View metadata, citation and similar papers at core.ac.uk brought to you by .CORE

provided by Elsevier - Publisher Connector

Journal of Pure and Applied Algebra 79 (1992) 293-312 293
North-Holland

Noetherian rings of generalized
pOWEr series

Paulo Ribenboim

Department of Mathematics and Statistics, Queen’s University, Kingston, Ontario,
Canada K7L 3N6

Communicated by M. Barr
Received 6 April 1990
Revised 5 September 1990

To Karl Egil Aubert, mathematician of distinction,
friend of long date. In Memoriam.

In this paper, we investigate when a ring of generalized power series is
noetherian. The results obtained yield many interesting classes of examples of
noetherian rings.

The preliminary sections contain the concepts and facts required to establish
our results. For those proofs which are not immediate, the reader may consult the
papers listed in the references, especially [7] and [8].

1. Monoids

A monoid is a commutative semigroup with neutral element. Unless the
contrary is explicitly stated, the operation is written additively and the neutral
element is denoted by 0.

Let § be a monoid. An element ¢ € S is cancellative whenever t+s=1t+ s’
(with s,5" € S) implies s =s'. If every element is cancellative, S is said to be
cancellative.

We denote by G(S) the largest subgroup of S; it consists of all elements s € S
such that there exists t € § satisfying s + £ =0.

The monoid S is torsion-free if the following property is satisfied: if s,r € S, if
k=1 is any integer, then ks = kt implies s = 1.

If s;,...,s,€S we denote by (s,,...,s,) the set of all elements Y7, ks,
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(with k, integer, k,=0); this set is the submonoid generated by the subset
{s,,...,8,

A monoid § is finitely generated if there exists a finite subset {s,,. .., s,}, such
that S = (s,,...,5,).

For each element s € S, we denote by 5™ the subset s = {s + t| & §}. Thus, if
S is a group, then 57 = § for every s€ §.

A subset [ of § is an ideal if the following property is satisfied: s + ¢ € J for each
sE S, te J.

The intersection of any nonempty family of ideals is an ideal. Since § is an
ideal, each subset X of § is contained in a unique smallest ideal J, namely,
J=U cys™.

J is said to be the ideal generated by X.

J is a finitely generated ideal if it may be generated by a finite subset.

We quote the following result (see Gilmer’s book [2, pp. 39, 49 and 78]):

1.1. If 8 is a finitely generated monoid, then every ideal of § is finitely generated,

Fau

so every strictly increasing chain of ideals is finite. 13
The next result will be used in Section 5.

1.2. Let T be a submonoid of S, such that S=T+ G(8). Let s=t+u, s'=
tu, with t,t' €T, uu’ € G(S). If s'&s™, then t' &t

Proof. It ¢/ =¢+w, then s’ = +u'=r+u'+w; let "€ G(s) be such that
u'=u+u" Thens' =s+u'+wes".

Any submonoid of the additive monoid N of natural pumbers, is called a
numerical monoid.
The following well-known result of Dickson is in Gilmer’s book {2, p. 13}

1.3. Let S be g numerical monoid, S 5 {0}, let d be the greatest common divisor of
all s€ S. Then:

(i) There exists an integer k,=1 such that {kd | k=k,} CS.

(i1} S has a finite set of generators. [

2. Ordered sets

Let S be a (nonempty) set, with an order relation =; we write (S, =). Unless
the contrary is stated, we shall not assume that the order is total; it is also not
excluded that = may be the trivial order (s = ¢ implies s = 1).

When we consider many orders simultaneously, we may use notations like =,

1

=,, =", <, and even other notations, to distinguish these orders.
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If < is an order on S, the opposite order <° is defined as follows: s <" when
r=s.

Let =,=<' be orders on §. We say that = is coarser than =’, and =<’ is finer than
=, when s =t implies s =<' 1.

Let I be a nonempty set, let (S,, =) (with i € 1) be a family of ordered sets,
and S =]],.,S;. The product order = on S is defined componentwise: if 5= (s,),
and ¢ = (1,),, then s =t when s, <, t, for every i € I. Sometimes, we may use the
more cumbersome notation || =, for the product order and write s([] <,)z.

Let (I, <) be a totally ordered set, which is well-ordered. The lexicographic
order (lex(=,),), denoted more simply (lex=<) on S=][],., S, is defined as
follows: if §=(s,),c; and 1 = (t,),c, are in S, then §(lex =)f when either § =7 or
s#tand s, < t,, where i, is the <l-smallest element of the set {i € I]s, #1,}.

Let i, be the <J-smallest element of I, let I' = I\{i,}; define (<)) = (=,) and
(=]) = (lex(=,;), ). Then lex(=,), = (lex(s;),‘:o‘l)-

Similarly, if (/, <) is a totally ordered set S which is well-ordered, with respect
to the opposite order <1°, the reverse lexicographic order (revlex =) on S =
IL:c; S; is defined as follows: s(rev lex =)7 when either s=for§# ¢, and s, <, ¢, ,
where i, is the <I-largest element in {i €[ |s,#1,}.

