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Abstract

Given integers k, l � 2, where either l is odd or k is even, we denote by n = n(k, l) the largest integer such
that each element of An is a product of k cycles of length l. For an odd l, k is the diameter of the undirected
Cayley graph Cay(An,Cl ), where Cl is the set of all l-cycles in An. We prove that if k � 2 and l � 9 is odd

and divisible by 3, then 2
3kl � n(k, l) � 2

3kl + 1. This extends earlier results by Bertram [E. Bertram, Even
permutations as a product of two conjugate cycles, J. Combin. Theory 12 (1972) 368–380] and Bertram and
Herzog [E. Bertram, M. Herzog, Powers of cycle-classes in symmetric groups, J. Combin. Theory Ser. A
94 (2001) 87–99].
© 2008 Elsevier Inc. All rights reserved.
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1. Introduction

Let An be the group of all even permutations on n letters. Given integers k, l � 2, we ask
for the largest integer n = n(k, l) such that every permutation in An is a product of k cycles of
length l. By the definition of An, n(k, l) exists only if either l is odd or k is even. E. Bertram
solved the problem for k = 2 in 1972 (see also [6] for another proof of this result). He proved the
following theorem:
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Theorem 1.1. (See [2, Corollary 2.1].) Each permutation in the alternating group An, n � 2, is
a product of two l-cycles in Sn if and only if either � 3n

4 � � l � n or n = 4 and l = 2.

It follows from Theorem 1.1 that if k = 2 and l > 2, then n(2, l) equals the largest integer n

satisfying � 3n
4 � = l. Suppose that l = 3d + e, where e ∈ {0,1,2} and let n = � 4l

3 � + 1 = 4d +
e + 1. Then � 3n

4 � = �3d + 3
4 (e + 1)� = 3d + e = l, but � 3

4 (n + 1)� = �3d + 3
4 (e + 2)� = l + 1.

Hence

n(2, l) =
⌊

4l

3

⌋
+ 1 =

⌊
2

3
kl

⌋
+ 1.

E. Bertram and M. Herzog proceeded by solving the problem for k = 3 and k = 4. They
proved:

Theorem 1.2. (See [3, Theorem 2].) Each σ ∈ An, n � 1, is a product of three l-cycles in Sn if
and only if l is odd and either �n

2 � � l � n or n = 7 and l = 3.

Theorem 1.3. (See [3, Theorem 3].) Each σ ∈ An, n � 2, is a product of four l-cycles in Sn if
and only if:

(1) � 3n
8 � � l � n if n �≡ 1 (mod 8);

(2) � 3n
8 � � l � n if n ≡ 1,0 (mod 8);

(3) n = 6 and l = 2.

It follows from these results that if 2 � k � 4 and l is odd if k = 3, then � 2
3kl� � n(k, l) �

� 2
3kl� + 1. Bertram and Herzog conjectured in [3] that n(k, l) ≈ 2

3kl for every k, l � 2, provided
that either l is odd or k is even. In the spirit of their conjecture, we conjecture the following:

Conjecture 1.1. Let k, l � 2 be integers and assume that either l is odd or k is even. Then
� 2

3kl� � n(k, l) � � 2
3kl� + 1.

We note that by [2,3], n(k, l) = 2
3kl + 1 when k = 2,4 and 3 | l. Hence we also conjecture the

following:

Conjecture 1.2. Let k, l be positive integers and assume that k is even and 3 | l. Then n(k, l) =
2
3kl + 1.

In this paper we prove the validity of Conjecture 1.1 for every integer k � 2 and every odd
integer l � 9 divisible by 3. Our main result is the following theorem:

Theorem 3.4. Let k and l be integers such that k � 2 and l � 9 is odd and divisible by 3. Then
2
3kl � n(k, l) � 2

3kl + 1. Furthermore, if k is odd, then n(k, l) = 2
3kl.

The upper bound for n(k, l) in Theorem 3.4 follows from the following more general result,
which does not require l being odd, l � 9 and 3 | l, but only l > 2 and either l is odd or k is even.

Theorem 3.3. Let k, l be natural numbers such that k � 2 and l > 2. Suppose that either l is odd
or k is even. Denote n1 = � 2kl � and δ = 2kl − n1. Then:
3 3
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(1) If n1 ≡ 3 (mod 4), then n(k, l) � n1;
(2) If n1 ≡ 1 (mod 4), then n(k, l) � n1 + 1;
(3) If n1 ≡ 2 (mod 4), then n(k, l) � n1 + 1; if we further assume that l > 3 and δ ∈ {0, 1

3 }, then
n(k, l) � n1;

(4) If n1 ≡ 0 (mod 4), then n(k, l) � n1 + 1.

