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1. I N T R O D U C T I O N  

The group of automorphisms of rooted trees has attracted interest for 
being a source of examples of new phenomena in combinatorial group 
theory, as well as for its connections with other areas such as automata 
theory [3, 4] and dynamical systems [2]. This group, together with many of 
its finitely generated subgroups, exhibits rich recursive structures which 
reflect the recursiveness of the trees themselves [12]. One form the 
recursiveness takes is in the closure of the subgroup structure under 
wreath products by cyclic groups having order equal to the valency of the 
tree. Thus, if L is a group defined on the binary tree, then the wreath 
product of L by the cyclic group of order 2 is also defined in a canonical 
manner on the tree. 

Of particular interest are the automorphisms of n-ary trees which 
correspond to finite-state automata defined on an alphabet of size n. 
These constitute the enumerable group of finite-state autornorphisms. We 
have shown in [4] that the integral linear group GL(m,  Z)  has a faithful 
representation into the group of finite-state automorphisms of a one-rooted 
regular n-ary tree for some n. Besides representing integral linear groups, 
finite-state automorphisms also represent finitely generated groups which 
are not linear, such as the finitely generated infinite Burnside groups 
constructed in [1, 13, 5, 8] and which enjoy diverse additional remarkable 
properties such as being just-infinite [9] or having intermediate growth [6]. 
A fractal-like feature common to many of these groups is that they contain 
subgroups of finite index which are direct products of two or more copies 
of the same groups. 

This paper grew out of investigating torsion-free subgroups generated by 
finite-state automorphisms of the binary tree. One special finite-state 
automorphism is the so-called "binary adding machine" which corresponds 
to addition by 1 in the binary system; in the notation to be explained later, 
this automorphism is ~- = (e, ~-)o-. It was proven in [4] that the centralizer 
of ~- in the group of automorphisms of the binary tree is isomorphic to the 
dyadic integers under addition, and, moreover, any automorphism of the 
tree with a centralizer subgroup isomorphic to the dyadic integers is 
conjugate to ~-. We observe that in Bass et aI. [2, p. 116] there is a 
treatment of the more general q-adic adding machine. 

The torsion-free group H which we describe in this paper is generated 
by ~- = (e, ~-)cr, and by one of its conjugates /x = (e,/x a)o-. The genera- 
tors encapsulate in their definitions the permutations they induce on the 
different levels of the tree. In general, it is a very difficult task fathoming 
the structure of a group merely from a recursive definition of how its 
generators act on the tree. Consequently, it is perhaps surprising to see 
how much detail about the group can be revealed and understood on this 
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basis. We prove 

THEOREM 1. Let H be the subgroup of the automorphisms of the binary 
tree generated by IX = (e, Ix 1)o-, r = (e, ~')o-. Then the following properties 
hold: 

(i) H is residually a "torsion-free solvable group," and is just-nonsolva- 
ble; 

(ii) H is residually a "finite 2-group," and ec, ery finite quotient H of H 
factors as H = O ( H ) .  S, where O ( h  r) is a nilpotent Hall 2'-subgroup of H 
hatting class at most 2 and S is a Sylow 2-subgroup of H. 

The quotients of the lower central series yi (H)  of H are studied using 
techniques developed by Vieira in [14]. Let O2 ' (H)  denote the odd-order 
residual (-I {K _~ H I H / K  has odd order}. 

THEOREM 2. 

(i) The cyclic subgroups (IX), ( ~- ) are self-centralizing in H; 

(ii) the direct product group y2(H)  × y2(H)  is a normal subgroup of 
y2(H) and the quotient y 2 ( H ) / ( y 2 ( H )  × y2(H)) is infinite cyclic; 

(iii) the quotient group H / y B ( H )  is torsion-free; 

(iv) T3(H)  = O 2 ' ( H ) ;  

(v) the central quotients % ( H ) / %  + l (H)  haue exponents dit~isors of 8, 
for all i > 3. 

The group H admits an elegant presentation with two generators and 
two relators together with their images under the iterated application of an 
endomorphism of the free group of rank 2. 

THEOREM 3. Let F be the free group of rank 2 generated by a, b, and let 
r = [b, ba], r ' =  [b, ba3]. Furthermore, let e be the endomorphism of F 
determined by ~: a ~ a 2, b ~ aZb-~a 2. Define the group L = (a, blek(r), 
ek(r'), k >_ 0). Then the map q~: a ~ % b ~ A(= 7~ 1) extends to an 
isomorphism from L onto H. 

The preceding presentation is in the same spirit as that given by 
Lysenok [10] for the Grigorchuk 2-group. The Gupta-Sidki  3-group also 
has such a presentation; however, the substitutions are more involved [11]. 

2. PRELIMINARIES 

2.1. Notation 

The one-rooted binary tree T 2 is labeled by the free monoid y ,  freely 
generated by the set Y = {0, 1}, with identity element ~ ,  ordered by the 
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relation: m < rn'  if and only if m '  is a prefix of  m. The re  is a level 
funct ion on T 2 arising f rom Iml, the n u m b e r  of  syllables in m ~ M; the 
root  ver tex ~ has level 0. Le t  A deno te  the a u t o m o r p h i s m  group of T 2, 
and let cr be  the a u t o m o r p h i s m  of  T 2 in terchanging 0m and l m  for  any m 
in the mono id  ~ ' .  

