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1. INTRODUCTION

The group of automorphisms of rooted trees has attracted interest for
being a source of examples of new phenomena in combinatorial group
theory, as well as for its connections with other areas such as automata
theory [3, 4] and dynamical systems [2]. This group, together with many of
its finitely generated subgroups, exhibits rich recursive structures which
reflect the recursiveness of the trees themselves [12]. One form the
recursiveness takes is in the closure of the subgroup structure under
wreath products by cyclic groups having order equal to the valency of the
tree. Thus, if L is a group defined on the binary tree, then the wreath
product of L by the cyclic group of order 2 is also defined in a canonical
manner on the tree.

Of particular interest are the automorphisms of n-ary trees which
correspond to finite-state automata defined on an alphabet of size n.
These constitute the enumerable group of finite-state automorphisms. We
have shown in [4] that the integral linear group GL(m, Z) has a faithful
representation into the group of finite-state automorphisms of a one-rooted
regular n-ary tree for some n. Besides representing integral linear groups,
finite-state automorphisms also represent finitely generated groups which
are not linear, such as the finitely generated infinite Burnside groups
constructed in [1, 13, 5, 8] and which enjoy diverse additional remarkable
properties such as being just-infinite [9] or having intermediate growth [6].
A fractal-like feature common to many of these groups is that they contain
subgroups of finite index which are direct products of two or more copies
of the same groups.

This paper grew out of investigating torsion-free subgroups generated by
finite-state automorphisms of the binary tree. One special finite-state
automorphism is the so-called “binary adding machine” which corresponds
to addition by 1 in the binary system; in the notation to be explained later,
this automorphism is 7 = (e, 7)o . It was proven in [4] that the centralizer
of 7 in the group of automorphisms of the binary tree is isomorphic to the
dyadic integers under addition, and, moreover, any automorphism of the
tree with a centralizer subgroup isomorphic to the dyadic integers is
conjugate to 7. We observe that in Bass ef al. [2, p. 116] there is a
treatment of the more general g-adic adding machine.

The torsion-free group H which we describe in this paper is generated
by 7 = (e, 7)o, and by one of its conjugates u = (e, w ')o. The genera-
tors encapsulate in their definitions the permutations they induce on the
different levels of the tree. In general, it is a very difficult task fathoming
the structure of a group merely from a recursive definition of how its
generators act on the tree. Consequently, it is perhaps surprising to see
how much detail about the group can be revealed and understood on this
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basis. We prove

THEOREM 1. Let H be the subgroup of the automorphisms of the binary

tree generated by p = (e, u o, 7= (e, 1)o. Then the following properties
hold:

() H is residually a “torsion-free solvable group,” and is just-nonsolva-
ble;

(i) H is residually a “finite 2-group,” and every finite quotient Hof H
factors as H = O(H) - S, where O(H) is a nilpotent Hall 2'-subgroup of H
having class at most 2 and S is a Sylow 2-subgroup of H.

The quotients of the lower central series y,(H) of H are studied using
techniques developed by Vieira in [14]. Let O*(H) denote the odd-order
residual N{K <H[H /K has odd order].

THEOREM 2.

(i) The cyclic subgroups { u),{t) are self-centralizing in H;
(ii) the direct product group v,(H) X y,(H) is a normal subgroup of
v,(H) and the quotient v,(H)/(y,(H) X y,(H)) is infinite cyclic;
(iii) the quotient group H /y(H) is torsion-free;
(iv) y5(H) = O*(H),
(v) the central quotients v,(H) /vy, (H) have exponents divisors of 8,
foralli = 3.

The group H admits an elegant presentation with two generators and
two relators together with their images under the iterated application of an
endomorphism of the free group of rank 2.

THEOREM 3. Let F be the free group of rank 2 generated by a, b, and let

=[b, b%], v’ =0, b”] Furthennore let & be the endomorphism of F
determined by &: a = a*, b — a*b~'a*. Define the group L. = {a, b|le*(r),
eX(r", k = 0). Then the map ¢: a = 1, b > M= tu" 1) extends to an
isomorphism from L onto H.

The preceding presentation is in the same spirit as that given by
Lysenok [10] for the Grigorchuk 2-group. The Gupta—Sidki 3-group also
has such a presentation; however, the substitutions are more involved [11].