The above results are closely related to problems on covering groups by products of conjugacy
classes. We recall that for a group G and an element x in G, the conjugacy class of x in G is
C = xG = {g−1xg | g ∈ G}. The covering number cn(C) of a conjugacy class C of G is the
least integer m (if it exists) such that Cm = G, where Cm = {c1c2 · · · cm | c1, c2, . . . , cm ∈ C}.
The covering number of a group G, cn(G), is the least integer n (if it exists) such that Cn = G

for every non-trivial conjugacy class of G. We note that cn(G) does not necessarily exist for an
arbitrary group, but it exists whenever G is a finite non-abelian simple group [1]. The covering
numbers for the groups An and Sn were extensively studied by Brenner et al. (see [4] for a
survey), Dvir [5], Vishne [11] and many others. In particular, since the set of all cycles of a given
odd length l (2 � l < n− 1) constitutes a conjugacy class of An (see [10, 11.1.5]), our results (as
well as the results in [2,3,6]) deal with the covering numbers of these classes of l-cycles in An.
The covering numbers for various groups other then An (or Sn) were also extensively studied.
See [9] for a recent survey.

We also note that for an odd l and n = n(k, l), k is the diameter of the undirected Cayley
graph Cay(An,Cl ), where Cl is the set of all l-cycles in An. For related results, see [8].

Most of our notation is standard. The positive integers are denoted by N. If Ω = {1,2, . . . , n},
then Sn denotes the symmetric group on Ω , and An denotes the alternating group on Ω . Prod-
ucts of permutations will be executed from left to right. Suppose, first, that σ ∈ Sn − {1}. Then
supp(σ ), the support of σ , is the set {i ∈ Ω | σ(i) �= i} and dcd ∗ (σ ), a non-trivial disjoint cycle
decomposition of σ , denotes a representation of σ as a product of disjoint cycles of length > 1.
It is well known that dcd ∗ (σ ) is unique, except for a cyclic shift within the cycles and the
order in which the cycles are written. We call σ,ρ ∈ Sn disjoint permutations on n1 and n2
letters, respectively, if supp(σ ) ∩ supp(ρ) = ∅, |supp(σ )| � n1 and |supp(ρ)| � n2. We denote
mσ = |supp(σ )| and the number of (non-trivial) cycles in dcd ∗ (σ ) is denoted by nσ . For σ = 1,
we define dcd ∗ (1) = (1) and m1 = n1 = 1. If G is a subgroup of Sn, we denote by supp(G) the
subset of letters in Ω which are moved by at least one element of G. If q is a rational number,
then �q� = k, where k is the unique integer satisfying k � q < k + 1, and �q� = k, where k is the
unique integer satisfying q � k < q + 1.

The lower bound in Theorem 3.4 is proved in Section 2. Theorem 3.3 (which, in particular,
provides the upper bound for Theorem 3.4) and Theorem 3.4 are proved in Section 3.

2. Lower bound for n(k, l)

Definition 2.1. Let m,n be even integers satisfying 2 � m � n − 2. A partition A =
{α1, α2, . . . , αt } of n (i.e. t, αi ∈ N for 1 � i � t and n = ∑t

i=1 αi ), with αi � 2 for all i is
called (n,m)-indecomposable if there does not exist a subset B of A such that

∑
αi∈B αi = m.

Notice that A is (n,m)-indecomposable if and only if it is (n,n − m)-indecomposable. If such
B does exist, then the partition A will be called (n,m)-decomposable.

The following Lemma 2.1 is a particular case of Theorem A in [7] (set r � 2 in that theorem).
However, for completeness sake, a proof of the lemma is given below. Lemma 2.1 and Corol-
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lary 2.2, together with the auxiliary Theorem 2.6, will play a key role in proving Theorem 2.7 at
the end of this section.

Lemma 2.1. Let m,n be even integers satisfying 2 � m � n − 2 and let A = {α1, . . . , αt } be a
partition of n which is (n,m)-indecomposable. Then t � n

3 , unless A = {2,3, . . . ,3}, in which

case t = n+1
3 .

Proof. We may assume in this proof that the following ordering holds: 2 � α1 � α2 � · · · � αt .
If m = 2 or n − m = 2, then αi � 3 for all i and t � n

3 , as claimed. If m = 4 or n − m = 4 and
t > n

3 , then α1 = 2 and αj � 3 for all j > 1. If αj � 4 for some j , then t � n
3 , a contradiction. So

αj = 3 for all j > 1 and A = {2,3, . . . ,3}. Moreover, t = n−2
3 + 1 = n+1

3 , so the theorem holds
in this case too.

Suppose that m � 6 and n − m � 6, which implies that n � 12. We shall complete the proof
by induction on n. Since m is even, αi > 2 for some i. Since n is even, one of the following
holds: (i) αr is even and αr � 4 for some r ; (ii) condition (i) does not hold and there exist distinct
integers r and s such that αr,αs are odd and αr + αs � 6.