An  a u t o m o r p h i s m  a which fixes the vert ices labeled by 0, 1 is repre-  
sented as an o rde red  pair  ( s  o, ~1) where  c~ i is the a u t o m o r p h i s m  of  the 
subt ree  headed  by i ~ (0, 1}. Since these subtrees  are (s tandardly)  i somor-  
phic to T 2, we identify the ~i 's with au tomorph i sms  of  T 2. There fo re ,  a 
general  a u t o m o r p h i s m  ~ may  be r ep re sen ted  inductively as ~ = (0~ o, ~1)" 
o-i% where  i+ = 0,1 modu lo  2, and similarly ol 0 = (o~00, ~01)o -i°, ~1 = 
(a~0, °ql)  °''~, and so on. Mult ipl icat ion is de te rmined  by or. ( s0 ,  ~1)" o- = 
(o~1, oz 0) and ( s  0, OZl). (/30,/31) = (%/3o ,  c~ 1/31). Successive deve lopment s  
of  oz p roduce  for  every u ~ y an a u t o m o r p h i s m  o~, = ~u(O~) of the tree,  
toge ther  with a pe rmu ta t i on  o-, = cr,(o~) of  Y. 

Def ine  the following involutory au tomorph i sms  of T2: (r 0 = o-, o- 1 = 
(or, e), cr z = (o- z, e) = ((or, e ) , (e ,  e)), and, inductively, o-i+ 1 = (o-i, e). 
T h e n  the group genera ted  by {@0 < i _< k} is the wrea th  p roduc t  ~. kC2 = 
( . . .  ~ C 2) ~ C 2 of the cyclic group C 2, i te ra ted  k times, while the {oil/>_ 0} 
is the infinitely i te ra ted  restr ic ted wrea th  p roduc t  / ~ C  2. W e  observe that  
A induces on the k th- level  vert ices a pe rmu ta t i on  group i somorphic  to 

k 1C2 for  all k >_ 1. Let  A k denote  kth-leuel stabilizer subgroup of  A; 
that  is, A k is the kernel  of  the act ion of A on the k th- level  vertices. T h e n  
A / A ~  ~ ~ ~ ~C2, and ~{A~lk  > 0} is trivial. In  part icular ,  A is residually 
"a  finite 2-group."  

Given o~ c A ,  the set Q(c~) = { ~ :  u ~ y }  is called the set of  states of  
a .  A state o~,, is said to be  inactive if i u = 0; otherwise it is actiue. It  is 
possible to in terpre t  the a u t o m o r p h i s m  o~ as an a u t o m a t o n  with a lphabe t  
Y: the set of  states is Q(o~); when  the a u t o m a t o n  is in state /3, the output  
funct ion is given by y ~ z = ( y ) % ( / 3 ) ,  the image  of  y under  o-4)(¢); the 
state t ransi t ion funct ion is /3 ~ /3~ .  We  call ~ a finite-state automorphism 
if the set of  states Q(c~) is finite. 

For  an a u t o m o r p h i s m  o~ of  the binary tree,  we let o~ (~) denote  (c~, o~) 
and, inductively, o~ (~+~) = (~(~))(~). T h e n  o~ (~) ~ A~. 

2.2. First Facts about the Group H 

(i) Def ine  A = ~ T z  - l .  Then,  as ~-=(e ,~- )c r ,  / x = ( e ,  tx 1)o-, A =  
(e, ~-)o-- (/x, e)cr = (e, ~-)(e, ~)  = (e, ~-/x) = (e, ~-A-I~-). There fo re ,  

A = (e,  ~-A 1~_). 

Clearly, H = (~-, A). Then  H 1 = H c~A~ contains the e lements  A = 
(e, TA 1~_), ~.2= ( ~ - , 7 ) =  ~-a). There fore ,  H =  HI(~-) ,  [ H : H  I] = 2, and 
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H 1 projects  in its first and second coordinates  onto  H.  Tha t  is, H ,  is a 
subdirect  p roduc t  of  X 2 H  = H × H seen as a subgroup of A. Our  group 
H itself is a subgroup  of ( × 2 H ) (  o- ) and the embedd ing  can be cont inued 
to p roduce  the chain of  subgroups  

(ii) Let  A s denote  the conjugates  A ~' of  A, for  i any integer. Also 
--1 9 define r = [A, All, r '  = [A, A3]. Then  A 1 = (A t - , e ) ,  A 3 = (A-i,r2, e) ~2 = 

(A-~r  2, e), and r = e = r '  follow. Indeed,  we observe that  [As, Aj] = e 
whenever  i, j have oppos i te  parities. Le t  A be the no rma l  closure of  A in 
H ,  A~ = (A, li is odd  ), and A 2 = <A, Ii is even) .  Therefore ,  

H I = A @ ' 2 ) ,  A = A 1 + A 2. 