2. PRELIMINARIES

2.1. Notation

The one-rooted binary tree T, is labeled by the free monoid %, freely
generated by the set Y = {0, 1}, with identity element J, ordered by the
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relation: m <m’ if and only if m’ is a prefix of m. There is a level
function on 7, arising from |m|, the number of syllables in m € M; the
root vertex J has level 0. Let A denote the automorphism group of T,
and let o be the automorphism of 7, interchanging Om and 1m for any m
in the monoid %"

An automorphism « which fixes the vertices labeled by 0,1 is repre-
sented as an ordered pair («y, a;) where «; is the automorphism of the
subtree headed by i € {0, 1}. Since these subtrees are (standardly) isomor-
phic to T,, we identify the «;’s with automorphisms of 7,. Therefore, a
general automorphism « may be represented inductively as a = (., @) -
o's, where i, = 0,1 modulo 2, and similarly a, = (ay, ag)o’, a, =
(ayg, ;)0 ", and so on. Multiplication is determined by o - (e, @) - 0 =
(o, ap) and (ag, ay) - (By, B) = (ag By, a; By). Successive developments
of a produce for every u € % an automorphism «, = a,(a) of the tree,
together with a permutation o, = g,(a) of Y.

Define the following involutory automorphisms of T,: oy, = o, o, =
(o,e), o, ="(0,¢e)=(0,e),(e,e), and, inductively, o,,, = (o, e).
Then the group generated by {o;|0 < i < k} is the wreath product \ ,C, =
(... v C,y) 1 C, of the cyclic group C,, iterated k times, while the {a;|i > 0}
is the infinitely iterated restricted wreath product 1 ,C,. We observe that
A induces on the kth-level vertices a permutation group isomorphic to
1, C, for all k> 1. Let A, denote kth-level stabilizer subgroup of A;
that is, 4, is the kernel of the action of 4 on the kth-level vertices. Then
AJA, =\ _,C,, and N{A.lk > 0} is trivial. In particular, A is residually
“a finite 2-group.”

Given a € A, the set Q(a) = {a,: u € %} is called the set of states of
«. A state «, is said to be inactive if i, = 0; otherwise it is active. It is
possible to interpret the automorphism « as an automaton with alphabet
Y: the set of states is Q(«a); when the automaton is in state B, the output
function is given by y — z = (y)oy( 8), the image of y under o, 4, the
state transition function is 8 — B.. We call « a finite-state automorphism
if the set of states Q(«) is finite.

For an automorphism « of the binary tree, we let «® denote («a, a)
and, inductively, a®**Y = (a®@)®. Then a® € A4,.

2.2. First Facts about the Group H

(i) Define A = 7u~!. Then, as 7= (e, 7)o, p="(e,u Do, A =
(e, 7)o (w,e)o = (e, 7Xe, u) = (e, Tu) = (e, A~ 7). Therefore,

A= (e, TA7 7).

Clearly, H= {(7,A). Then H, = H N A, contains the elements A =
(e,7A '), 72 = (7,7) = 7™, Therefore, H = H{(7), [H: H,] = 2, and
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H| projects in its first and second coordinates onto H. That is, H, is a
subdirect product of X,H = H X H seen as a subgroup of 4. Our group
H itself is a subgroup of (X, H){ o ) and the embedding can be continued
to produce the chain of subgroups

HS(>2<H)'<<T>§ s(XH)-(@Osisk).
5k

(ii) Let A; denote the conjugates A" of A, for i any integer. Azlso
define r = [A, 4], v’ = [A, A1 Then A, = (A717%e), Ay = (A7 172, e)" =

(A™"r2,e), and r=e¢ =r' follow. Indeed, we observe that [/\i?/\j] =¢

whenever i, j have opposite parities. Let A be the normal closure of A in
H, A, = (Ali is odd ), and A, = (i is even). Therefore,
H, = A(77%), A=A+ A,
(iii) We calculate 7 2A7 2 = (772, A™1), thus separating A from 7 in
the second coordinate. We can separate A at successively lower levels:
A2 = (1, 0), N0 = (7, (+72,(+7%, A7 1)), and so on.