Denote β = αr in case (i) and β = αr +αs in case (ii). Clearly β and n−β are even numbers.
Suppose, first, that β � n

2 + 2. Then t � n−β
2 + 2 � n

4 + 1 � n
3 , where the final inequality follows

since n � 12.
Suppose, now, that either β = n

2 or β = n
2 + 1. Since β and m are even, there exists αi � 3 for

some i �= r in case (i) and for some i �= r, s in case (ii). But n − β is even, so there exists αj for
some j �= i, r in case (i) and for some j �= i, r, s in case (ii), which satisfies αi + αj � 6. Hence

t �
n
2 − 6

2
+ 4 = n

4
+ 1 � n

3

as n � 12. So we are done in this case too.
Suppose, finally, that β < n

2 . Then either m > β or n − m > β . So assume, without loss
of generality, that m > β . Denote m1 = m − β , n1 = n − β and let A1 be the partition of n1
obtained from A by deleting the components of β . Then A1 is a partition of n1 which is
(n1,m1)-indecomposable, n1,m1 are even integers and 2 � m1 � n1 − 2. Let t1 be the num-
ber of summands in A1; clearly either t = t1 + 1 or t = t1 + 2.

Suppose that A1 = {2,3, . . . ,3}. If β = ar � 4, then

t = t1 + 1 = n − β − 2

3
+ 2 � n − 4 + 4

3
= n

3

as required. If β = αr + αs = 6, then αr = αs = 3, A = {2,3, . . . ,3} and t = n−2
3 + 1 = n+1

3 , as

required. If β = αr + αs > 6, then t = t1 + 2 = n−β−2
3 + 3 � n−8−2+9

3 < n
3 , as required.

If A1 �= {2,3, . . . ,3} and β = ar � 4, then by induction t = t1 + 1 � n−β
3 + 1 � n−4+3

3 < n
3 ,

as required. If β = αr + αs � 6, then by induction t = t1 + 2 � n−β
3 + 2 � n−6+6

3 = n
3 , again as

required. The proof is complete. �
Using Lemma 2.1, we obtain

Corollary 2.2. Let n be an even integer and let σ ∈ Sn, satisfying nσ > n+1
3 . Then for each even

integer m satisfying 2 � m � n − 2, there exist non-trivial permutations ρ and φ in Sn such that
σ = ρφ, supp(ρ) ∩ supp(φ) = ∅, |supp(ρ)| � m and |supp(φ)| � n − m.
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Proof. Denote t = nσ . Since t > n+1
3 � 1, σ �= 1. Let σ = (1)(2)(3) . . . (f )Cα1Cα2 . . .Cαt ,

where {1,2,3, . . . , f } are the distinct fixed points of σ (this set can be empty) and the Cαi
are

disjoint cycles of length αi with αi � 2 for each i, ordered in such a way that α1 � α2 � · · · �
αt � 2. Then A = {α1 + f,α2, . . . , αt } is a partition of the even integer n, with all components
larger than 1 and t > n+1

3 . Fix an even m such that 2 � m � n−2. It follows then by Lemma 2.1,
that the partition A is (n,m)-decomposable. Let A = A1 ∪ A2 be a decomposition of A into two
subpartitions of m and of n − m, respectively. Define ρ = ∏

αi∈A1
Ci and φ = ∏

αi∈A2
Ci , where

α1 ∈ Aj means α1 + f ∈ Aj for j = 1 or 2. Then ρ and φ are non-trivial permutations in Sn

satisfying supp(ρ) ∩ supp(φ) = ∅, |supp(ρ)| � m and |supp(φ)| � n − m, as required. �
The next lemma follows immediately from the following result in [6].

Theorem 2.3. (See [6, Theorem 7].) Let σ ∈ Sn and let l1, l2 ∈ N, n � l1 � l2 � 2. Then σ =
C1C2, where C1,C2 are cycles in Sn of lengths l1, l2, respectively, if and only if either nσ = 2,
l1, l2 are the lengths of the cycles in dcd ∗ (σ ) and l1 + l2 = mσ , or the following conditions
hold:

(1) l1 + l2 = mσ + nσ + 2s for some s ∈ N ∪ {0}, and
(2) l1 − l2 � mσ − nσ .

Lemma 2.4. Let n, l1, l2,m ∈ N, satisfy n � l1 � l2 � 2 and let σ be an m-cycle in Sn. Then
there exist in Sn cycles C1,C2 of sizes l1, l2, respectively, such that σ = C1C2, if and only if

m = l1 + l2 − (2s − 1) � n

for some s ∈ N, s � l2.

Proof. By Theorem 2.3, such C1,C2 exist if and only if

(1) m � n,
(2) m = l1 + l2 − (2s − 1) for some s ∈ N, and
(3) m � l1 − l2 + 1.