(iii) We  calculate r-2Ar 2 = ( r -2 ,  A-~), thus separa t ing A f rom r in 
the second coordinate .  W e  can separa te  A at successively lower levels: 
T2AT 2 9 2 = ( r - , ( r  , A)), r-6Ar -6 = ( r  6 , ( r  2 , ( r -2 ,  A-l))) ,  and so on. 

(iv) The  relat ion r can be p roduced  at the first level as follows: 

T-2/)tT 2 = (T 2, A 1), (,.F-2AT 2)r2 = ,7.-4~ = (T-2 ,  ,~ l l ) ,  

r " =  [T-2/~T 2 , (T  2/~T-2)r2] = [7" 2AT 2,T-4A] = ( e , [ / ~  1 , / ~ 1 1 ] ) = e .  

There fore ,  

r" = ( e , [ A ,  A1] alia i) = ( e , r ) "  ~a, 2a~ 2. 

(v) Let  F be  the free group  freely genera ted  by a, b. A word w ~ F 
is wri t ten as w = w(a,  b) = aqb1~ai2b j2 ... a',b j~ for some integer s > 0, 
and some integers it, Jr, 1 < t < s. Le t  w be a reduced  word. We  will use 
the b- length lWlb = ~{[Jh] ]1 _< h < s} in analyzing word  combinatorics.  
This length funct ion is especially suitable since w(r,  A ) =  T i l A j I T t 2 A  J'- " "  

~'isAL = ( w 0 ( ' r  , A),w~(r, a ) )o  -i where  i = E{]ih[ ]1 < h < s} modulo  2, and 
where  w0(a, b) ,wj (a ,  b) are words  such that  ]W0lb + ]Wl]b _< ]W]b. 

(vi) The group A is six generated. We note  that  

r,, = [ /~2  T 4 ~4 g 41 = ( A 2 r - 4 )  I (A4r  4)-1/~2r-4/~4r 4 

= A_-IA-~A 6A0 = e .  

On conjugat ing this last equa t ion  by r 6, we obtain  A 21ARIA 0 A 6 = e, and so 

A 6 = ,~O1/~2A4, A = (As]0 _< i _< 5) .  
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(vii) The generators r and IX are conjugate by 0 = 0(Z)o -{1). Since 0 z = 
(02) (2) and its states 02 , (02)  (1) are inactive, it follows that  02 = e. 

We note  that  

0r0 = (e,  o-0(1)ro-0 (1)) or, 

IX-10T0 = ( IX, e) o-(e,  o-O'Oro-O(1)) cr = ( IXO'0(1)TO'0 (1), e) 

= ( IX, e)o-(e ,  o-O(1)To-O(1))O " = ( IXO'0(I)To-0 (1), e) ,  

where the first coordinate  is 

IXo-O(')ro-O ~') = (e, I X - I ) ( 0 2 ,  OTO) = (e ,  IX IOTO ). 

Thus, IX tOrO = ((e, IX-10r0), e), and IX-loro = e follows. 

2.3. Decomposition of the Subgroups H' ,  T3(H), H"  

Let  H '  denote  the first derived subgroup,  H"  the second derived 
subgroup,  and, more  generally, H (k) the k th  derived subgroup of  H.  
Fur thermore ,  define c = [A, r ]  e H '  and the sequence of  tree au tomor-  
phisms c a = (c, e), ci+ 1 = (ci ,  e) for i > 1. 

PROPOSITION 4. The derit,ed group H'  factors as H'  = ( X 2 H ' ) ( c ) ,  and 
H '  is the normal closure of (Cl, c) in H. 

Proof. F r o m  c = (A-~r2, r 1Ar 1), c ~ =  (r-2a, a-lr2),we calculate 

CC'r = (e,T--1AT--I/~--IT 2) = ( e ,  A'r& "r2) = ( e , c - r ) .  

and  [c, T 2] ~ (C - I ,  C) m o d u l o  

as 

Y3(H) = ( ~ 73(H)) <[c'~2]><[c' 
X 2 3'3 ( H ) "  

Therefore ,  

cc = (e, c-T). 

From this we conclude that  c a ~ H ' ,  for 

T(1)T-1T(1)(ccr) I T (1)TT (1) = ( e ,  c r ) r  (1)rr (1)  = Ca" 

As the normal  closure of  c a in H 1 is H '  X {e}, we conclude that  H' × {e} 
_< H '  and H' is the normal  closure of  ( c p  c )  in H.  Hence,  X 2 H '  is a 
normal  subgroup of  H,  c ' =  c -1 modulo  )<2 H ' ,  and we obtain the 
required factorizat ion of  H'.  | 

PROPOSITION 5. The third term of the lower central series T3(H) factors 
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Proof. From c, = (c, e) ~ H '  and 7.2 = (T, ~-), we obtain 

[c 1,7 .2 ] = ( [c ,7 . ] , e )  ~ ~/3(H). 