A remark, similar to the one about the lexicographic order, holds also for the
reverse lexicographic order.

In particular, the lexicographic and reverse lexicographic orders may be defined
on cartesian products of finite families of ordered sets.

If each (S,, =,) is totally ordered and the lexicographic order (resp. reverse
lexicographic order) is defineable, then it is a total order.

When the lexicographic order (resp. reverse lexicographic order) is defineable,
then they are finer than the product order.

The ordered set (S, =) is said to be artinian (resp. noetherian) if every strictly
decreasing (resp. increasing) sequence of elements of S is finite. (S, =) is narrow
if every subset of pairwise order-incomparable elements of § is finite.

Ordered sets which are both artinian and narrow have been called quasi-well-
ordered sets and have been extensively studied (see [9]).

We shall need the following well-known results:

21. If (S.=) is artinian, noetherian and narrow, then § is finite; and
conversely. [

Higman [3] showed:

2.2. Let (S, =) be an ordered set. The following conditions are equivalent:
(1) (S, =) is artinian and narrow.
(ii) If (s,),=, is any sequence of elements of S, there exists a sequence
Ny <n,<ny<---such thats, =s, =5, <"
(iii) If (s,),=, is any sequence of elements of S, there exist indices n, < n, such
that s, =s,. U
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Let (S,,=<,) be ordered sets (for i=1,...,n) and let S=]]_, S,, with =
denoting the product order. For each i, let S;=]],., S, and let <} be the
corresponding product order.

2.3. We have:

(i) (S, =) is artinian (respectively noetherian) if and only if each (S,, =<,) is
artinian (respectively noetherian).

(it) (S, <) is artinian and narrow (respectively noetherian and narrow) if and
only if each (S,, <,) is artinian and narrow (respectively noetherian and narrow).

(iii) (S, =) is narrow if and only if each (S, =,) is narrow and for each
i=1,2,...,n, the following two conditions hold:

(a) (S;, =,) is artinian or (S;, =) is noetherian,

(b) (S,, =,) is noetherian or (S;, <}) is artinian.

Proof. (i) This is easy to see.

(ii) Tt suffices to prove, for example, that if (S;, =;) are artisian and narrow for
i=1,...,n, then so is (S, =). This is an immediate application of 2.2.

(iii) We assume that (S, =) is narrow; clearly, each (S;, =,) is narrow. If, say,

’

for some i (S,,=,) is not artinian and (§;, =)) is not noetherian, there exist

sequences s; > s, >---in §; and 5| <s;<---in §;; hence (s, 51), (55, 53), . . . are
incomparable elements in (S, <). The proof of (b) is similar.

Conversely, let (S;, =;) be narrow for every i =1, ..., n and assume that, for
each i=1,...,n, conditions (a) and (b) are satisfied.

We shall proceed by induction. For each i=2,...,n, let §7=][[.,,S;,
endowed with the product order, which we denote by <. If conditions (a), (b)
hold for all i=1,2,...,n, then these conditions also hold for all i=2,...,n
and for the ordered sets (S, =<,), (87, <"). Then, by induction, (S{,=}) is
narrow, noting that =/ is the order product of =, and =" (fori=2,...,n). It

follows that S =S, x S| is also =-narrow, because = is the order product of =,
and =/. Since properties (a), (b) are satisfied by (S,,=,) and (S}, =}), then
(S, =) is narrow. [

2.4. Let (S, =<,) be ordered sets, S =[]/_, S; and let (lex), resp. (rev lex), be the
lexiographic order, resp. reverse lexicographic order, on S.
(i) (S,lex) (resp. (S, revlex) is artinian if and only if each (S;, <) is artinian.
(ii) (S, lex) (resp. (S, revlex) is narrow, if and only if each (S;, =,) is narrow.
Proof. The proof, which is very easy, may be omitted. [

The following easy fact is very useful:

2.5, If =,<’ are orders on S and = is coarser than =<', if X C S then:
(i) If X is =-narrow, then X is ='-narrow.
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(i) If X is <'-artinian, then X is =<-artinian.
) If X i

(iii) If X is <-artinian and <-narrow, then X is <'-artinian and =<'-narrow.
O
2.6. If (S, =,) are artinian and narrow sets (fori=1,...,n), iff §=8§ x--- X

S., if (lex =), (revlex =) are the lexicographic order, and reverse lexicographic
order on S, then (S, (lex =)), (S, (rev lex <)) are artinian and narrow.

Proof. The result follows at once from 2.3, 2.5 and the fact that the product order
is coarser than the lexicographic order and the reverse lexicographic order. 0O

In particular, if (S, <) is artinian and narrow, n = 1, then (5", =), (8", (lex =)),
(8", (rev lex =)) are also artinian and narrow sets.

3. Ordered monoids

Let (8, =) be an ordered monoid, that is, S is a monoid, and = is a compatible
order relation:

If s,s',t€ S, then s <5’ implies s +r=<s" + 1.