Conditions (2) and (3) are clearly equivalent to conditions (2) and

(3′) s � l2

and the lemma follows. �
We prove now a generalization of Lemma 2.4 for odd li ’s and m.

Lemma 2.5. Let n, t ∈ N and let l1, l2, . . . , lt ,m be odd integers satisfying n � l1 � l2 � · · · �
lt � 3 and

l1 � m � min

(
l1 +

t∑
l=2

(li − 1), n

)
.

Then for each m-cycle σ ∈ Sn there exist in Sn cycles Ci , 1 � i � t , of sizes li , respectively, such
that σ = C1C2 · · ·Ct .
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Proof. We shall prove Lemma 2.5 by induction on t . If t = 1, then the result is trivial. So assume
that t � 2 and the result holds for t − 1. Set m′ = min(l1 + ∑t−1

i=2(li − 1),m) and note that m′ is
odd and m′ � l1 since m � l1.

Assume first that m > l1 + ∑t−1
i=2(li − 1), which implies that m′ = l1 + ∑t−1

i=2(li − 1). Then

m′ < m � l1 +
t∑

l=2

(li − 1) = m′ + lt − 1

and since m,m′ and lt are odd, it follows that m = m′ + lt − (2s − 1) for some s ∈ N, s � lt .
Thus, by Lemma 2.4, there exist in Sn cycles τ and Ct of lengths m′ and lt , respectively, such
that σ = τCt . Since l1 � m′ � min(l1 + ∑t−1

i=2(li − 1),m) and m � n, it follows by the induction
hypothesis that there exist in Sn cycles C1, . . . ,Ct−1 such that τ = C1 · · ·Ct−1 and the result
follows.

It remains to prove the lemma in the case that l1 � m � l1 + ∑t−1
i=2(li − 1). Then, by the

induction hypothesis, there exist in Sn cycles C1,C2, . . . ,Ct−2,C
′
t−1 of lengths l1, l2, . . . , lt−1,

respectively, such that σ = C1C2 · · ·Ct−2C
′
t−1. Since the li are odd integers, it follows again

by Lemma 2.4 that there exist in Sn cycles Ct−1,Ct of lengths lt−1, lt , respectively, such that
C′

t−1 = Ct−1Ct , and the lemma follows. �
For our auxiliary Theorem 2.6 we need the following definition.

Definition 2.2. Let k, l, n ∈ N such that k, l � 2 and n � l. Denote by C(l) the set of all cycles
of length l in Sn and by P(k, l;n) the set of all permutations in Sn which may be written as a
product of k cycles of length l.

Theorem 2.6. Let k, l, n ∈ N be such that k � 2 and l is odd and suppose that 9 � l � n �
2
3kl + 1. Moreover, let σ ∈ An and suppose that nσ � n+2

3 if k � 3. Then σ ∈ P(k, l;n).

Proof. Since n is fixed, we shall denote P(i, j ;n) by P(i, j). If k = 2, then n � 4
3 l + 1, which

implies that l � � 3
4 (n − 1)� � � 3

4n� and, by Theorem 1.1, σ ∈ P(2, l). So assume that k � 3 and
nσ � n+2

3 .
For the continuation of the proof, we need the following three observations:

O1. P (r, l) ⊆ P(t, l) if r � t .
O2. P (k, l) ⊆ P(k, l + 2) if l + 2 � n.
O3. mσ + nσ is even for all σ ∈ An.

Concerning O1, we notice that if r ∈ N and C1,C2, . . . ,Cr ∈ C(l), then, since l is odd, also
C−1

r ,C2
r ∈ C(l) and C1C2 · · ·Cr = C1C2 · · ·Cr−1C

2
r C−1

r . Observation O2 follows from Propo-
sition 15 in [3]. Finally, observation O3 follows from the fact that if l > 1, then each l-cycle can
be decomposed into l−1 transpositions. Thus any σ ∈ Sn −{1} can be decomposed into mσ −nσ

transpositions and if σ ∈ An, then this number, and hence also mσ + nσ , must be even.
We continue now with our proof. If σ = 1, then clearly σ ∈ P(2, l) and, by O1, σ ∈ P(k, l).

So assume that σ ∈ An − {1}, which implies that mσ � 3 and nσ � 1.
Suppose, first, that l � mσ � 2l − 1. Then mσ � l � mσ +1

2 � �mσ

2 � and as l is odd and l � 9,
it follows by Theorem 1.2 that σ ∈ P(3, l). As k � 3, O1 implies that σ ∈ P(k, l), as required.
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Suppose, next, that 3 � mσ < l. Then either mσ or mσ − 1 is an odd integer, say l1, and
since mσ � l1 � mσ − 1 � �mσ

2 �, it follows by Theorem 1.2 that σ ∈ P(3, l1). Hence, by O1,
σ ∈ P(k, l1) and since both l and l1 are odd and l1 < l, it follows by O2 that σ ∈ P(k, l).