(iv) The relation r can be produced at the first level as follows:
A= (r 2 A7 h, (7'42/\7'72)72 =74 = (7‘2, /\fl),
r’ o= 7‘2/\772,(77“/\7*2)72] =[rAr o] = (e, [)\71, )\fl]) =e.
Therefore,
Fo= (e,[/\, /\1]”1}‘71) = (e,r)fﬂf%z_

(v) Let F be the free group freely generated by a,b. Aword w € F
is written as w = w(a, b) = a"b’a"b’> --- a'sb’» for some integer s > 0,
and some integers i,,j,, 1 <t <s. Let w be a reduced word. We will use
the b-length |wl, = X {j,/11 <h <s} in analyzing word combinatorics.
This length function is especially suitable since w(r, ) = ritAiz2p02 -
TiAs = (wo(r, D), w(r, D)’ where i = L{li,|[l <h < s} modulo 2, and
where wy(a, b), w(a, b) are words such that |wyl, + [w,l, < [wl,.

(vi) The group A is six generated. We note that
= A = () () T A
=AATIA Ay =e.
On conjugating this last equation by 7°, we obtain A; A, Ay A = ¢, and so

Ae = A M0,  A={A0<i<5).
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(vii) The generators T and w are conjugate by 6 = 0Pa V). Since 6 =
(02)? and its states 62,(82)P are inactive, it follows that 62 = e.
We note that
076 = (e, 00(1)70'0(1))0,
w00 = (p,e)o(e, 00Vr00 Vo = (uobPrab®, e)
= (m,e)o(e,c0Vrad D)o = (nodPrab®, e),

where the first coordinate is

puodBrad = (e, u=')( 02, 670) = (e, n '076).
Thus, p 676 = ((e, " 6760), e), and w1076 = e follows.

2.3. Decomposition of the Subgroups H', y;(H), H"

Let H' denote the first derived subgroup, H” the second derived
subgroup, and, more generally, H® the kth derived subgroup of H.
Furthermore, define ¢ = [A, 7] € H’ and the sequence of tree automor-
phisms ¢, = (¢, e), ¢;,; = (¢;,e) for i = 1.

PROPOSITION 4.  The derived group H' factors as H' = (X ,H'){c), and
H' is the normal closure of {c,,¢) in H.

Proof. From ¢ = (A2, 77 Ar™Y), ¢™ = (77°A, A7 '7?), we calculate
™= (e, 7M7) = (e, TATT) = (e,¢7T).
Therefore,
cc” = (e,c77).
From this we conclude that ¢, € H', for

— -1 _ —(1)p ()
7O 17O (ecy T WD = (e, ") T T = ¢y

As the normal closure of ¢, in H, is H' X {e}, we conclude that H’ X {e}
< H’ and H' is the normal closure of {cy,c) in H. Hence, X ,H' is a
normal subgroup of H, ¢"=c¢™' modulo X,H’, and we obtain the
required factorization of H'. |}

PROPOSITION 5. The third term of the lower central series v;(H) factors
as

7i(#) = [ X (i) dle, Dl D

and [c,7*1 = (¢7', ¢) modulo X273(H)-
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Proof. From ¢; = (¢,e) € H' and 7* = (1, 7), we obtain

[e 7] = ([es7€) & ya(H).
The group y,(H) is the normal closure of [¢,r] in H, since [c, A] = e.

We conclude that the normal closure of [¢;, 7%]in H; is y;(H) X {e} and
that this is a subgroup of y;(H). Therefore,

>2< vs(H) < v3(H).

The assertion [c, 72] = (¢!, ¢) modulo X, y;(H) follows from

[e,r*] = ([A 2 7L 7w ey = ([A, 7] LA ]) = (e L)

modulo X, y;(H). We note that modulo X ,y,(H), the element (¢, ¢)
of y3(HA ) is inverted by 7 and is centralized by A, ¢,[c, 7]
Let D(H") be the normal closure of (¢!, ¢) in H. Then

D(H') < vy(H),
(X st By = X vt o,
In order to complete the description of y,(H), we will compute the

commutators [c, 7, Al [¢, 7, 7] modulo X, y,(H). Another form of ¢™ =
c e, c™7)is

[e,7]=c%(e,c 7).
Since [c, A] = e, we have
[e,7,A] = [c 2(esc™ ), A] = [e72(e,c 1), A]
=[c 2,1 [(e,e7),4] = [(e,¢71), A
= (e,[c A ]) =
modulo X,v;(H). Hence,
[c,7] =c"2(e,c™!)  modulo >7< vs(H),

[e,m,A] € X v:(H).
2
By commutator calculus [c, 7] = [¢, 7Flc, 7, 771 Since, by the previous
proposition, [¢, 72] = (¢!, ¢) modulo X ,v,(H), we find that [c, 7, 7]1*7]
=[¢,7]17%(c "}, ¢), and, therefore,

[c,7,7]=[c,7] *(¢ % ¢)  modulo >2< v5(H).