(S, =) is a strictly ordered monoid if s,s'.,t€ S and s <s' imply s +t<<s"+ 1.

If S is cancellative or if < is the trivial order, then (S, =) is a strictly ordered
monoid.

The following facts are useful:

3.1. Let (S, =) be a strictly ordered monoid. Then:
(i) If s<<t, then ks <kt for every k=1.
(il) If 0<s, then 0 <s <25 <3s<<---.
(i) If s<O0, then --- <3s<2s<s<0. O

Let (S;, <,),c, be a family of strictly ordered monoids, let S =]],., S, and let =
denote the product order; then (S, =) is a strictly ordered monoid. If 7 is totally
ordered and well-ordered, then S, endowed with the lexicographic order defined
by the orders <, (i € I) is a strictly ordered monoid. A similar result holds for the
reverse lexicographic order.

A totally ordered monoid need not be strictly ordered. For example, let
S={a €R|0=a =1}, endowed with the order induced by the order of R, while
the operation is so defined: if a,8 € S, their sum is min{1l, « + B}.

3.2. If the monoid S has a compatible strict total order, then S is torsion-free and
cancellative. [

The converse is an important and well-known result:
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3.3. If S is a torsion-free and cancellative monoid, if < is any compatible strict
order on S, there exists a compatible strict total order on S, which is finer than
= U

The following result is also crucial in the sequel:

3.4. If X.Y are artinian and narrow subsets of (S, <), then X + Y ={s +1|sE X,
te Y)Y is also artinian and narrow. [

(S, =) is said to be naturally ordered whenever s=t if and only if t=s+ u,
where u € 8, 0=u.

3.5. Let (S, =) be an ordered monoid. The following conditions are equivalent:
(1) $=1{0,s,25,3s,...} with 0<<s <25 <:--.
(ii) S is finitely generated, G(S) = {0}, the order is strict, total and natural.

Proof. (i) = (ii) This is trivial.

(ii)= (i) Let {s,,s,,...,s,} be a minimal system of generators of S (with
s, #0). If n=2, we may assume, for example, that s, <s, <---<s,. Since the
order is natural, s,=s, + ¢, and 0<tr= ),/ k;s,, with integers kK, =0. So s, =
(k,+1)s, + kys, + -+ -+k,s,. If k,=0, then s, € (s, 5;5,...,5,), which implies
that {s,,s5,...,5,} is still a system of generators—contrary to the assumption.
Thus &k, = 1.

By 3.2, § is cancellative, hence 0= (k, +1)s, + (k, — 1)s, + ¥7_; k;s,. Thus,
s, € G(S), so s, =0, which is contrary to the hypothesis.

This shows that n =1, hence S = {0, s,2s, ...}, where s =s,.

Since S is cancellative all the elements ks are pairwise distinct. If 0 = j <k, then
js < ks, otherwise ks < js, so there exists / =0 such that (k + i)s = js, and since S
is cancellative, k + i =j, hence k = j, which is absurd. O

4. Generalized power series
Let R be a commutative ring, with unit element.
We shall henceforth assume that (S, <) is a strictly ordered monoid.
Let A = [[R*7]] be the set of all mappings f : S— R, such that the support of f,
supp(f) = {s €S| f(s)#0}, is an artinian and narrow subset of S.

With pointwise addition, A is an abelian additive group.
It is easy to show the following:



Noetherian rings of generalized power series 299

4.1. For every s€S and f, g€ A, the set X,(f, g)={(t, ) ESX S| s=t+u,
f(t) 0, g(u) #0} is finite. O

This allows to define the operation of convolution:

(f=)s)= X flNgw).

(ru)eX(f.8)

With these operations, A becomes a commutative ring, with unit element e,
namely

e(0)=1, e(s)=0 foreveryse€ S, s#0.

The elements of A are called generalized power series with coefficients in R and
exponents in S.

For simplicity, we use the notation f*= f*---x f (k times).

Note also that

supp(f + g) Csupp(f) Usupp(g) ,
supp( f* g) Csupp(f) + supp(g) -

R is canonically embedded as a subring of A, and S is canonically embedded as a
submonoid of (A\{0}, *), by the mapping s € S— e, € A, where

e(s)=1, e(t)y=0 foreveryt€S, 1#s,

because e, ,, = ¢ *e,.

If (S, =) is totally ordered and f€ A, f#0, then supp(f) is a nonempty
well-ordered subset of S. We denote by #( f) the smallest element of the support
of f. It is also convenient to adjoin an element ® to S, with the properties:
§+owo=o00+g=0w and s <, for every s €S. And then, to define #w(0) =,

Now it is easy to see the following:

4.2, Let (S, =) be totally ordered. If f,g € A, then:

(D) #(f+ g =min{x(f), m(g)}; also if 7(f)#m(g), then w(f+g)=
min{w(f), m(g)}.

(i) 7w(=f)= m(f).

