriate matrix Q(t) satisfying all the conclusions 
of the lemma. The usefulness of this normalization in applications will be 
shown later. We note that aside from this normalization, this lemma was 
used by Levinson [8]. 

We provide now an elementary proof of this lemma which has other 
important ramifications. 
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Proof of Lemma 1. Write 

A = diag{h, ,..., A,}, 

A(t) = A + diag{d,,(t), d&t),..., d,,(t)} = A + o(t), 

Q(t) = Mm 1 <i,j<n, Pzt(4 = 0. 

The existence of a matrix Q(t) = o( 1) as t -+ cc for which 

[I + Q(t)l-l v + WI L-r + Q(t)1 = 4) (2-l) 

is equivalent to the existence of a solution Q(t) = o(l) of the equation 

ABM - Q(t) A + W)Q(t) - Q(t) W> + V’(t) - W> = 0, 

or in component form, 

4, - % - 1 vtkqkz = 0, 
zfk 

(2.2) 

(‘8 - ‘k) qzk + c vmqmk - qak dkk + vik = 0, 
a#k 

(2.3) 

where d,, = dJt), v,, = vzk(t), q& = q&(t). Solving Eq. (2.2) for 4, and 
substituting the result into Eq. (2.3), we obtain the nonlinear system of 
equations 

(‘, - ‘k) qzk + c %%xk - qzk vkk + zk vk&?k + V,k = 0. (2.4) 
u+k 

Conversely, a solution to the nonlinear system of equations (2.4) together 
with Eqs. (2.2) for the definition of the d,, will yield a solution of the equation 

[fl + WI [I + Q(t)1 = [I + Q(t)] [A + B(t)]. 

Hence if Q(t) = o(l) as t + co, I + Q(t) will be nonsingular for t sufficiently 
large and Eq. (2.1) will be satisfied. The nonlinear system of equations (2.4) 
is of the (vector) form f(t, q) = 0, where f(w, 0) = 0 and fJc0, 0) is non- 
singular; hence the standard implicit function theorem guarantees the 
existence of a unique solution to this equation, q = o(l), which inherits the 
regularrty properties of V(t). 

The proof of Lemma 1 provides a method for computing an approximation 
to A(t) and Q(t) of order o(l V(t)12) (t + co) by solving the linear systems 
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In particular, and approximation of order O(\ V(t)ls) is 

4zk: = (h - h-l z’,k + O(l r-(t)l”), 
4, = vu,, + O(l l’(t)i‘q. 

We formahze this remark as 

LEMMA 2. Let A be a constant diagonal matrix with distinct eigenvahes and 
let V(t) be a continuous matrix for t > t, such that F-(t) + 0 as t 4 a3. Then 
there exists for t 3 t,’ > to a matrix T(t), diag T(t) = 0, T(t) + 0 as t + CO, 
such that 

[I + T(t)]-’ [A + L’(t)] [I + T(t)] = (-4 + dlag l/(t)} + r(t), 

where p(t) = O(j L’(t)l’), T(t) = O(l L’(t)l), and T(t) has the same regularitSv 
properties as V(t). 

Proof of Lemma 2. Choose tzk(t) = (X, - X,)-l rzk(t), i # k, tnl(t) = 0, 
and perform the computation as in the proof of Lemma 1. 

Remark 2.2. This lemma shows that if /l is a diagonal matrix with 
distinct eigenvalues and V(t) is a continuous matrix such that L’(t) + 0 as 
t + co, then the eigenvalues of /I + V(t) are the eigenvalues of 

as t-co. 

/l + diag V(t) + O(l V(t)l’) 

Remark 2.3. A direct proof of Lemma 2 may be effected by utilizing the 
identity 

[I + T(t)]-l = I - T(t) + T2(t) [I + T(t)]-‘. 

This transformation has been used to advantage m similar problems by 
Fedoryuk [5] and Devinatz [3]. 