So assume that mσ � max(2l,2nσ ). It follows that

mσ − nσ � max(2l − nσ ,nσ ) � l > l − 1.

Clearly mσ � n. Hence, by our assumptions, we have

mσ + nσ � n + n + 2

3
= 4

3
n + 2

3
� 4

3

(
2

3
kl + 1

)
+ 2

3
= 8

9
kl + 2

= 2l + l

l − 1

(
8

9
k − 2

)
(l − 1) + 2 � 2l + 9

8

(
8

9
k − 2

)
(l − 1) + 2

= 2l + (k − 2)(l − 1) − l − 1

4
+ 2

� 2l + (k − 2)(l − 1).

Let s ∈ N be minimal such that

mσ + nσ � 2l + (s − 2)(l − 1). (3)

Clearly s � k. Since mσ � 2l and nσ � 1, it follows that 3 � s � k.
If s = 3, then mσ + nσ � 3l − 1 = l1 + l, where l1 = 2l − 1. Since σ ∈ An and l � 9 is odd,

it follows, in view of O3, that both sides of the above inequality are even and l < l1 < mσ � n.
As shown above, mσ − nσ > l − 1 = l1 − l, and it follows by Theorem 2.3 that σ = C1C2, with
C1 ∈ C(l1) and C2 ∈ C(l). By Lemma 2.4, C1 ∈ P(2, l) and we may conclude, in view of O1,
that σ ∈ P(3, l) ⊆ P(k, l), as required.

So suppose that s � 4. It follows from inequality (3) that

mσ + nσ �
[
l +

(⌈
s

2

⌉
− 1

)
(l − 1)

]
+

[
l +

(⌊
s

2

⌋
− 1

)
(l − 1)

]
= l1 + l2 (4)

with the obvious notation. By our assumptions and the minimality of s, we must have 4
3n + 2

3 �
mσ + nσ > 2l + (s − 3)(l − 1) and since l is odd, it follows that n > 3

2 l + 3
4 (s − 3)(l − 1) − 1

2 =
m−1

2 for some integer m. Hence n � 3
2 l + 3

4 (s − 3)(l − 1) and if l1 > n, then

l +
(⌈

s

2

⌉
− 1

)
(l − 1) >

3

2
l + 3

4
(s − 3)(l − 1). (5)

This implies that s−1
2 > 3

4 (s − 3) + 1
2 , whence 2s − 2 > 3s − 9 + 2 and s < 5, leaving us with

the case s = 4. But then inequality (5) implies that l + (l − 1) > 3
2 l + 3

4 (l − 1), or −1 > l,
a contradiction. Hence n � l1 � l2 and l1 − l2 � l − 1 < mσ − nσ . As, in view of O3, mσ + nσ

and l1 + l2 are both even, it follows by Theorem 2.3 that σ = C1C2, with C1 ∈ C(l1) and C2 ∈
C(l2). In view of the definition of l1 and l2, it follows by Lemma 2.5 that C1 ∈ P(� s

2�, l) and
C2 ∈ P(� s

2�, l). Thus σ ∈ P(s, l) and since s � k, it follows by O1 that σ ∈ P(k, l), as required.
The proof is complete. �
Theorem 2.7. Let k, l ∈ N be such that k � 2 and l � 9 is odd and divisible by 3. Moreover, let
n = 2kl and σ ∈ An. Then σ ∈ P(k, l;n).
3
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Proof. If k = 2, then l = 3
4n and σ ∈ P(2, l;n) by Theorem 1.1.

If k = 3, then l = n
2 = �n

2 � and σ ∈ P(3, l;n) by Theorem 1.2.
If k = 4, then l = 3

8n = � 3
8n� and σ ∈ P(4, l;n) by Theorem 1.3.

So suppose that k � 5. If nσ � n+2
3 , then σ ∈ P(k, l;n) by Theorem 2.6. So we may also

assume that nσ > n+2
3 . Denote t = nσ .

Let m be an even integer satisfying 2 � m � n−2 and let A be the partition of n obtained from
the disjoint cycle decomposition of σ as in the proof of Corollary 2.2. Since t > n+2

3 , it follows
by Lemma 2.1 that A is (n,m)-decomposable. In particular, A is ( 2

3kl, 4
3 l)-decomposable, and

as shown in the proof of Corollary 2.2, there exist non-trivial disjoint permutations ρ and φ on
2
3 (k − 2)l and 4

3 l letters, respectively, such that σ = ρφ.
We proceed by induction on k. If ρ and φ are both even, then, by induction, ρ ∈

P(k − 2, l; 2
3 (k − 2)l) and φ ∈ P(2, l; 4

3 l), which implies that σ ∈ P(k, l;n), as required. Since
σ ∈ An, it remains to deal with the case when both ρ and φ are odd.