(i) w(f*g)=a(f)+ w(g); moreover, if R is an integral domain, then
7(fxg) = m(f)+ m(g).

(iv) If R is an integral domain, then w(f+*g)= w(f)+ w(g).

V) mle,xf)y=s+m(f). O
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Thus, if R is an integral domain and (§, <) is a totally ordered monoid, then A
is a domain.
Before proceeding, we indicate some examples.

Example 1. If § is trivially ordered, then the artinian and narrow subsets are the
finite subsets; so A = R[S], the monoid ring of § with coefficients in R. These
rings have been thoroughly studied in Gilmer’s book [2].

Example 2. If § =N, with the usual order, then A = R[[X]] (ring of formal power
series in one indeterminate and coefficients in R).

Example 3. If S =N", with the product order, or the lexicographic order, or the
reverse lexicographic order, then A=R[[X,,..., X,]] (ring of formal power
series in n indeterminates and coefficients in R).

Example 4. Let (X,),., be a countable set of indeterminates, let M be the free
multiplicative monoid generated by {X,|i=1}; its elements are the monomials
w =117, X*, where each u, EN, and p, = 0 except for finitely many indices. We
note that for each u € M, the set {(u', u") | u’, " EM, u' + p" = p} is finite.
Let R be a ring and let R[[X,]];c, be the set of all formal sums f= Y, f, &,
with f, € R; in other words, fis just a map from M to R, with f(r) =f,. R[[X/]]
is a ring, with termwise addition and multiplication defined by (Y ,cp f. 1)
(Xpem 8um)=X cuh, u, where h, =Y .. . f. g, foreach u € M.

C = R[[X/]],~, is the ring of power series in the indeterminates X; (i = 1) and
coefficients in R.

It is worth noting that C contains proper subrings D, E which have also been
called rings of power series in the indeterminates X, (i = 1) and coefficients in R.
Namely, the elements of D are formal sums f=),,., f,, where each f, is a
homogeneous polynomial of degree d in R[X,],.,. Next, E=U {R[[X/]],cr | F
finite subset of N_,} and it is clear that EC D C C.

The ring C may be viewed as a ring of generalized power series. Indeed, let <
be a compatible order on M, such that (M, =) is artinian and narrow; then
C=[[R"7]].

For example, = may be defined as a lexicographic order: u < p' if w, <},
where i =1 is the smallest index such that u, 7 u;.

Another possibility is obtained by means of a bijection ¢ : M — N_,; then we
define w=pu’ when o(u)=e(n') (in N). A bijection ¢ is the following:
o(Il.-, x)=1I,_, p/", where {p,, p,, p5,...} is the increasing sequence of
prime numbers. Actually, ¢ is an isomorphism of monoids.

Example 5. Let R be a ring, and consider the multiplicative monoid N_,,
endowed with the usual order <. Then A = [[R"="7]] is the ring of arithmetical
functions with values in R, endowed with the Dirichlet convolution:
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(feo =3 fare( ).

for each n=1.
As it was pointed out by Cashwell and Everett [1], the rings A and C are
isomorphic. Indeed, if ¢ : M—N_, is the monoid isomorphism indicated in the

preceding example, then the mapping
feEAfopeEC

is a ring-isomorphism.

Now let div denote the divisibility order on N, : m(div)n whenever m divides
n. Let B=[[R"="""]]. Then B is a proper subring of A. For example, the
function f such that f(n) =1 for every n =1, belongs to A, but not to B.

Since (N.,, div) is artinian, it follows from 2.2 that f € B if and only for each
sequence (1), of elements in supp(f), there exist indices i; <i, such that n,
divides #, .

Example 6. If (S, =) is a totally ordered group and R is a field, Krull showed [4]
that A is a field. In this situation, the mapping 7 : A— § U {«}, defined in 4.2, is
a valuation of A, called the natural valuation of A; see also [5]. Krull showed that
the valued field (A, ) is maximal.

After these examples, we indicate more properties of the ring of generalized
power series.

Let [ be any ideal of R, and let [I°]] = {f € A | f(s) € I for every s € S}; then
[[7°]] is an ideal of A.

4.3. If LI' are ideals of R and 1C I', then [[I°]]C[[I'°]}. O

The following fact is useful:
4.4. Let =,=' be compatible orders on S, such that < is coarser than <'; let R be
any ring. Then A =[[R*=]] is a subring of A" =[[R*~']]. Moreover, if (S, <) is
narrow, then A= A'.
Proof. Both assertions follow at once from 2.4. O

Let (S, =), (T, =) be ordered monoids, let =, (lex <), (revlex <) denote the

product order, the lexicographic order and the reverse lexicographic order. Since
these orders are also strict, we may consider the rings

[[RSXT,S]]’ [[RSXT.(lexﬁ)]] and [[RSXT‘(rcvlexS)]]‘
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Moreover, [[R**"%]] is a subring of the other two rings because the product
order is coarser than the lexicographic and the reverse lexicographic orders. Let
A=[[R*%]] and B =[[R"7]]; we prove the following:

4.5. (i) [[R“"X""‘(“‘iv_’cx | is naturally isomorphic to the ring [[A”=]|; the image of
the subring [[R**""=]] is equal to

{he A7) U, o, supp(h(t) is an artinian and narrow subset of S} .