The group T3(H) is the normal closure of [c, ~-] in H, since [c, A] = e. 
We conclude that the normal closure of [c D 7.2] in H i is T3(H) X {e} and 
that this is a subgroup of T3(H). Therefore, 

X T3(H)  -< T3 (H) .  
2 

The assertion [c, 7.2] = (c-1, c )modulo  X2T3(H)follows from 

[C,T 2] = ([A 1"/'2, T],[7.-1,~7. 1,T]) ~ ([A, 7.]-1, [,~, 7.]) ~ ( c  1,c) 

modulo X 2Y3(H). We note that modulo X 273(H), the element (c 1, c) 
of T3(H) is inverted by 7. and is centralized by A, c, [c, ~-]. 

Let D(H') be the normal closure of (c 1, c) in H. Then 

D ( H ' )  _< T3 (H) ,  

In order to complete the description of y3(H), we will compute the 
commutators [c, 7., M,[c, 7.,7.] modulo X2T3(H). Another form of c ~= 
c - l ( e ,  c ~r) is 

: c  2(e,c 
Since [c, A] = e, we have 

[c,-r,A] : [c 2 ( e , c - ~ ) , A ]  - - - [ c -2 ( e , c  ' ) ,A]  

=- [C 2, A](e'c ~)[(e,c ' ) ,A]  ~ [(e,c 1),A] 

- ( e , [c  l ,  7 .A- '7. ] )  --- e 

modulo X 2T3(H). Hence, 

[c,7.] = c-2(e,c 1) modulo X T3(H) ,  
2 

It, 7., a] X v (H) 
2 

By commutator calculus [c, 7. 2 ] = [ c, 7" ]2[c, 7., 7. ][c' ,r ] Since, by the previous 
proposition, [c, ~_2] = (c - i ,  c) modulo ?K 2T3(H), we find that [c, 7., 7.][c,~] 
= [c, ~-] 2(c 1, c), and, therefore, 

[C, 7., T] ~ [C, 7.]-2(C 1 C) modulo X T3(H).  
2 

With this we arrive at the required factorization of ")/3(H). II 
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PROPOSITION 6. The second term of the derived series H" factors as 

H " =  X2 {( X2 T3(H))((c-I'c))} " 

Proof We conclude f rom the factorizat ion of  the first term of  the 
derived series 

that  H"  is the normal  closure of  [ X 2 H ' , c ]  in H.  Therefore ,  using 
Proposi t ion 4, H"  is the normal  closure of  [c 1, c], [c 2, c] in H.  First, we 
calculate [c z, c] = ([c 1, A-~-2], e) = if[c, r],  e), e) and conclude that  H"  > 
X 4T3(H). Now we calculate [c 1, c] in H modulo  X 4"Y3(H), 

[c , ,c]  = ( [ c , A  ~-21, e) = ( [c ,  ~-2], e) = ( ( c - l , c ) , e )  

f rom which the factorizat ion of  H"  follows. | 

2.4. Centralizers 

LEMMA 7. The centralizer of the derived group H'  in H is trivial. 

Proof Let  w e F have least b-length ]W]b such that  w(~-,)t) = 
(Wo,Wl)O "i centralizes H ' .  Since cx = (c ,e)  ~ H' ,  clearly, i = 0, and, 
therefore,  Wo,W 1 also centralize H ' .  Hence,  ]Wla = 0, and w(~-, A) is a 
power  of  ~-. Since c i = (ci_ 1, e) e H ' ,  we conclude that  w = e. | 

LEMMA 8. The generators % Ix are self-centralizing in H. 

Proof We will prove the assertion for ~-. The  case for Ix will be 
analogous.  Suppose CH(~-) ~ (~-}. Let  w ~ F have least nonzero  b-length 
such that w 0 - , ) 0  = (Wo,Wl)Cr i centralizes ~-. Since ]wlv ~a O, it follows 
that  IWo]b, Iwllb < IWIb. If  i = 1, then w(T, A)~- = (Wo~-,w 1) commutes  with 
~_z = (r ,  ~-). Therefore ,  w 0, w 1 commute  with ~- and so w 0 = r j, w 1 = "c k 
for some integers j, k. Now conjugat ion of  w by ~- shows that  k = j + 1 
and, therefore,  w = ~.2i+1, a contradiction.  The  p roof  for the case w(~-, A) 
= (w 0, w~) proceeds  similarly. I 

3. D E S C E N D I N G  C E N T R A L  S E R I E S  

PROPOSITION 9. The commutator quotient H / H '  is torsion-free of rank 2 
and H'  / T3( H ) is torsion-free cyclic. 
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Proof. 

(i) H / H '  is a torsion-free group of rank 2. Let i, j be integers such 
that  u = h'r  J ~ H ' .  Since u ~ Ha, it follows that  j = 2ja. Therefore,  
u = (r  k, c ' h - q  -2'+jl) for some c '  ~ H ' .  On  the other  hand, f rom the 
decomposi t ion  of  H ' ,  there exist an integer k and c", c"  ~ H'  such that 
U = C k = (C" h - k z  2k, C'hkT--Zk).  Therefore ,  

(gJ l , g ' l~ - 'T  2i+jI) = (C"t~ kT2k, c"t~tkT 2k) 

f rom which we conclude 

A-kT  2k J1, t~k+iT-(2t+2k+jl) E S ' .  