Remark 2.4. If I V(t)] E L2(t,, , co) and (1 is a diagonal matrix with distinct 
eigenvalues, then the eigenvalues of fl + V(t) are the diagonal entries of 
II + V(t) to within integrable (L,) t erms. This remark allows the results of 
Hartman-Wintner to be stated in terms of the eigenvalues of fl + k’(t) 
instead of in the customary manner involving the diagonal entries of (1 + V(t). 

Remark 2.5. In some cases it is convenient for applications to assume that 
V(t) has the form V(t) = Vi(t) + V2(t) and make assumptions on / Vl(t)l , 
/ Vz(t)/ , I Vl(t)l I Vz(t)l , ] Vl(t)l ] V2’(t)l , etc. The proof of the lemmas 
provides a method of determining how such properties are inherited by Q(t). 
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In particular, it follows directly that the resultant Q’s are “linear” with 
respect to V(t), i.e., 

Q(t) = Q&l + Q&l + 00 JW12>~ 

Q’(t) = Ql’(t) + Qs’(t) + 00 WI I W)l), 
i = 1, 2, etc. 

844 = 00 vdt)l), 

Qz’P) = O(l vt’(t)l), 

Remark 2.6. The preceding remark shows that Lemmas 1 and 2 remain 
valid if the constant diagonal matrix n is replaced by the diagonal matrix 
A(t) = A + A(t), where A(t) + 0 as t --+ 00 and shares the same regularity 
properties as V(t). This allows us to make repeated application of the lemmas. 

3. MAIN RESULTS AND APPLICATIONS 

In this section we use the preparatory Lemmas 1 and 2 to transform a 
given linear differential system so that the basic results of Levinson and 
Hartman-Wintner are applicable. For the convenience of the reader, we 
now state these basic results. 

THEOREM A (Levinson [8; 1, pp. 92-951). Let 

4) = diag&(t), h(t),..., L(t)) 

be continuous for t > t,, and assume for each index pair j # k that either 

(i) i: Re(h,(s) - h,(s)) ds --t co as t-co 

and 

s 
t Re(h,(s) - X,(s)) ds > --K for all t, < s < t, 

s 
OY 

(ii) lt Re(h,(s) - X,(s)) ds < K for all t,, < s < t. 

Furthermore, assume that R(t) is continuous for t > t, and 1 R(t)1 ELJt,, , co). 
Then the linear d@wntial system x’ = (A(t) + R(t)) x has a fundamental 
matrix satisfring as t + to 

-W = [I + oU>l e=p (~+) &) . 

THEOREM B (Hartman-Wintner [7, pp. 71-721). Let 

44 = dk&W, W),..., Ut)) 
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be continuous for t 3 t, and assume that for each index pair j # k, 

I Re(Ut) - W))l 3 CL > 0. 

Furthermore, assume that V(t) is continuous and j V(t)1 EL~(&, CO). Then the 
linear dz#erentiaZ system x’ = (A(t) + V(t)) x has a fundamental matrix 
satisf-ying as t + c0 

x(t) = [I + o(l)] exp (l: [A(s) + diag V(s)] ds) . 

Actually, Levinson considered the linear differential system 

3” = (A + V(t) + R(t)) y (3.1) 

and made a preliminary transformation y = S(t) x (essentially Lemma 1) to 
obtain 

x’ = (A(t) - S-l(t) L!?(t) + S-l(t) R(t) S(t)) x. 

Under the assumption 1 V’(t)1 ELl(t,, , CD), Levinson applied Theorem A 
to obtain the following. 

THEOREM C (Levinson [l, pp. 92-931). Let A be a constant matrix with 
distinct eigenvalues, V’(t) be continuous for t > tOI V(t) +O us t -+ CO, 
I V’(t)1 EL,(t,, , CO), R(t) be continuous for t >, t, , I R(t)1 ELI(to , CO), and 
assume that the eigenvalues of the matrix A + V(t) satisfy condition (i) OT (ii) of 
Theorem A. Then the linear d$j%rential system x’ = (A + V(t) + R(t)) x has 
a fundamental matrix satisfying for t -+ co 

X(t) = [P + o(l)] exp (( 4s) ds) , 

t, > t,, , where P-IAP is a diagonal matrix and A(t) is a diagonal matrix with 
components the et’genvalues of A + V(t). 