(ii) [[RSX‘T‘(ch =N is naturally isomorphic to the ring [[B*~]; the image of the
subring [[R*""71] is equal to

{(he[[B>7]]| U, supp(h(s) is an artinian and narrow subset of T .

Proof. (i) Let C=[[R**7""'"**=))], let f € C and t € T. We define f, : S— R by
f.(s) = f(s, ). We show that supp( f,) is an artinian and narrow subset of §, thus
f,eA.

Indeed, if s,,5,,...€supp(f,) and s, >s,>---, then f(s;, 1) = f(s,) # 0 with

(s, Dlrevlex >)(s,, )(revlex >)- - -

which is impossible. Similarly, it is impossible that s,s,, ... be pairwise incom-
parable.

Let ¢(f): T— A be defined by ¢(f)(t)=f,, we show that supp(¢()) is an
artinian and narrow subset of 7. Indeed, if ¢,,t,,. .. Esupp(e(f)) and ¢, >, >
-, then for every ¢, there exists s, € S such that f(s,, £;) = f, (s;) # 0, so

(sy, 1,)(revlex >)(s,, t,)(reviex >)- - -

which is impossible. Similarly, if ¢,,¢,, . . . €supp(e( f)) and ¢,,¢,, . . . are pairwise
incomparable, as before (s, 1), (s,,,),... are pairwise incomparable in the
order (rev lex =), which is impossible. Thus ¢( f)E[[A"]].

It is immediate to check that ¢(f +g)=¢(f) + @(g). ¢(f*8) = e(f)*¢(8)
and that the mapping ¢ is injective.

Now we show that ¢ is surjective. Let h €[[A”7]] and define f : S X T— R by
f(s, ) = h(1)(s). We show that f € C and therefore ¢(f) = h.

First note that if (s, 7) is in supp(f), then ¢ € supp(/) and s & supp(h(¢)).

Assume that (s, f, revlev >)(s,, t,)(reviex >)--- with each (s,1)€E
supp( f); since r,€supp(h) and ¢, =t,=--- (in T) there exists n such that
t,=t,.,=--andsos, >s,, > - (in S), where cach s, € supp(h(z,)), h(t,) €
A; this is impossible, showing that supp( f) is artinian.

Similarly, if (s, ¢,),(s,.¢),... are pairwise incomparable elements of
supp( f). with respect to (revlex =), since ¢, Esupp(h) then Y ={¢,t,,...} 1s
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artinian and narrow. By 2.2 there exists i, <i, <---such that ¢, =7, =---; but
the elements (c L ) are pairwise mr‘nmnarable in (revlex <), so r =t = and
S, ,...are palrWlse mcomparable elements of §, which belong to supp(h(t,l))

02 Vi

with h(t ) € A; this is impossible. Thus f € C.

Now we determine the image of [[R**7=]] by ¢. Let fE[[R**77]] and let
(s,),., be a sequence of elements of X = U, _, supp(f,). So there exist elements
;€ T such that f(s;, t;) = f,(s;)#0. Since supp(f) is an artinian and narrow
subset of (§ %X T, =), by 2. 2 there exist indices i <j such that (s,,1,)=(s;, {,),
hence 5, =s5,. Again, by 2.2, the set X is artinian and narrow.

Conversely, let h €[[A7=]] be such that X = U, _, supp(k(¢)) is artinian and
narrow. Let f € C be the unique element such that ¢(f)=h

Let (s, ¢,);-, be elements in supp(f). hence s, Esupp(f,), so s, € X. By 2.2,
there exist indices ¢, <i{, <i,<--- such that s. =<5 =--.. By considering a
LEIIVLI L LCAIIDL 1HHIVILV D Ll ~ L') ~ L‘; ~ Juvil wiGu J”l 1'7 - ] UllDlU\.«l llls a

subsequence, there is no loss of generality to assume that s, <s,=<s, <

Since f € C, its support is artinian and narrow, with respect to the reverse
lexicographic order, so there exist indices i <j, such that (s,, #,)(rev lex =)(s,, 1,).
This implies that ¢, =, and s, <s,, or f;<{,;; noting that 5, =<y, then (s,, ;) =
(s;» 1) (in the product order) By 2.2, supp(f) is artinian and narrow in the
product order, so f € [[R**"7]].

(ii) The proof is similar. ]

Thus, if S is artinian and narrow, then
[[RSXT.E]] — [[RSXT.(rcv lex S)]] o~ [[AT’:” )

In particular, the above results hold when S is totally ordered and well-ordered.

For example, § may be equal to any numerical monoid with the usual order.