With this we arrive at the required factorization of v,(H). |
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PROPOSITION 6. The second term of the derived series H" factors as

H = X {( >2< y3(H))<(c_1,c)>}.

2

Proof. We conclude from the factorization of the first term of the
derived series

“[mfo

that H” is the normal closure of [X,H’ c] in H. Therefore, using
Proposition 4, H" is the normal closure of [¢,,c],[c,,c] in H. First, we
calculate [c,,c] = ([¢;, A7'7?], e) = (¢, 7], ), €) and conclude that H” >
X ,vs(H). Now we calculate [¢, c] in H modulo X,v;(H),

[cr,e]l=([e,x 12 ],e) = ([e, 72 ], e) = ((c 7', ¢),e)
from which the factorization of H” follows. 1

2.4. Centralizers
LeMMA 7. The centralizer of the derived group H' in H is trivial.

Proof. Let w € F have least b-length |wl, such that w(r, A) =
(wg,w)o' centralizes H’'. Since ¢, = (c,e) € H', clearly, i =0, and,
therefore, w,, w, also centralize H'. Hence, |wl, = 0, and w(r, A) is a
power of 7. Since ¢; = (¢;_,,e) € H', we conclude that w =e. |

LEMMA 8. The generators 7, u are self-centralizing in H.

Proof. We will prove the assertion for 7. The case for p will be
analogous. Suppose C, (1) # (7). Let w € F have least nonzero b-length
such that w(r, ) = (wy,w,)o" centralizes 7. Since |wl, # 0, it follows
that {wlp, lw,l, <wlpy. If i = 1, then w(r, M7 = (w7, w;) commutes with

= (7, 7). Therefore, w,,w; commute with 7 and so w, = 7/, w, = 7*
for some integers j, k. Now conjugation of w by 7 shows that k =j +1
and, therefore, w = 72/*1, a contradiction. The proof for the case w(r, A)
= (w,,w,) proceeds similarly. 1

3. DESCENDING CENTRAL SERIES

PROPOSITION 9.  The commutator quotient H/H' is torsion-free of rank 2
and H' /v,(H) is torsion-free cyclic.
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Proof.

(i) H/H' is a torsion-free group of rank 2. Let i, j be integers such
that u = A7/ € H'. Since u € H,, it follows that j = 2j,. Therefore,
u=(rh, c’'A"7%*") for some ¢’ € H'. On the other hand, from the
decomposition of H’, there exist an integer k and ¢”, ¢” € H' such that
u = c* = (c" A5, ¢" A+~ 2%). Therefore,

(le’ C//\‘ITZi—FjT) — (cn)\fkTZk’ cm)tk,rflk)
from which we conclude
/\—k,rlkf}l’ /\k+i7_—(21+2k+jl) e H'.

On using A7/ € H' with the later conclusions, we produce %%/ € H'.
Thus, we have
Nrl, 7 20ED \hekon e [

The fact A~*7%*"/1 € H' implies that 2k — j, is even, and, therefore, j;
is also even; j = 4j,. On substituting A7/ € H' by 7" € H' in the
previous argument, we conclude that 2(i + ;) is a multiple of 4, and so
i = 2i,. Therefore, on considering A~ *r?¢~Jt € H’, we conclude that k =
2k,. Hence, A %7771 = y=2ki72@k—12) Again  there exists an integer
k' = 2k’ such that A *72¥'~Cki=i2) = J'. Therefore, 2k’ — 2k, — j,) is
even, and so j = 8j;. Going back to 7%*? € H’', we conclude that
i = 4i,. This procedure may be repeated to prove that 2°[j and 2°~!|i for
any s > 1. Hence, j =i = 0.