If we assume that A is a diagonal matrix and V(t) + 0 as t + co, then we 
may utilize the transformation y = [1+ Q(t)] u of Lemma 1 to transform 
the linear differential system (3.1) into 

where 

u’ = (A(t) + P(t) + A(t)) u, (3.2) 

r(t) = -[I + Q(W Q’(t) and &t) = [I + &WI-’ R(t) P + QWI. 
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If V(t) #L, , but V(t) + 0 as t + CO, then we may utilize the transformation 
u = [I + T(t)] a of Lemma 2 to transform the linear differential system (3.2) 
into 

where 

and 

p(r) = diag p(<t) - [I + T(t)]-l T’(t) + O(l v(‘(t)l*) 

Since 

Q(t) = O(l WI, Q’(t) = O(l W)l), Q”(t) = WI ~“(~)I), 
T(t) = O(l %)I> = WI ww, 
T’(t) = O(l WI = WI qgi + I W)l’), 

then 

w> = O(l Yf)l + I v’@)l” + I w I W)l), and &t) = 00 WI). 

Hence, if I V”(t)1 E.& , 1 V’(t)1 EL, (which together imply that p(3<t) + 0 as 
t + co), then / p(‘ct)l EL, , 1 R(t)1 EL, , and we may apply Theorem A to 
obtain the following result. 

THEOREM D (Devinatz [4, p. 3541). Let A be a constant matrix with 
distinct eigenwulues, V”(t) and R(t) be continuous for t >, t, , V(t) --f 0 as 
t+ co, 1 V’(t)l*, / V(t)1 I V’(t)l, I V’(t)/ , I R(t)1 EL,(t, , co), and assume that 
the eigenvulues of A + V(t) sutzsfy condition (i) OY (ii) of Theorem A. Then the 
linear differential system x’ = (A + V(t) + R(t)) x has a fundamental matrix 
satisfying for t---f co 

X(t) = [P + o(l)1 ezp (l: -‘I(s) ds) 

where t, > t, , P-IAP is u diagonal matrix, and A(t) is a diagonal matrix with 
components the eigenvulues of A + V(t). 

Remark 3.1. In Devinatz’s statement of this theorem, it is assumed that 
V(t) = VI(t) + V2(t), where VI(t) +O, V*(t) + 0 as t -+ co and 1 VI’(t)1 , 
1 V2’(t)1*, 1 V*‘(t)1 I V(t)/ , I V;(t)1 EL,(t,, co). To obtain this result we use 
Remark 2.5 to modify the preceding proof by now defining in system (3.2), 

VP, = Qz’(t), 

J?t, + &t) = --[I + Q(W Q’(t) + [I + SW1 R(t) [I + Q(t)l, 
and noting that p(t) = O(l V*‘(t)\) and I &t)I ELM . 
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Remark 3.2. An alternative proof of Theorem D is obtained by applying 
Lemma 1 twice. Since in system (3.2), 

p(t) = -[I + Q(t)]-l Q’(t), Q’(t) = O(l Wt)l>, 

and t(t) + 0 as t - co, there exists a transformatron u = [I + Q(t)] ~(1 by 
Lemma 1 which yields the linear differential system 

w’ = (A(t) + R,(t)) w, 

where R(t) is a diagonal matrix whose components are the eigenvalues of 
n(t) - [I + Q(t)]-lQ’(t). But / V”(t)/ ELM Implies that 1 R,(t)1 ELM; by 
Remark 2.2, 

/I(t) = cl(t) - diag{[l + Q(t)]-l Q’(t)> + O(l V’(t)l*); 

I V”(t)1 and 1 V(r)1 I V’(t)1 ELM imply that I diag{[l+ Q(t)]-‘Q’(t)}] ELM . 
Hence, if I V”(t)1 , 1 f”(t)l” and I V(t)1 I l”(t)1 ELM , then 

A(t) + 4(t) = A(t) + R,(t), 

where I R,(t)/ ELM and we may apply Theorem A to obtain Theorem D. 
Devinatz’s Theorem is a special case of general results that can be obtained 

by repeated application of Lemma 1 and/or Lemma 2 as indicated above. For 
simplicity, we state these theorems in terms of a single matrix r(t), keeping 
in mind the modifications indicated by Remarks 2.4 and 3.1. 