Similar remarks apply when T is artinian and narrow. The situation is the
following:

[RSXT.(rev lex S)” ~ [[AIS]] ;
[RSXT.(lcx s)” o~ [[BSL\]] )

In general, the above inclusions may be strict and [[A"~]], [[B**]] may be
different.

We illustrate this possibility with the following example. Let S = T=Z (addi-

tive group of integers, with usual order), R any ring. We have: (0,0), (1, —1),
(2, —2), ... are pairwise incomparable according to the product order,

(0,0)(rev lex >)(1, —1)(revlex >)(2, =2)-- -,
(0, 0)(lex <)(1, —1)(lex <)(2, —=1)- - -
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Let f:§ X T— R be defined by f(n, —n) =1 for every n =0, f(s, t) = 0 other-
Wise. Then f e [[R‘SXT,(lcx S)]], fg[[R?XT.(rev lex ﬁ)]]'

It is equally easy to show that [[R**""*"'**=)]] is not contained in the ring
[[RSXT.(]cx S)]]

5. The ascending chain condition

As before, let R be a ring, (S, =) a strictly ordered monoid and A = [[R*=]]. If
(S, =) is trivially ordered, then A = R|S], the group-ring of S with coefficients in
R. In this situation, we recall the following result (for the proof, see Gilmer’s
book [2, p. 75]):

5.1. R[S] is a noetherian ring if and only if R is a noetherian ring and S is finitely
generated. [

Now, we consider the general case.

5.2. Assume that A is a noetherian ring. Then:
(i) R is a noetherian ring.
(ii) If S is cancellative, there exist s,,...,s, € S\G(S), such thar SC
(S1s-..us8,)+ G(S).
(iit) If 0=s for every s € S, then (S, <) is narrow.

Proof. (i) Assume that /, C I, C [, C-- - is an infinite strictly increasing chain of
ideals of R. By 4.3, [[ISIIC[[E1CI[I3]]C -+ is a strictly increasing chain of
ideals of A. Thus, if A is noetherian, then R is noetherian.

(ii) Suppose SZ{s,,...,s,) + G(S), where s,,....s, € S\G(S); let I, =
Y7, Ae,. It suffices to show that there exists s,., € S\G(S), s, &
(sys- .. ,‘s”>, such that e, &I . If the argument may be repeated indefinitely,
this would lead to an infinite strictly ascending chain of ideals of A, which is
contrary to the hypothesis. Thus, there exist m > n such that SC (s,,....s,,) +
G(S).

By hypothesis, there exists 1€ S\({s,,...,s,) + G(S)). If ¢,&1,, we put

5,01 =t 1f e €1, we have e, = Y7, e, *f, with f, € A. Then

n+1 no

tESUPP(Z e.\,*ﬁ»)
i=1

C L:J1 supp(e,, * f;) C L:J] (s; +supp(f)) ,

so there exists i}, 1 =i, =#, and v, Esupp(f,l), such that ¢ = s; tu. It follows
that v, € (s,,...,s,) + G(S). If e, £1I,, we take s5,,,=v,. If e, €1, by the

same argument, v, =s, + v, with 1=i,=n, v, &(s,,...,s,) + G(S). Again, if
e, &1, lets, ., =v, If e, €1, the argument is repeated.
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If the argument could be repeated indefinitely, for every p, t=s, +5, + -+

§; Fv =X ks + v, with each k;, =0 and Zf’ | k,)=p. So, it is n e
that there exists N such that k, =N for alli=1, ,nandall p=1. Thus, there
exists 7, 1 =i = n, such that qun k, =; thus t = msi + u,, for every m =1, with

quG(S) Since § is cancellatnie u,=s;+u,, u,=s;+ ug, . ... Therefore,

e, =e ke, €, =e *e, .. » hence Ae, C Ae, C Ae, C-

By hypothe51s there exists m such that Ae, = Ae“m+l hence €, . =€, *f

(with f € A), so u,,,, = u,, + w, where wEsupp(f). But u,,=s, +u,.,, hence
U, =S, tw+tu and so s, + w =0, showing that s, € G(S), which is a

m+12
contradiction.
(iii) Assume that s,,s,,5,,...E S are pairwise incomparable elements. We
consider the chain of ideals Ae, C Ae + Ae, C---. Since A is noetherian, there
exists n such that Ae  +- Lt Ae = Ae t:-+ Ae, =---. Hence e =

Yol e, f; (with each fEA) So s, Esupp(Z" 11 e, f)CU ' (s, + supp( £)).
Hence there exists i, 1=i=n-1, and tEsupp(f,) such that 5,=8;,tt=s,,

which is a contradiction. O

We shall now prove the converse under an additional hypothesis. For this
purpose, we require some preliminary considerations.

Let a,a’ € A. We define the relation a < s’ (a is a section of a’) as follows: if
s €supp(a) and s’ €supp(a’ — a), then s <s'".