(i) H'/vy,(H) is torsion-free. Clearly, ¢ & y,(H). We have from the
proof of Proposition 4 that cc™ = (e, ¢~ ") and, therefore,

c?=(e,c™')  modulo y,(H)

from which we conclude ¢? = ¢?" = (¢!, ¢) modulo y;(H).

Let k be the smallest nonnegative integer such that ¢?* € y,(H). Then
(c*,e) € y,(H), and, from the decomposition y;(H) = (X,y,(H))
Le Y, endle,71), we obtain (c¥,e) = (c’,¢"Xc L, e)e, 7] for some
c',c" € y(H) and [, m integers. Since [c,7] =c*(e,c™"), ¢ =
(A7 172, ™D, we obtain (r“A)?" € H' and, therefore, m = 0 follows.
Hence, ¢/, ¢! € y,(H), and we conclude that ¢* € y,(H). |

PrRoOPOSITION 10. The central quotient v,(H)/vy, (H) has exponent a
divisor of 8 for all i > 3.

Proof. 1t is sufficient to prove the assertion for y;(H)/vy,(H).
We develop the relation " = [ 27" %, 77 “A] = ¢ in terms of commuta-

tors: e = [("N)" - 72, W] = (A, 7 2L 7] = [A, 772, A
[A, 772, 7 *]*, and so we arrive at the dependence equation in y3(H):

LT 5,7 =T A ]
A 72 4 2 1
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On considering this equation modulo y,(H), we obtain [A, 7,7 =
[A, 7, AP = e. Therefore,

[c,7]’=¢  modulo v,(H),

and y;(H)/v,(HY) is cyclic of exponent a divisor of 8. ||

4. TORSION-FREENESS AND JUST-NONSOLVABILITY

PrOPOSITION 11.  The group H is residually “torsion-free solvable” and is
nonsolvable.

Proof.  First, we will prove that, for all £ > 0, (X, H")/(X s H') is
torsion-free. For the case k = O, we recall the decomposition H' = (H' X
H'){c) and we suppose that ¢" € H' X H’ for some integer n. Then, as
¢ = (A7) (7~ Ar "), we conclude that (A™'r?)* € H', and n =0
follows from the fact that H/H' is torsion-free. The general case is
treated similarly.

We conclude from the preceding argument that H/(X ,H') is a
torsion-free group. Since H < (X, H) - (1 ,C,), it follows that
H/(X, H')is a homomorphic image of the solvable group (X ,.H/H') -
(\,C,). Also, since X,.H' < H,, the kth stabilizer subgroup,
N{X, H'lk > 0} < N{H, |k > 0} = {e}. Hence, H is residually a “tor-
sion-free solvable” group.

Clearly, H" is nontrivial. Since H" > X D(H ), we have that, for all
k=1, H*D > (X,D(H")*® which is a subdirect product of X ,H®.
By induction on &, we conclude that H is nonsolvable. [

ProrosiTioN 12, The group H is just-nonsolvable.

Proof. letw € H, w # e. We will show that the normal closure W of
any nontrivial element w in H contains a term of the derived series of H.
There are two cases to consider depending on whether or not w € H,.

Case 1. let w = (w,,w,)o. Then a direct calculation shows that
[w, Al = (wilr Arwy, A7 M7),
[w, L, A1 = (e, [tA'm, A7 77 ]) = (e, Ao A A ).

Let v = AyA; A, 'A; ! and let N be the normal closure of v in H. Then,
in A modulo N, A; = Ay '\ A, = Ay A, A, and so [A5, A,] = e. Therefore,
A/N is abelian of rank at most 3, H/N is metabelian, and H” < N. From
the embedding H < (H X H){o ), we conclude that N X N < W, H" X
H" < W, and H is solvable.
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Case 2. Let w = (wy,w,). We may assume w,; # e. Let W, be the
normal closure of w, in H. Therefore, by Lemma 7, [w,, H’] is nontrivial.
Now, W = [(wy,w,), (e, H)] = (e,[w, H'D, and so W = (e,[W;, H'].
Clearly, if W, contains a derived subgroup H® for some /, then W would
contain H*D x H* Y and, as H/(H!™Y x H* D) s solvable, the case
would be done. The desired conclusion is reached as there exists a
minimum leve] where w is active. ||

5. FINITE QUOTIENTS OF H

ProrosiTiON 13.

(i) The odd-order residual O* (H) is equal to y,(H).