If nρ �
2
3 (k−2)l+2

3 , let τ be the transposition τ = (u, v), where u ∈ supp(ρ) and v ∈ supp(φ),
and let ρ∗ = ρτ and φ∗ = τφ. Then ρ∗ and φ∗ are even permutations on 2

3 (k − 2)l + 1

and 4
3 l + 1 letters, respectively, σ = ρ∗φ∗ and nρ∗ = nρ �

2
3 (k−2)l+2

3 . By Theorem 2.6,
ρ∗ ∈ P(k − 2, l; 2

3 (k − 2)l + 1). Moreover, since � 3
4 ( 4

3 l + 1)� = l, it follows by Theorem 1.1
that φ∗ ∈ P(2, l; 4

3 l + 1). Consequently, σ ∈ P(k, l;n), as required. So we may assume that

nρ >
2
3 (k−2)l+2

3 . It follows then, by Corollary 2.2, that we can write ρ = ρ1ρ2, where ρ1, ρ2

are non-trivial disjoint permutations of opposite parity on 2
3 (k − 4)l and 4

3 l letters, respectively.
Now, if ρ1 is odd, then ρ1φ and ρ2 are even permutations on 2

3 (k−2)l and 4
3 l letters, respectively,

and hence, by induction, ρ1φ ∈ P(k − 2, l; 2
3 (k − 2)l) and ρ2 ∈ P(2, l; 4

3 l). Since σ = (ρ1φ)ρ2,
σ ∈ P(k, l;n) as required (notice that the permutations ρ1, ρ2 and φ commute). So we may
assume that ρ1 is even and ρ2 is odd.

Suppose, first, that k = 5. Then n = 10l
3 , ρ is an odd permutation on 2l letters and φ is an odd

permutation on 4
3 l letters. Moreover, ρ = ρ1ρ2, where ρ1 is an even permutation on 2

3 l letters

and ρ2 is an odd permutation on 4
3 l letters. If either nφ >

4
3 l+1

3 or nρ2 >
4
3 l+1

3 , assume, without

loss of generality, that nφ >
4
3 l+1

3 . By Corollary 2.2 we can write φ = φ1φ2, where φ1 is a non-
trivial even permutation on 2

3 l letters and φ2 is a non-trivial odd permutation on the remaining 2
3 l

letters. Define β = φ1ρ1 and γ = φ2ρ2. Then β and γ are even permutations on 4
3 l and 2l letters,

respectively, and σ = βγ . By induction we get β ∈ P(2, l; 4
3 l), γ ∈ P(3, l;2l) and hence σ ∈

P(5, l;n), as required. Thus we assume that nφ �
4
3 l+1

3 and nρ2 �
4
3 l+1

3 . Choose u ∈ supp(ρ1)

and v ∈ supp(ρ2) and let τ = (u, v). Denote ρ∗ = ρτ , an even permutation on 2l letters, and
denote φ∗ = τφ, an even permutation on 4

3 l + 2 letters. Then, by induction, ρ∗ ∈ P(3, l;2l) and,
by Theorem 2 in [2], φ∗ ∈ P(2, l; 4

3 l + 2) provided that

mφ∗ + nφ∗

2
�

4
3 l + 2 + nφ + 1

2
�

4
3 l + 2 + 4

3 l+1
3 + 1

2
= 16l + 30

18
� l

which holds for l � 15. So it remains only to deal with the case l = 9. In this case, n = 2
3 · 5 ·

9 = 30, φ and ρ2 each acts on 12 letters and ρ1 acts on 6 letters. Moreover, nφ,nρ � 12+1 ,
2 3
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which implies nφ,nρ2 � 4. Furthermore, since ρ1 is even, we obtain nρ1 � 2. Thus nσ = nρ1 +
nρ2 + nφ � 2 + 4 + 4 = 10 � 30

3 and σ ∈ P(5, l;n) by Theorem 2.6.
So assume that k � 6. As ρ1 is an even permutation on 2

3 (k − 4)l letters, with k − 4 � 2, and
φρ2 is an even permutation on 8

3 l letters, it follows by induction that ρ1 ∈ P(k − 4, l; 2
3 (k − 4)l)

and φρ2 ∈ P(4, l; 8
3 l). But σ = ρ1(φρ2), so it follows that σ ∈ P(k, l;n), as required. The proof

is complete. �
3. Upper bound for n(k, l)

Our aim in this section is to prove Theorem 3.3 below, which provides bounds from above on
n(k, l), and use it for the proof of Theorem 3.4. We define and discuss first the important notion
of movements of a permutation.