We note the following simple properties:

5.3. Let a,a’,a"c A. We have:
(i) If a=<a’, then supp(a) Nsupp(a’ — a) =0 and supp(a) Csupp(a’).
(it) 0<a.
(iii) a <a.
(iv a<a' and a’ <aimplya=a'
(v) a<a and a' <a" imply a<a".

Proof. The proofs of (i), (ii), (iii} are trivial.

(iv) By (i), supp(a’ — a) Nsupp(a) = supp(a’ — a) Nsupp(a’) = @; but if a # a’,
then @ # supp(a’ — a) C supp(a) U supp(a’), which is absurd.

(v) Let s&supp(a) and ¢ Esupp(a —a”). Since a—a"=(a—a')+(a' —a
then supp(a — a”) C supp(a — a') U supp(a’ — a") and, say ¢ € supp(a — a’). Since
a=<a’', then s <t, which shows that a <g". [

Let A be an ordinal number. The family (a,, ), .,
be =<-ascending if u < p’ <A implies that a, <a,..
Let (a,), <, be <-ascending. An element b € A is <-sup(a,),., Whenever

(i) a, = b for every pu <A,

(ii) if b'€ A and a, < b’ for every u <A, then b <b".

If a <-sup(a,),., exists, it is unique; this follows from 5.3(iv).

If (a, ), -, is <-ascending and A = v + 1, then a, = <-sup(a,, ), -, ; this is trivial.

of elements a, €A 1s said to



306 P. Ribenboim

5.4. Let (S, =) be totally ordered.

(i) If a,a’,a" are distinct elements of A, such that a <a' <a", then m(a —a') <
m(a' —a") and w(a —a') = w(a —a").

(ii) Let A be a limit ordinal and (a,,), ., be a <-ascending family of elements of
A. Then, there exists a, = <-sup(a,), _,., and supp(a,) = U#q supp(a,, ).

Proof. (i) Let s=m(a—a')Esupp(a—a')Csupp(a)Usupp(a’) Csupp(a’).
Since a' < a”", then s <w(a' — a").

It follows that w(a —a') = o(a — a").

(ii) For every p <A, let p be the smallest ordinal such that a; =a,. Let
A={g|p<A}. Then, if u,» €A, u<wv, we have a, #a,.

First Case: There exists p, < A, such that u < u, for every u € A. Thena, =a,
for every v, p, = v <<A.

We define a,=a,. Then a,==-sup(a,)
U, -, supp(a,).

Second Case: Ais cofinal in {u | w <A}. By (i), if pou', n" €A, p<p' < pu’,
then w(a, —a,)<w(a, —a,)and w(a, —a, )=m(a, —a,) Foreach p €A,
let p, = m(a, —a, ), where p<p’€A (pn' arbitrary). Thus, if p<p’, then
Pu <Py

Now we define a, : §— R. If s € § and there exists u € A such that s <p,, we
put a,(s) = a,(s). We note at once that if u’ €A and s<p,., say p <pu’, then
p,=m(a, —a,),soa,(s)=a, (s). On the other hand, if p, <s forevery u € A,
we put a,(s) =0.

We show that supp(a,) is well-ordered, thus a, € A. Let T Csupp(a,), T #40,
so there exists s € T and p € A such that s<p,, hence a,(s) = a,(s) #0.

For each s'€T, s'=s, we have also s'<p,, hence a,(s')=a,(s"). Thus
{s"€T|s' =s}Csupp(a,); this shows that supp(a,) is well-ordered and also
that supp(a,)C U, _, supp(a,).

We continue the proof, showing that a, < a, for every u € A, hence for every
m<A. Let sEsupp(a, ) and rEsupp(a, —a,), sop, =t lfr=s, thens=p, =
m(a, —a,.), where u < p' € A; hence s Zsupp(a,, ), because a, <a,.. This is a
contradiction. Thus s < b, hence a, < a'ﬂ,.

Therefore, supp(a, ) Csupp(a,). proving that supp(a,) = UM<A supp(a, )-

Next, we show that @, = <-sup(a,,),.,. Assume that b € A and that g, < b for
every u < A; we show that a, <b. Let s €supp(a,) and t Esupp(a, — b). So,
there exists u € A such that s<p, and a,(s) = a,(s) # 0, hence s Esupp(a,,).
From ¢ E€supp(a, — b) Csupp(a, —a,)Usupp(a, — b), either tEsupp(a, —a,)
and therefore s <1, because a, <a,; or t Esupp(a, — b) and again s <1, because
a, = b. This shows that a, < b.

Finally, n(a, —a,)=p,, because if s <p,, then a,(s) = a,(s). On the other
hand, if w,u’ €A, p < p',thenp, <p,. hencea,(p,)=a, (p,)+*a,(p,); this
shows that p, = m(a, —a,). O

.-» and also supp(a,)=
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ordinal numbers, cofinal to A. Assume that {a,),., is 2 =-ascending family of
elements of A, and the following properties are satisfied:

(i) a,=a for every u € A,

7 Tt

(ii) a‘, = =-s5up(d,, ) e 4.p <, fOT €ach limit ordinal p <A.