THEOREM 1. Let A be a constant matrix with distinct eigenvalues; for some 
positive integer k let l’cr)(t) and R(t) be continuous for t >, t,; V(“)(t) - 0 as 
t + co, 0 < z < k - 2; 1 V”‘(t)1 EL,(t, , co), 1 <j < k - 1; / V(t)1 / b-‘(t)1 , 

I Wt)l , and I R(t)1 EL,(&, 00); and assume that the eigenvalues of the 
matrix A + V(t) satisfy condition (1) or (ii) of Theorem A. Then the linear 
differential system x’ = (A + V(t) + R(t)) x has a fundamental matrix 
satisfying as t + 03 

-Y(t) = [f’ + o(l)] exp (( 4s) ds) , 

t, > t, , where P-?dP is a diagonal matrzx and -4(t) is a diagonal matrix 
whose components are the ekenaalues of A + L-(t). 

This result may be viewed not only as an extension of Levinson’s Theo- 
rem C, but also (under the additional assumption that 1 I’(t)1 EL2(t0 , 00)) 
as an extension of Hartman-Wmtner’s Theorem B in the sense that the 
restriction on the eigenvalues of A + V(t) has been weakened at the expense 
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of strengthening the assumptions on V(t). We note that 1 V*)(t)j , 
1 V*+l)(t)l EL, implies [ V’)(t)1 1 V*+l)(t)l EL, , 1 < i < K - 2, and Remark 
2.2 implies that applications of Lemmas 1 and 2 modify the eigenvalues of 
A + V(t) to within integrable terms. In particular, the eigenvalues of 
A + V(t) may be computed to within integrable terms by 

A(t) = diag{P-l[A + V(t)] P}, 

where P-lAP is a diagonal matrix. 
The preparatory lemmas can also be used to obtain extensions of Hartman- 

Wintner’s Theorem B by relaxation of the assumption that 1 V(t)1 EL, . 
For example, if V(t) --+ 0 as t -+ co, 1 V’(t)] EL:! , and the eigenvalues of A 
have distinct real parts, then by utilizing the transformation y = P[I + Q(t)] u 
of Lemma 1, P-1AP diagonal, the system y’ = (Q + V(t)) y becomes 
IL’ = (A(t) + p(t)) u, where 

and 

/I(t) = A(t) - diag([l + Q(t)]-l Q’(t)} 

A(t) + r(t) = 4) - [I + Q(WQ’(t). 

Clearly, Theorem B applies to yield a fundamental matrix satisfying as t + 00 

P(t) = [P + o(l)] exp (Jt: &) ds) , tl b 4 - 

If, in addition, I V(t)1 I V’(t)/ ELM , then I diag{[l + Q(t)]-‘Q’(t)}/ ELM and 
we have a fundamental matrix satisfying, as t -+ CO, 

We formalize this result as follows. 

THEOREM 2. Let A be a constant matrix with eigenvalues having distinct 
real parts, V(t) be a continuous matrix for t 3 t,, such that V(t) -+ 0 as t + CO, 
V’(t) be continuous for t >, to and ( V’(t)l”, I V(t)1 ( V’(t)\ ELl(t,, , 00). Then 
the linear differential system x’ = (A + V(t)) x has a fundamental matrix 
satisfying, as t + co, 

X(t) = [P + o(l)1 exp (Jt: 4) ds) , tl 2 to , 

where P-IAP is a diagonal matrix and A(t) is a diagonal matrix whose compo- 
nents are the eigenvalues of A + V(t). 
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We emphasize that 1 v(t)12 is not necessarily integrable and hence /l(t) 
is not necessarily diag{P-‘[A + v(t)] P}. 