(i) Any finite quotient H of H decomposes as H=0(H)" S where
O(H) is a normal Hall 2'-group of H, which is nilpotent of class at most 2,
and where S is a 2-group.

Proof.

() Let 1 be an odd number and let N be the normal closure of 77
Then, in # modulo N, A, = A, and, therefore, A; = A, = A, and A is an
abelian group generated by Ag, A,, A,. The equation Ay, A, A " =e
translates additively to Ay - (=1 + 72 + 74 — 7) = 0.

Define the polynomials /(x) = —1 +x* + x* —x%® and m(x) = —1 +
x". Then (x), m(x) factor as I(x) = (—1 + x)l,(x), where [,(x) = (1 —
X+ +x),and m(x) = —1 + x" = (—1 + x)m,(x). Let GCD de-
note the greatest common divisor operator applied to polynomials, with
integer coefficients. Then, since GCD( + x, m(x)) = 1, GCDU +
x3, m(x) =1, GCD( — x), m(x)) = n, we conclude that
GCD(I(x), m(x)) = n(—1 + x).

Let a(x), b(x) be polynomials over the integers such that

a(x)(1 +x)%(1 +x%) + b(x)m(x) = 1.

Then, on multiplying the preceding by (1 — x)?, we obtain
—a(x)l(x) = b(x)m(x) = (1 - x)*.

Therefore, the following equations hold:

Aon(—=1+7)=0, A(1-7)"=0
in H modulo N. Returning to multiplicative notation,

NAG = NAj = NAj,
vs(H) < N.
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Now we reach the conclusion O*(H) = y;(H) since, easily, N{H*|k
odd} < y,(H).

(i) Let n = 2*n’, n' odd, M the normal closure of 'rzk, and N the
normal closure of 7" in H.

We assert that M = (X, H')}7?"). Since 72 = +® and there exist
integers i, j,...,m, such that ¢ = (r,(z/,(..., (™, A)...))) € H where A
is isolated at the kth level, we produce [72 2 L€l =(e,e,...,e,l7,AD € H,.
Therefore, M contains the normal subgroup X H' It is easy to see, by
induction on k, that [ /\] € X, H’. With this, our assertion is estab-
lished.

Now 7" = (2" = (+")® and it follows from part (i) that N contains
X ,xy5(H). Since

M/( 2< 73(H)) = ( >< H'/73(H)) . <( X y3(H))T<k)>

is clearly a class 2 nilpotent group, therefore M /N is also nilpotent of
class at most 2.

Let N = H" be the group generated by {h"|h € H) and let M = H*"
Then H/M is a finitely generated solvable group of exponent 2k, and so it
is a finite 2-group. Thus, M is a finitely generated group. Now M /N is a
flnltely generated nilpotent group of class at most 2, and has odd exponent
n'. Therefore, M/N is a finite group of odd order, and H/N is a finite
group having the type of structure as had been affirmed.

Since any finite quotient group of H is a quotient of H/H" for some
integer n, the proof follows. |

6. A PRESENTATION FOR H

Let K be the subgroup of H, generated by 7°, A. Also, let p: K > H
be the projection on the second coordinate. Then, as 7% = (r,7), A =
(e, A" '1), we have p: 72 = 7, A > 1A~ '7 and, therefore, it is an epimor-
phism. It is actually an isomorphism. However, first we need to prove the
following.

LeMMA 14. Let s be an integer, s > 1. Then the tree automorphisins
defined by (e, 7)°,(1, ¢} do not belong to H.

Proof. Since 7% = (v°,7°) € H, it is sufficient to prove the assertion

for a = (e, 7)°. Suppose that a« € H. Since H/H' is 2-generated, there
exist integers i, j such that aA'r/ € H'. Therefore, j = 2j’,

. o . [
aNt) = (T/ ,T(TA 11') T/ ),
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and, from the decomposition H' = (H' X H'){c¢), we obtain the second
expression

aXNti = (c',c")c*
for some ¢’,¢” € H' and some integer k. However, on substituting
. k k
ck = ((/\717'2) (T )

in the previous equation and on comparing first coordinates, we arrive at
" =¢'(A" 125, Since H/H' is freely generated by H'A, H't, we con-
clude that k = 0 = j' =j. Thus, aX’ = (e, 7' (zA7 7)) = (¢', ¢"), 75 F2A 7!
€ H’, and i = 0 follows. |

ILet w be a word in 72, A. Then w = w(72, A) = (w(7, e), p(w)). If
p(w) = e, then w = (w(r, e), e) = (77, ¢) for some integer s. Thus, (77, e) is
an element of H, and s = 0 by Lemma 14; hence, w = e. Define &:
H — K to be the inverse map of p. Then & 7— 7%, A - A7 '7?2
determines an isomorphism from H onto XK.