Let σ ∈ Sn be a permutation on the set Ω = {1,2, . . . , n}. For distinct u,v ∈ Ω we shall say
that (u, v) is a movement of σ if uσ = v. Clearly σ is completely determined by the set of all its
movements, which will be denoted by Rσ . Let σ = C1C2 · · ·Cr , where C1,C2, . . . ,Cr are arbi-
trary cycles in Sn, and let (u, v) ∈ Rσ be a movement of σ . Let i1 be the minimal index such that
u ∈ supp(Ci1) and let is be the maximal index such that v ∈ supp(Cis ). Then we have a unique se-
ries 1 � i1 < i2 < · · · < is � r (allowing is = i1) with (not necessarily distinct) elements uij ∈ Ω

such that (u,ui1) is a movement of Ci1 , (ui1, ui2) is a movement of Ci2 and so on, finishing with
the movement (uis−1, uis ) = (uis−1 , v) of Cis . For (u, v) ∈ Rσ we define the set Tu,v(C1C2 · · ·Cr)

as follows: Tu,v(C1C2 · · ·Cr) = {t i1u,ui1
, t

i2
ui1 ,ui2

, . . . , t
is
uis−1 ,uis

}, where t ip,q is the notation for the
movement (p, q) of the cycle Ci . Moreover, we define T (C1C2 · · ·Cr) as follows:

T (C1C2 · · ·Cr) =
r⋃

i=1

{
t ip,q

∣∣ (p, q) ∈ RCi

}
.

Thus T (C1C2 · · ·Cr) is the set of all the t ip,q ’s occurring in the cycles Ci and

T (C1C2 · · ·Cr) ⊇
⋃̇

(u,v)∈Rσ

Tu,v(C1C2 · · ·Cr),

where
⋃̇

denotes a disjoint union.

Example. Let σ = (23) = (12)(23)(31) ∈ S3. Then

T
(
(12)(23)(31)

) = {
t1
1,2, t

1
2,1, t

2
2,3, t

2
3,2, t

3
3,1, t

3
1,3

}
⊃

⋃̇
(u,v)∈R(23)

Tu,v

(
(12)(23)(31)

) = {
t1
2,1, t

3
1,3

}∪̇{
t2
3,2

}
.

Lemma 3.1. Let σ ∈ Sn be a permutation on Ω = {1,2, . . . , n} with the non-trivial disjoint
cycle decomposition σ = σ1σ2 · · ·σr . Let li denote the length of σi for i = 1, . . . , r . Sup-
pose that σ = C1C2 · · ·Ck , where each Ci is a cycle of size l. Fix 1 � j � r , and let Bj =⋃̇

(p,q)∈Rσj
Tp,q(C1C2 · · ·Ck). Then:

(1) |Bj | � lj ;
(2) If σj is not equal to one of the Ci ’s, then |Bj | � lj + 1.
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Proof. Part (1) is obvious, since |Rσj
| = lj and |Tp,q(C1C2 · · ·Ck)| � 1 for each (p, q) ∈ Rσj

.
We continue with a proof of (2). Suppose that |Bj | = lj . It suffices to prove that Cm1 = σj

for some m1 ∈ {1, . . . , k}. Without loss of generality we may assume that σj = (1,2, . . . , lj ).
For each (p, q) ∈ Rσj

we have |Tp,q(C1 · · ·Ck)| = 1 and so Tp,q(C1 · · ·Ck) = {tmp,q} for some
m ∈ {1, . . . , k}. Let m1 denote the smallest such m. We may assume, without loss of generality,
that T1,2(C1 · · ·Ck) = {tm1

1,2} and hence (1,2) ∈ RCm1
. Now T2,3(C1 · · ·Ck) = {tm2

2,3} for some m2

satisfying m2 � m1. But if m2 > m1, then m1 is not the maximal index such that 2 ∈ Cm1 ,
contradicting |T1,2(C1 · · ·Ck)| = 1. Hence m2 = m1 and also (2,3) ∈ RCm1

. Similar arguments
imply that each movement of σj is a movement of Cm1 . Since the movements of σj are circular,
we must have Cm1 = σj , as required. �

Let σ ∈ Sn. We denote by αi = αi(σ ) the number of cycles of size i in the disjoint cycle
decomposition of σ . We denote further dσ = ∑n

i=2(i + 1)αi .

Corollary 3.2. Under the assumptions of Lemma 3.1, dσ − αl � kl.

Proof. We use the notation of Lemma 3.1. Let T (C1C2 · · ·Cr) = ⋃r
i=1{t ip,q | (p, q) ∈ RCi

}. As
remarked above,

T (C1C2 · · ·Cr) ⊇
⋃̇

(u,v)∈Rσ

Tu,v(C1C2 · · ·Cr) =
⋃̇

1�j�r

Bj .