On using air j ~ H '  with the later conclusions, we produce  r 2(i+j) ~ H'.  
Thus, we have 

A~T J, T 2('+j), a-k"r 2k-J1 ~ H ' .  

The fact a-~r 2;-jl ~ H'  implies that  2k  - J l  is even, and, therefore,  j ,  
is also even; j = 4j2. On  substituting a ' r  j ~ H '  by r 2('+a) ~ H '  in the 
previous argument ,  we conclude that  2(i + j )  is a multiple of  4, and so 
i = 2i 1. Therefore ,  on considering 3.-kr 2k-k ~ H' ,  we conclude that k = 
2k> Hence,  a-k~ -2k k = a-2klr2~2kl-te). Again, there exists an integer 
k '  = 2k '  1 such that A-kr  2k'-(2kl J2) ~ H' .  Therefore ,  2 k '  - (2k 1 - J 2 )  is 
even, and so j = 8j3. Going back to r 2(i+j) E H' ,  we conclude that 
i = 4i 2. This p rocedure  may be repea ted  to prove that  2*lj and 2s-~li for 
a n y s > _  1. Hence,  j = i = 0 .  

(ii) H ' / y 3 ( H )  is torsion-free. Clearly, c ~ T3(H). We have f rom the 
p roof  of  Proposi t ion 4 that cc ~ = (e, c ~) and, therefore,  

c e = (e ,  c -1)  modulo  y3 (H)  

f rom which we conclude c 2 = c 2~ = (c -1, e) modulo  T3(H). 
Let  k be the smallest nonnegat ive integer such that  c 2~ E T3(H). Then  

(ck, e) ~ T3(H), and, f rom the decomposi t ion  T 3 ( H ) =  ( X 2 T 3 ( H ) )  
( ( c - l , c ) ) ( [ c , r ] ) ,  we obtain (ck, e ) = ( c ' , c " ) ( c  1, cY[c,r]m for some 
c ' ,c"  ~ T3(H) and l , m  integers. Since [ c , r ]  = c-2(e ,c -~) ,  c = 
(a lr2, r-13,r-1), we obtain (r  2A)2m ~ H '  and, therefore,  rn = 0 follows. 
Hence,  c k+l, c l ~ T3(H), and we conclude that  c ~ ~ T3(H). | 

PROPOSITION 10. The central quotient %(H) /%+1(H)  has exponent a 
dit, isor of 8 for all i >_ 3. 

Proof It is sufficient to prove the assertion for y3(H)/y4(H) .  
We develop the relation r" = [r-2ar 2, r-4a] = e in terms of  commuta-  

tors:  e = [(r  4A)-1 • r 2)l'r -2 ,  "r-4a] = [[.~, r 2], T-4/~] = [/~, r -2 ,  A] 

[A, r -2, r 4]a,  and so we arrive at the dependence  equat ion in T3(H): 

[ a , r - 2  ~- -4]  = [ a ,~ - -2 , a  ' ] .  
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On considering this equat ion modulo  T4(H), we obtain 
[a, r, h] 2 = e. Therefore ,  

[c,  r ]  s --- e modulo  y 4 ( H ) ,  

and v3(H)/v4(H) is cyclic of  exponent  a divisor of  8. | 

[h, r ,  r ]  8 --= 

4. T O R S I O N - F R E E N E S S  A N D  J U S T - N O N S O L V A B I L I T Y  

PROPOSITION 11. The group H is residually "torsion-free solvable" and is 
nonsolvable. 

Proof First, we will prove that, for all k > O, (X2kH') / (X2~+IH')  is 
torsion-free.  For  the case k = 0, we recall the decomposi t ion  H '  = ( H '  × 
H')<c} and we suppose that  c n ~ H '  x H '  for some integer n. Then,  as 
C n = ((h-l 'r2)n,(7" 1hT-1)n), we conclude that (A-1T2) n E H ' ,  and n = 0 

follows f rom the fact that  H / H '  is torsion-free.  The  general  case is 
t reated similarly. 

We  conclude f rom the preceding a rgument  that  H / ( X 2 k H ' )  is a 
tors ion-f ree  group.  Since H _< ( X a ~ H ) . ( ~ . k C 2 ) ,  it follows that  
H / (  X 2kH') is a h o m o m o r p h i c  image of  the solvable group ( X  2~H/H')- 
( / k C 2 ) .  Also, since X 2 ~ H '  _< Hk, the k t h  stabilizer subgroup,  
n { X 2 ~ H ' [ k  >_ 0} _< A{H~]k >_ 0} = {e}. Hence,  H is residually a " tor-  
sion-free solvable" group. 

Clearly, H"  is nontrivial. Since H" >_ X2I)(H') ,  we have that, for all 
k >_ 1, H (~+ ~ >_ ( X 2L)(H'))(k) which is a subdirect p roduc t  of  X 4 H(k). 
By induction on k, we conclude that  H is nonsolvable. | 

PROPOSmON 12. The group H is just-nonsolvable. 