The assumption that 1 v(t)] 1 v’(t)1 E& has allowed us to state the asymp- 
totic integration in Theorems 1 and 2 in terms of the eigenvalues of .4 + v(t). 
By modifying the eigenvalues of A + v(t) by functions which are also 
computable, we can obtain the following result. 

THEOREM 3. Let A be a constant matrix with distinct eigenvahes; for some 
positive integer k, let W)(t) and R(t) be continuous for t > t,; let V(“)(t) --t 0 
us t+m, O<i<k-2, and 1 V(*)(t)lELz, l<i<k--1; and let 
1 W)(t)1 , 1 R(t)1 EL,(t, , CO). Let P-IAP be a diagonal matrix and Zet Q(t) 
be the unique matrix (of Lemma 1) for which 

[I+ Q(t)]-’ WA + v(t)] P[I + Q(t)] = A(t), 

diag Q(t) = 0, and let the ezgenvaluRF of A(t) = A(t) - diag{[l + Q(t)]-1 Q’(t)} 
satisfy condition (i) or (ii) of Theorem A. Then the linear d@rential system 
x’ = (A + V(t) + R(t)) x has a fundamental matrix satisf-ting as t -+ 03 

X(t) = [P + o(l)] exp (jt:~(s) ds) , t, 3 to . 

We note that, for example, if I V(t)l” I V’(t)1 E L,(t, , cn), then 

diag([l + Q(t)]-’ Q’(t)} = -diagQ(t) Q’(t) 

to within integrable terms. 
As a final application of the preparatory lemmas, we deduce some sufficient 

conditions for the uniform stability of a linear differential system 
x’ = (A + V(t)) x, V(t) --+ 0 as t -+ co, which are extensions of results due 
to Conti and Cesari (see, e.g. [2, p. 1141). 

THEOREM 4. Assume that the eigenvalues of A + V(t) have nonpositive real 
parts for t su&iently large; that the eigenvalues of A with zero real part are 
simple; and that for some positive integer k, Vcr)(t) is continuozu for t 3 to , 
V(*)(t) + 0 as t -+ co, 0 < i < k - 2, 1 W)(t)1 ELz(to , a~), 1 < i < k - 1, 
1 V(t)1 I V’(t)1 EL,(t, , CO), and I Vtk)(t)l EL1(to , CD). Then the zero solution of 
x’ = (A + V(t)) x is uniformly stable for t > to . 

Proof. We follow the method utilized by Coppel [2, pp. 113-l 141 for the 
case k = 1. Without loss of generality, we assume that A has block diagonal 
form 
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where (1, is diagonal and contains the eigenvalues of A with zero real part. 
Utilizing transformations corresponding to the block analog of Lemma 1, 
followed by (K - 2) applications of the block analog of Lemma 2, we obtain 
(for t sufficiently large) the linear differential system 

where 

u’ = (A(t) + R(t)) u, 

I WI ELI and a(t) = (db(t) Ait)) , 

where A,(t) is a diagonal matrix whose components are the ergenvalues of 
rZ + V(t) which tend to rl, as t ---f co, and /f,(t) -+ A, as t + cc. 

Since 1 R(t)1 EL, , u’ = (a(t) + R(t)) u and u’ = a(t) u are uniformly 
stable simultaneously [2, p. 651, and u’ = A(t) u is uniformly stable [2, p. 1141. 

4. EXAMPLES 

In this section we give some examples illustrating the type of results that 
can be obtained using Theorems l-3, some examples which indicate the 
sharpness of the assumptions which are necessary for their applicability, as 
well as some examples which demonstrate the independence of the various 
hypotheses. 