PRrROPOSITION 15. Letr = [b, b?], ¥’ =[b, b"3] be words in the free group
F freely generated by a, b. Also consider the endomorphism of F determined by
g:a > a*, b — a’b~'a?, and define the group

L= (a,blek(r), s"(r’), k> 0).
Then the map ¢: a — 7, b — A extends to a homomorphism from L onto H.

Proof. Explicitly, &% a — a*', b — a%b%a", where &, = (-1, [,

= 2(2¥ — §;). In order to write down &*(r), £*(+’), we define b, = b*".
Then

e¥(b) = bZ}a’,
gf(r) = b 2xb3;% ykb3f bi¥, v,
eX(r") = by byt b3 b 50
for all k£ = 0. We note that, for k = 1, §, = —1, [, = 2, and, thus,
&(r) =bybyby by, &(r') = bybyybg by

Let B be the normal closure of b in L, B, = (b,lk odd), B, = {b,,|m
even). The relation r = e means that b, commutes with b,, and, by
conjugation by a, we conclude that b, commutes with b, b,. Now r’' = e
implies that b, commutes with b, as well. Since £(r) = b,bgb; 'b, ! = ¢,
we have byb,b;'b, ! = e, and, therefore, b, commutes with by, b, b,, b.



112 BRUNNER, SIDKI, AND VIEIRA

Furthermore, since b,bgb; b, ' = e, we deduce that b, commutes with
by, by, by, bg, bg. 1t is clear that on repeating this argument we obtain that
b, commutes with b, for all i even. Thus, L factors as L = B{a), and

B =B, + B,.

An element w(a, b) of L can be written as w(a, b) = w(a, b)w,(a, b)a"
where w(a,b) = bilb o bg €By, k, odd for 1 <t <s, and where
w,(a, b) = b b): - b/q € B,, m, even for 1 < p < g; note that |w, |, +

w,lp = Iwls. On applymg the (p map, we have ow(a,b) = (wy(r, ),
wilr, D", Here wila, b) = (bg'a®) (b 'a*)? -+ (b 'a®)s, where kj,

k,/2—1for 1 <h <s, and wya,b) = (b, 1az)f’(b laz)’2 (b, 1az)"f
where ni), = (m,, — 1)/2 for 1 < h < gq. Thus, lelb = Iw lo, IWhlp = iw Ib.

Suppose that w(a, b) is a nontrivial element in the kernel of ¢, and let it
be of minimum b-length [wl,. Then gw(a, b) = (Wh(7, A), wi{7, ANr" = e,
and so n = 2n,, and (Wi(r, V"0, w\(r, A)7™) = e. Hence, wi(a, b)a™,
whia, b)a™ are also in the kernel of ¢, and

wi(a,b)a™ly =Iwily,  Wh(a,b)a™|, =Iw,ls.

If both w,,w, have b-lengths shorter than w, then wi(a,b)a™ =e =
whla, b)a™, wla,b) = e = w,(a. b), and, consequently, n =0, w =e, a
contradiction. Thus, we may assume w(a, b) = w,(a,b)a”, q > 1. Then
n = 2ny, and both w,(a, b)a",w)(a, b)a™ are in the kernel of ¢. Now we
replace in the preceding argument w by

) — (p=1,2Y(p-1,2\ 1,2\ ng e n
wh(a,b)a™ = (bm&a ) (bm/za ) (bm,qa ) a* =wj(a,b)a™,

where ny = 2j, + -+ +2j, + ny. Thus, again, wy(a, b) € B, or B,. That is,
m), has the same parity as m) for all 1 < & < g. Hence,