Proof Let  w ~ H,  w ¢ e. We will show that  the normal  closure W of 
any nontrivial e lement  w in H contains a term of  the derived series of  H.  
There  are two cases to consider depending on whether  or  not  w ~ H >  

Case 1. Let  w = (w 0' w~)~r. Then  a direct calculation shows that  

A] = 

[w ,A ,  A2] = (e,  E r A - ' r , A  l r2])  = (e ,  h 0 h 3 h 2 1 h l l ) .  

Let  v = A 0 A 3 h i  7A ix and let N be the normal  closure of  v in H.  Then,  
in A modulo  N, A 3 - hOlhlA2 = holh2A1, and so [A 3, Z 1] - e. Therefore ,  
A / N  is abelian of  rank at most  3, H / N  is metabelian,  and H"  _< N. F r o m  
the embedding  H _< ( H  × H)< o-}, we conclude that  N x N _< W, H"  × 
H"  _< W, and H is solvable. 
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Case 2. Let  w = ( w 0 ,  wl). We may  assume w I ¢ e .  Let  W~ be the 
no rma l  closure of  w I in H.  There fore ,  by L e m m a  7, [Wl, H ' ]  is nontrivial. 
Now, W > [(w 0, wl), (e, H ' ) ]  = (e, [wl, H ' ] ) ,  and so W _> (e, [W1, H ' ] ) .  
Clearly, if Wj contains a der ived subgroup  H (l) for some l, then W would 
contain H tl+ 1) X H °+ 1), and, as H / ( H  (l+ 1) X H (l+ 1)) is solvable, the case 
would be done.  The  desired conclusion is reached  as there  exists a 
m i n i m u m  level where  w is active. | 

5. F I N I T E  Q U O T I E N T S  O F  H 

PROPOSITION 13. 

(i) The odd-order residual 02 ' ( / - / )  is equal to T 3 ( H ) .  

(ii) A n y  finite quotient I7 o f  H decomposes as H = O ( H ) .  S where 
O ( h  r) is a normal/ . /all  2'-group o f  H,  which is nilpotent o f  class at most  2, 
and where S is a 2-group. 

Proof. 

(i) Le t  n be an odd n u m b e r  and let N be the no rma l  closure of  r" .  
Then,  in H modu lo  N, A,, = A 0 and, therefore ,  A~ = A 2 = A, and A is an 
abel ian group genera ted  by A 0, A 2, A 4. The  equat ion  AolA2AeA61= e 
translates additively to A 0 • ( - 1  + r 2 + r 4 - r 6) = 0. 

Def ine  the polynomials  l ( x )  = - 1  + x ~ + x 4 - x  6 and rn(x)  = - 1  + 
x ' .  Then  l (x) ,  re (x )  factor  as l (x )  = ( -  1 + x)la(x),  where  l a ( X )  = (1 --  

x)(1 + x)~(1 + x2), and m ( x )  = - 1 + x '~ = ( -  1 + x ) m l ( x ) .  Let  G C D  de- 
note  the greates t  c o m m o n  divisor ope ra to r  appl ied to polynomials,  with 
integer  coefficients.  Then,  since GCD(1  + x ,  m l ( x ) ) =  1, GCD(1 + 

, )  

x - ,  r n l ( x ) )  = 1, G C D ( ( 1  - x) ,  m l ( x ) )  = ti, we c o n c l u d e  t h a t  
G C D ( I ( x ) ,  rn(x))  = n ( -  1 + x). 

Let  a(x) ,  b ( x )  be polynomials  over  the integers such that  

a ( x ) ( 1  -}- X)2(1  -/-X 2) Jr" b ( x ) r n l ( x  ) = 1. 

Then,  on multiplying the preceding  by (1 - x)  2, we obtain  

- a ( x ) l ( x )  - b ( x ) m ( x )  = (1 - x )  2. 

Therefore ,  the following equat ions  hold: 

ao . n ( - 1  + = o ,  a o ( 1  - = o 

in / - / m o d u l o  N. Re turn ing  to multiplicative notat ion,  

NA~ = NA~ = NA], 
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Now we reach the  conclusion O 2 ' ( H ) =  ~/3(H) since, easily, f-I{Hklk 
odd} < "yg(H). 

(ii) Le t  n = 2kn ', n '  odd, M the no rma l  closure of  T 2k, and N the 
no rma l  closure of  z " in H .  

W e  assert  that  M = (X2kH')( ' r2~) .  Since z z~ = z (k> and there  exist 
integers i, j . . . . .  m,  such that  ~ = (z i, (z j, ( . . . ,  (~_m, h ) . . .  ))) ~ H where  h 
is isolated at the k th  level, we p roduce  [~ -2~, ~:] = (e, e , . . . ,  e, [7, hi) ~ H~. 
There fore ,  M contains the  no rma l  subgroup  X 2~H'.  It  is easy to see, by 
induct ion on k, that  [~ -2~, A] ~ X 2~H'. With this, our  assert ion is es tab-  
lished. 

Now z ~ = (7"2k) n '  = (3"n ' )  (k), and it follows f rom par t  (i) that  N contains 
X 2ka/3(H). Since 

is clearly a class 2 ni lpotent  group,  therefore  M / N  is also n i lpotent  of  
class at mos t  2. 