EXAMPLE 1. Let 

A(t) = A + V(t) = (; ;) + t-” (!f ;) , 

where 0 < 01 < 1. The eigenvalues of A(t) are h(t) = 1 f (1 + t-2a)1/2, i.e., 

A,(t) = -&2” + gte + . ., A,(t) = 2 + it-“” - @“” + .*-, 

and 
Re@,(t) - A,(t)) = 2 + O(t-20L). 

Also 

V’(t) = -at-+l (i i) and 1 V’(t)1 EL~(I, co); 

hence, Levinson’s Theorem C applies. However, after naively applying 
Hartman-Wintner’s basic result, the system y’ = A(t) y would have a 
fundamental matrix of the form 

Y(t) = [1+0(l)] (h jt) as t+ 00, 



ASYMPTOTIC INTEGRATION OF LINEAR DIFFERENTIAL SYSTEMS 13 

which is only valid if OL > & (i.e., 1 V(t)1 ELJ. Whereas, for example, the 
correct asymptotic integration obtained from Theorem C for 01 = & is 

E’(t) = [I + o(l)] (‘:” O p/2e*t ) as t+ zo. 

EXAMPLE 2. To illustrate the independence of the various hypotheses on 
IT(t) and its derivatives, consider the (scalar) function a(t) = t-0 sin t1-a. 

(1) If i < /3 < 1 and (1 - /3)/(k + 1) < 01 < (1 - p)/k, then 
/ dh’(t)l EL,(I, co), I ~‘~‘(t)l $L,(l, co), 0 < i < k - 1, 1 ~+~)(t)l EL,(I, co), 
and j v(t)\ ) v’(t)1 ~Li(1, cc). Hence for the system _t” = -4(t)?‘, where 

A(t) = (6 -;) + $0 (y ;, 3 

we may apply Lemma 2, k times to yield a system to which Levinson’s 
basic result apphes. This illustrates how Theorem 1 provides an extension of 
Levinson’s and Devinatz’s Theorems. In addition, as we remarked in Sec- 
tion 3, Theorem 1 may be viewed as an extension of Hartman-Wintner’s 
basic result, which does not apply in this case since 

Re(X,(t) - A,(t)) E 0. 

(ii) If p = $ and OL > 0, then 1 v(t)1 $ &(I, m)j); however 

I W)l E&(1, 00) and I $9 I w’(t)l EW> 50). 

Hence for the system y’ = Iz(t) y, where 

A(t) = (; -3 + z’(t) (; ;, 7 

we may apply Lemma 1 once to yield a system to which Hartman-Wmtner’s 
basic result applies. This case is covered by Theorem 2. 

EXAMPLE 3. The important and well-studied differential equation 
w” -f(x) w = 0, where f is a positive, twice continuously differentiable 
function, pfllz - co, can be written in the form 1” = A(t)>), where 

-4(f) = (:, -;, + *f-3’2f’ (_: - ;, 

by setting 

y1 = y’ + f 1/y, 4’2 = y’ - f ""Y, and t = 
I 

xflP. 
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For such second-order equations, the transformations involved in the 
preparatory lemmas can be explicitly constructed and special results can be 
obtained due to this explicit determination of the resultant system. We do not 
pursue this matter further, since there are also special techniques available for 
these second-order equations (see e.g. [6, pp. 369-384; 10; 2, pp. 118-1281). 

EXAMPLE 4. Let 

A(t) = 16 -;, + (t-1/4 fos tl,2 +lPiin y - 
The eigenvalues of A(t) to within integrable terms are 

h,,,(t) = f i(1 + N2 sin 2t1j2 - &-t-l sin2 2t1/7. 

Note that 1 V(t)] #L,(l, co) and 1 V(t)1 ] V’(t)1 $L,(l, co). However, since 
1 V”(t)] ~Lr(l, co) and 1 V’(t)1 EL~( 1, co), an application of Lemmas 1 and 2 
yields the linear differential system 

8’ = (4) + diadQ@)Q’(t)) + R(t)) v, 

where 1 R(t)1 eL1 . A straight forward computation yields, for this example 
(to within integrable terms) 

Q(t) Q'(t) = ((*+' $"' t1'2 +t~~:cos2 t1,2) . 