Clearly |T (C1C2 · · ·Cr)| = kl and, by Lemma 3.1, we have |Bj | � lj + 1 if lj �= l and |Bj | � lj
if lj = l. Therefore kl � dσ − αl , and the proof is complete. �
Theorem 3.3. Let k, l be natural numbers such that k � 2 and l > 2. Suppose that either l is odd
or k is even. Denote n1 = � 2kl

3 � and δ = 2kl
3 − n1. Then:

(1) If n1 ≡ 3 (mod 4), then n(k, l) � n1;
(2) If n1 ≡ 1 (mod 4), then n(k, l) � n1 + 1;
(3) If n1 ≡ 2 (mod 4), then n(k, l) � n1 + 1; if we further assume that l > 3 and δ ∈ {0, 1

3 }, then
n(k, l) � n1;

(4) If n1 ≡ 0 (mod 4), then n(k, l) � n1 + 1.

Proof. We recall first that either l is odd or k is even, and

n(k, l) = max{m � l | each permutation in Am is a product of k cycles of size l}.
Moreover, k � 2 and l � 3. We shall prove each item separately.

(1) Suppose that n1 ≡ 3 (mod 4). Then (n1 + 1)/2 is even, and we can choose a permutation
σ ∈ An1+1 such that the disjoint cycle decomposition of σ is a product of (n1 + 1)/2 transpo-
sitions. Since l � 3, we have dσ − αl(σ ) = 3 · n1+1

2 − 0 = 3
2 (n1 + 1) > 3

2 · 2
3kl = kl. Thus, by

Corollary 3.2, σ is not a product of k l-cycles, and so n(k, l) � n1.
(2) Suppose that n1 ≡ 1 (mod 4). We choose a permutation σ ∈ An1+2, such that the disjoint

cycle decomposition of σ is a product of (n1 −1)/2 transpositions and one 3-cycle. If l = 3, then
dσ − α3(σ ) = 3 · n1−1

2 + 3 = 3
2 (n1 + 1) > 3

2 · 2
3kl = kl. If l > 3, then dσ − αl(σ ) = 3 · n1−1

2 +
4 − 0 > kl. Thus, in both cases, we obtain n(k, l) � n1 + 1 by Corollary 3.2.
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(3) Suppose that n1 ≡ 2 (mod 4). We choose a permutation σ ∈ An1+1 such that the disjoint
cycle decomposition of σ is a product of (n1 − 2)/2 transpositions and one 3-cycle. Assume first
that l > 3. Then

dσ − αl(σ ) = 3 · n1 − 2

2
+ 4 − 0 = 3

2

(
2

3
kl − δ − 2

)
+ 4 = kl +

(
1 − 3

2
δ

)
.

If δ = 0 or 1
3 , then we obtain dσ − αl(σ ) > kl and so n(k, l) � n1 by Corollary 3.2. For the

case δ = 2
3 , choose ρ ∈ An1+2 with the disjoint cycle decomposition consisting of a product

of (n1 + 2)/2 transpositions. Then dρ − αl(ρ) = 3 · n1+2
2 > kl, yielding n(k, l) � n1 + 1 as

required.
Assume now that l = 3. Then the above permutation ρ satisfies dρ − α3(ρ) > kl, and so

n(k, l) � n1 + 1 also in this case.
(4) Suppose that n1 ≡ 0 (mod 4). If l > 3, then choose σ ∈ An1+2 with the disjoint cycle

decomposition consisting of a product of (n1 − 4)/2 transpositions and two 3-cycles. Then dσ −
αl(σ ) = 3 · n1−4

2 + 4 · 2 − 0 > 3
2 ( 2

3kl − 1 − 4)+ 8 = kl + 1
2 > kl. If l = 3, then choose ρ ∈ An1+2

with the disjoint cycle decomposition consisting of a product of (n1 − 2)/2 transpositions and
one 4-cycle. Then dρ − α3(ρ) = 3 · n1−2

2 + 5 − 0 > 3
2 ( 2

3kl − 1 − 2) + 5 = kl + 1
2 > kl. Thus in

both cases we deduce by Corollary 3.2 that n(k, l) � n1 + 1, as required. �
The main result of this paper now follows.

Theorem 3.4. Let k and l be integers such that k � 2 and l � 9 is odd and divisible by 3. Then
2
3kl � n(k, l) � 2

3kl + 1. Furthermore, n(k, l) = 2
3kl whenever k is odd.

Proof. By Theorem 2.7, 2
3kl � n(k, l) and, by Theorem 3.3, n(k, l) � 2

3kl + 1. If k is odd,
then 2

3kl = � 2
3kl� ≡ 2 (mod 4) and, by Theorem 3.3(3), n(k, l) � 2

3kl. Hence in this case
n(k, l) = 2

3kl. �
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