Then a, = a, for each v <A,

Otherwise there exists the smallest A,=A for which there is », <A, and
a, #a,. By (i), and the minimality, A, must be a limit ordinal, and again a, = a,
for all u <v<aA,. Then a, = a=-sup(a,) must be equal to a, (for each
M << A,), an absurdity.

We prove the converse under certain hypotheses.

KA

5.5. Assume:
(1) (S, =) is narrow and § is cancellative and torsion-free.
(ii) There exist elements s,,...,s, € S\G(S), such that S={s,,...,s
G(S).
(iii) R is a noetherian ring.
Then, A is a noetherian ring.

)+

n

Proof, By 3.3, there exists a compatible strict total order =’ on S, which is finer
than =. Let A’ =[[R>~']], so A is a subring of A". Since (S, <) is narrow, then
A= A’, by 4.4. So there is no loss of generality to assume that (S, =) is totally
ordered.

We may assume S # {0}, let I be any ideal of 4; we shall prove that [ is finitely
generated, so we may assume [ # {0}.

(1°) For every s € S, let I, be the ideal of R, generated by the set {f(s)| fE I,
w(f)=s}.

We observe that if tEs”, then [, C 1. Indeed, let t=s+u and f €I with
w{f)=s. Then e, *xf€& with @w(e, *f)=u+s=1t so f(s)=(e,*f)EI,
showing the inclusion /, C [,.

(2°) We show that there exists a finite subset V of §, and a surjective map
¢ : S—V, with the following properties:

{i) 0€V and o(s) =0 if and only if s € G(S),

(i) s€ ¢(s)" for every s€ S,

(ii) I, =1, for every s€ S.

Let s € G(S), so there exists t &€ S such that s +7=0; hence I, C ], and also
s=0+s,s0 {,C . We define ¢(s)=0; as scen above, the conditions (ii), (iii)
are satisfied for every s € G(S).

If §= G(§), we put V={0}.

If S G(S), we consider the nonempty family of ideals of R, %, ={[ |t&
G(S8)}. Since R is a noetherian ring, there exists a maximal element in .%,, say [

If S= G(S)Uv, we put V={0,v,}.

I)[)'
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If $# G(S)Uv,, we consider the nonempty family of ideals of R, 4 =
{1,| t & G(S)U v, }; by the same argument, .#, has a maximal element 1, . Either
S=G(S)Uuv, Uv,, hence V={V,u,,v,};0r S# G(S)U v, Uv,, and the argu-
ment may be repeated.

This process must stop, otherwise there exists an infinite sequence (v,),., such
that if i<j, then vjEvf. We write v, =1t +u,, with u,€ G(S), ,€T=
(sy,...,s,). By 1.2,if i <j, then r,Z1;; hence 1, Zt,+ T. Thus, we have the
infinite strictly increasing sequence of ideals of T

L+ TCU,+TYU(@, +T)
C,+THu, +tTHu@,+TYC---.

This is impossible.

We define the map ¢ : §— V as follows. If s € G(§), put ¢(s) =0, as it was said
before. If s @ G(S)Uu, U---Uv, | but s€ v, , we define ¢(s)=uv,.

Thus, conditions (i) and (ii) are automatically verified. If ¢(s)=v,, from
s€uw/, then I, C I; by the maximality of /, in ., ={I, [ (€ G(S)Uv/ U---U
v._,} and I, € F,, it follows that I, = I,.

So, there exists a finite subset V of S, and a map ¢ : $-— V with the properties
indicated.

(3°) For each v €V, the ideal 1, is finitely generated, so there exists a finite
subset G, of 1, such that 7w(g) = v for every g € G, and {g(v)| g€ G,} is a set of
generators of the ideal 1.

We note that if v,u' €V, v#v’, then G,N G, =40.

Let G=U,., G,, so G is a finite subset of I. We shall prove that [ is
gencrated by G. Let [, be the ideal generated by G and assume that there exists
feN,,

Let « be an ordinal with cardinal greater than the cardinal #5 of S. Let A be
the set of all ordinals A < a; so #A > #S.

(4°) We shall show that for each A€ A and g € G, there exists an element
a,, € A, such that the following properties are satisfied:

(a) Foreveryge Gand, u,v€ A, p <v,wehavea,,<a,, and for each limit
ordinal p€ A, q,, = S-sup(aug)“q. Moreover, for u,v € A, u <, there exists
8 € G such thata,, #a,, .

() T wv €A, < v, then 7(f~ T ee0,08) < 7(f = Loce ug8).

(© If n €A, g,€ G and s Esupp(a,, ), then s + m(g,) < 7(f— X,ec 9.,8)-

Let A € A and assume that we have already found the elements a,, € A, for
every u <A and g€ G, satisfying the properties (a), (b), (c) (for ordinals
@ <wv<<A).

We shall determine an element a,, € A for every g € G, so that the conditions
(a), (b), (c) are satisfied for p < v = A.