Le t  N = H ~ be  the group genera ted  by {h~lh ~ H} and let M = H 2~. 
Then  H / M  is a finitely genera ted  solvable group of  exponent  2 k, a n d  so it 
is a finite 2-group. Thus,  M is a finitely gene ra t ed  group. Now M / N  is a 
finitely genera ted  n~po ten t  g roup  of  class at mos t  2, and has odd  exponent  
n ' .  There fo re ,  M / N  is a finite g roup  of  odd order ,  and H / N  is a finite 
group having the type of  s t ructure  as had been  aff irmed.  

Since any finite quot ient  group of  H is a quot ient  of  H / H "  for  some  
integer  n, the p roo f  follows. | 

6. A P R E S E N T A T I O N  F O R  /-/ 

Le t  K be the subgroup  of H 1 genera ted  by ~-~-, A. Also, let p: K ~ H 
be  the project ion on the second coordinate .  Then,  as ~_2= (~.,~), A = 
(e, ~-A-I~-), we have p: ~.2 ~ -r, A ~ ~-A 1~_ and, therefore ,  it is an ep imor-  
phism. It  is actually an i somorphism.  However ,  first we need to p rove  the 
following. 

LEMMA 14. Let s be an integer, s >_ 1. Then the tree automotphisrns 
defined by (e, ,r )', (,c, e) s do not belong to H. 

Proof. Since ~.2s = (~.~, ~.s) ~ H ,  it is sufficient to prove  the assert ion 
for  o~ = (e, ~.)s. Suppose  that  o~ ~ H.  Since H / H '  is 2-genera ted,  there  
exist integers i, j such that  ozA'~ -j ~ H ' .  There fore ,  j = 2j", 

i / 
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and, f rom the decomposi t ion  H '  = ( H '  × H ' ) ( c ) ,  we obtain the second 
expression 

o~A'r/ = ( c ' ,  c" ) c  k 

for some c ' ,  c" ~ H '  and some integer k. However ,  on substituting 

c k  = ( (  A 1T2)k (T--1AT--1)k) 

in the previous equat ion and on compar ing  first coordinates,  we arrive at 
r j' = c '(A-ir2)/~. Since H / H '  is freely genera ted  by H ' a ,  H ' r ,  we con- 
clude that  k = 0 = j '  = j .  Thus, ~A i = (e, r " ( ¢ A - l r )  ') = (c' ,  c"), rS'+2'h i 

H ' ,  and i = 0 follows. | 

Let  w be a word  in r 2,A. Then  w = w ( r  2 , A ) = ( w ( r , e ) , p ( w ) ) .  I f  
p(w)  = e, then w = (w(r ,  e), e) = ( r ' ,  e) for some integer s. Thus, (r  s, e) is 
an e lement  of  H,  and s = 0  by L e m m a  14; hence,  w = e .  Define e: 
H - - + K  to be the inverse map of  p. Then  e: ~ -~  r ; ,  A - ~  r2A ~r 2 
determines an i somorphism f rom H onto K. 

PROPOSITION 15. Let  r = [ b, bU ], r '  = [ b, b a3] be words in the free group 
F freely generated by a, b. Also  consider the endomorphism o f F  determined by 
e: a ~ a 2, b ~ a 2 b - l a  2, and define the group 

L = (a, b l ~ ( r ) ,  ~k(r ' ) ,  k __ 0). 

Then the map  ~o: a --+ r,  b ~ A extends to a homomolph i sm  f rom L onto H. 

Proof. Explicitly, e~: a ~ a °-~, b --+ al~b~ka lk, where  6~ = ( - 1 )  ~, l~ 
= 3(2 k - 6k). In order  to write down ek(r) ,  ek ( r ' ) ,  we define b s = b "~'. 
Then  

~ ( b )  = b - l a  2lk -l/,. 

O3lk + 2 k U3lkUla + 2 ~ 

Ol a. U3(lk+2k)U31kL*lk+3"2 k 

for all k >_ O. We note  that, for k = 1, 6 k = - 1 ,  I k = 2, and, thus, 

8 ( r )  = b2bsb~ lb41 ,  8 ( r ' )  = bzb12b61b81. 

Let  B be the normal  closure of  b in L, B l = (bk]k  odd) ,  B 2 = (bmlm 
even).  The  relation r = e means  that b 0 commutes  with b 1, and, by 
conjugat ion by a, we conclude that b I commutes  with b0, b 2. Now r '  = e 
implies that b I commutes  with b 4 as well. Since e ( r )  = b2bsb61b41 = e, 
we h a v e  bob6b41b21 = e, and, therefore,  b 1 c o m m u t e s  with b0, b2, b4, b 6. 
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F u r t h e r m o r e ,  s ince b2bsb~lb41 = e, we  d e d u c e  tha t  b~ c o m m u t e s  wi th  

b o ,  b 2 ,  b4,  b6 ,  b s. I t  is c lear  tha t  o n  r e p e a t i n g  this  a r g u m e n t  we o b t a i n  tha t  
b 1 c o m m u t e s  wi th  b, for  all  i even .  Th u s ,  L factors  as L = B ( a ) ,  a n d  