. , o omy =1 m =1 my—m
my, — m| = - =

2 22
is even, and so 4/m, — m. If j; > 1 then, since (b} 'a*)" = 1b 1_, e,
the consecutive indices cannot be congruent modulo 4 Therefore | ],ZI 1
forall 1 < h <gq. As g > 1, it follows that ],,Jrl = —j,, and q is even. We
may assume j; = 1. Thus, wyla,b)a™ =b,'b , - b 1b a™. Once

more, we obtain that 2\n, 4im), — m',. Therefore 8Imh m1 ‘A repetition
of this argument produces m, = m,, n = 0. Hence, w,(a, b) = b,fnllb/n2
by =e, a" = e, w = ¢, a contradiction. ||
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7. FINAL COMMENTS

() On changing b by its conjugate b = b* in the previous presen-
tation for H, the definition of the endomorphism becomes &: a — a2,
b — b~1a*. The new relators may still be chosen to be 7 = (b, b%], 7' =
[, 5%'] together with their images under repeated applications of &.

(i) It was shown in Section 2 that conjugation by 6 = §P¢ @) is an
automorphism of H of order 2 which interchanges = and p. We note that
conjugation by 8 = 8 Vo inverts both 7 and u. It appears that the 4-group
{8, 0) is the group of outer automorphisms of H.

(iii) Define R, to be the normal closure of {£*(r), e*(rDI0 < k < I)
in the free group F. It can be proven that {R,|/ = 0} is a strictly ascending
chain of subgroups and, therefore, H is not finitely presentable.

(iv) The proof of Proposition 14 provides an algorithm for solving
the word problem in H. It would be interesting to see if the approach of
Wilson and Zalesskii [15] leads to the solution of the conjugacy problem
for this group.

(v) A torsion-free group which is an extension of an abelian group
of infinite rank by the Grigorchuk 2-group has been defined to act on a
tree with infinite valency and was shown to have intermediate growth [7].
This raises the question about the growth function of our group.

REFERENCES

1. S. V. Aleshin, Finite automata and the Burnside problem for periodic groups, Math.
Notes 11 (1972), 199-203.

2. H. Bass. M. Otero-Espinar, D. Rockmore, and C. P. L. Tresser, “Cyclic Renormalization
and Automorphism Groups of Rooted Trees,” Lecture Notes in Mathematics, Vol. 1621,
Springer-Verlag, Berlin, 1995.

3. A. M. Brunner and S. Sidki, On the automorphism group of the one-rooted binary tree, J.
Algebra 195 (1997), 465-486.

4. A. M. Brunner and S. Sidki, The generation of G1(n, Z) by finite automata, Internat. J.
Algebra Comput. 8, (1998), 127-139.

5. R. I. Grigorchuk, On the Burnside problem for periodic groups, Funct. Anal. Appl. 14
(1980), 41-43.

6. R. 1. Grigorchuk, Degrees of growth of finitely generated groups and the theory of
invariant means, Izv. Akad. Nauk SSSR Ser. Mat. 48 (1984), 939—-985.

7. R. L. Grigorchuk, On degrees of growth of p-groups and torsion-free groups, Mat. Sb. 126
(1983), 194-214.

8. N. Gupta and S. Sidki, On the Burnside problem for periodic groups, Math. Z. 182
(1983). 385-388.

9. N. Gupta and S. Sidki, Extensions of groups by tree automorphisms, “Contributions to
Group Theory,” Contemporary Mathematics, Vol. 33, 232-246, Amer. Math. Soc.,
Providence, 1984.



114 BRUNNER, SIDKI, AND VIEIRA

10.

11.

12.

13.

14.

15.

1. G. Lysenok, A system of defining relations for a Grigorchuk group, Math. Notes 25
(1985), 784-792.

S. Sidki, On a 2-generated infinite 3-group: the presentation problem, J. Algebra 110
(1987), 13-23.

S. Sidki, “Regular Trees and Their Automorphisms,” Monografias de Matematica, Vol.
56, IMPA, Rio de Janeiro, 1998.

V. L. Suschanskii, Periodic p-groups of permutations and the unrestricted Burnside
problem, Sovier Math. Dokl. 20 (1979), 776-770.

A. C. Vieira, On the lower central series and the derived series of the Gupta—Sidki
3-group, Comm. Algebra 26 (1998), 1319~1333.

J. S. Wilson and P. A. Zalesskii, Conjugacy separability of certain torsion groups, Arch.
Marh. 68 (1997), 441-449.