Thus defining R(t) = diag{&(t), i2(t)}, where 

A,(t) = i(1 + H2 sin 2t1j2 - at-l sin2 2t1i2) + (8t)-l sin2 PI2 

and 

ii*(t) = -i(l + tN2 sin 2N2 - &t-l sin2 2t112) - (8t)-l cos2 N2, 

the resultant system has the form v’ = (A(t) + l?(t)) w. Since 

Re(fi,(t) - i2(t)) = (8t)-l and I w EL1 > 

Theorem A is applicable. We note that the modification is real although the 
original eigenvalues of A(t) are purely imaginary and thus this modification is 
necessary to obtain the true character of the solutions. This example is 
covered by Theorem 3. 

EXAMPLE 5. Consider the linear differential system y’ = A(t) y, where 
A(t) has an asymptotic expansion of the form 

40 - A,, + A,t-l + A2t-2 + sm., t--t co, 
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and A, has distinct eigenvalues. Clearly A(t) = A, + c;(t) + R(t), 
V(t) = .-I,t-l and Levinson’s Theorem applies, namely there exists a funda- 
mental matrix of the form 

Y(t) = [P + o(l)] exp (jt: 4) ds) , 

where the elements of the diagonal matrix A(t) are the eigenvalues of 
A,, + V(t) and P-lA$’ is a diagonal matrix. In fact, since 1 V(t)[ EL, , 

A(t) = A + diag(P-‘V(t) P). 

Without difficulty, we may obtain a similar result for the case 

A(t) - t’(Ao + A,t-1 + .-), t+ co, 

where A, has distinct eigenvalues and Y is a positive integer. Making the 
change of variable s = tr+r, applying Levinson’s Theorem, and changing the 
variable back to t, we obtain a fundamental matrix satisfying as t - co, 

y(t) = [P + a)3 exp ( jt: 4) h) , 
where the elements of the diagonal matrix A(t) are the eigenvaiues of 
Y(A, + A,t-1 + ... + t-r-1A,+,) and P-l&P is a diagonal matrix. This is 
the beginning of the standard asymptotic expansion up to the indicated 
terms [I, pp. 142-143, 160-1611. 

EXAMPLE 6. We close our discussion with the differential equation of an 
adiabatic oscillator, w” + (1 + at-l sin At) w = 0, where a, h are real param- 
eters. This example has many interesting features. 

(i) Levinson’s basic result does not apply since / V’(t)] $ L, . 

(ii) Hartman-Wintner’s basic result does not apply since 

Re(h, - Aa) = 0. 

(iii) When naively applied, Levinson and Hartman-Wmtner yield 
the same result smce / V(t)/ EL? . 

(iv) Lemma 1 and Lemma 2 may be applied as often as desired and 
yield systems to which neither Levinson’s nor Hartman-Wintner’s basic 
result apphes, however the asymptotic integration indicated by these theorems 
remains invariant. 

(v) The asymptotic integration obtained by naively applying Levin- 
son’s or Hartman-Wintner’s Theorems can be either correct or incorrect, 
depending upon the value of the parameter A. 

409/48/1-z 
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We write this example in the vector form y’ = A(t)y, i.e., yr = w + iw’, 
yz = w - iw’, where 

A(t)=(6 -(?)+qpq;l -;,. 

For X f 52, Atkinson [2, pp. 113-1241 and Wintner [ll] have proven 
general (second-order) results which imply the existence of a fundamental 
matrix satisfying as t ---f co 

Y(t) = [I + o(l)1 (;I ,-:); 

but for h = f2, the results of Atkinson [2, pp. 125-1281 and Wintner [9, lo] 
can be used to show the existence of a fundamental matrix satisfying, as 
t--t co, 

Y(t) = [ (l+ie-2zf -“3 + o(l)] (;‘4 & 9. t-a/4 e-it 
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