B = B a + B 2. 
A n  e l e m e n t  w(a, b) of  L can  b e  w r i t t e n  as w(a, b) = wl(a, b)w2(a, b)a ~ 

l I ~v I a __ __ w h e r e  wl(a, b) = bkb  G ".. bk, ~ B 1 ,  k t o d d  for  1 < t < s, a n d  w h e r e  
W a = Yl  J 2  2( , b) b m b,,~ ... b~ ~ B2, mp e v e n  for  1 < p < q; n o t e  tha t  ]Wl]~ + 
]w2[b = Iw]b. O n  apply'(ng the  9~ map ,  we h a v e - p w ( a ,  b)  = (w2(r ,  a), 
w'l(r, M)r".  H e r e  w'l(a b ) =  (b[ , la iy ' (b~la2)  ': ... (bk : l a2y  ,, w h e r e  k), = 

' 2 . s . 

/ % / 2 -  1 for 1 < h _< s, and w'2(a, b ) =  (b~,la2)J'(b~?a2) J2 ".(bZ, la2)4, 
- -  1 2 H~q 

t _ _  ~ t - -  ! _ _  w h e r e  m h - ( m  h - 1 ) / 2  for  1 _ h _< q. Thus ,  IWllb - IWllb, IWzIb -- [Wz]b. 
S u p p o s e  tha t  w(a. b) is a n o n t r i v i a l  e l e m e n t  in  the  k e r n e l  o f  ~, a n d  let  it 

b e  of  m i n i m u m  b - l e n g t h  ]WIb. T h e n  q~w(a, b) = (w ' ( r ,  h), W'l(r , h))r" = e, 
a n d  so n = 2 n  0, a n d  (w ' ( r ,  h)r"o,w'l(r , h ) r " 0 ) =  e. H e n c e ,  w'a(a,b)a "°, 
w2(a, b)a '~° are also in  the  k e r n e l  o f  ¢,  a n d  

]w'l(a, b)a"olb = ]Wllb, IW'2(a, b)a~°l l ,  = ]wel b. 

If  b o t h  w 1,w 2 have  b - l eng ths  sho r t e r  t h a n  w, t h e n  w'j(a, b)a . . . . .  e = 
w'2(a, b)a n°, wl(a, b ) =  e = w2(a,  b), and ,  c o n s e q u e n t l y ,  n = 0, w = e, a 
con t r ad i c t i on .  Thus ,  we may  a s s u m e  w(a, b) = wa(a, b)a ~, q > 1. T h e n  

n = 2 n  o, a n d  b o t h  w2(a, b)a", w'2(a, b)a ~° are  in  the  k e r n e l  o f  q~. N o w  we 
r ep l ace  in  the  p r e c e d i n g  a r g u m e n t  w by  

, b la2]k(b- la2]lz  " = " w~(a b)a  . . . .  ( ,,i ] , m'2 ] ""(b,, ' ja2) 4an° w 2 ( a , b )  a~ ,  

w h e r e  n ,  = 2 j l  + ... +2jq + n O. Thus ,  again ,  w'~(a, b) ~ B 1 or  B 2. T h a t  is, 
m~, has  the  s a m e  par i ty  as m '  1 for  all  1 _< h < q. H e n c e ,  

! 

/ 7 7 h  -- 1F/Pl - -  

m h - -  1 1.171 - -  1 m h - -  m 1 

2 2 2 

i 9 71 1 1 is even ,  a n d  so 4[m h - rn t. I f  J l  > 1 then ,  s ince (b~, l a - )  = b,n, ~ br~,l_2 . . .  , 

the  consecu t i ve  ind ices  c a n n o t  be  c o n g r u e n t  m o d u l o  4. T h e r e f o r e ,  [Jh] 1 
for  all 1 < h _< q. As  q > 1, it fol lows tha t  Jh + 1 = - J h ,  a n d  q is even.  W e  

! n o  2 ' ' m a y  a s s u m e  Jx = 1. Thus ,  Wz(a,b)a =bin, lb,,, ... bmlbm,+fl  n°. O n c e  

m ore ,  we  o b t a i n  tha t  2In  0, 41m}, - m '  1. T h e r e f o r e ,  8]m h - m 1. A r e p e t i t i o n  
of  this  a r g u m e n t  p r o d u c e s  m h = m l ,  r/ = 0. H e n c e ,  w,(a,  b) = b jl b j2 ... 

. m 1 m 2 

b).,  = e, a'* = e, w = e, a con t r ad i c t i on .  | 
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7. F I N A L  C O M M E N T S  

(i) On  changing  b by its con juga te /~  = b a-" in the  previous  p resen-  
ta t ion  for  H ,  the  def in i t ion  of  the  e n d o m o r p h i s m  be c ome s  ~: a --+ a 2, 
/) - + / ) - l a 4 .  The  new re la tors  may  still be chosen  to  be  1: = [/~,/;a], 1:' = 
[/~, ba3] t oge the r  wi th  thei r  images  u n d e r  r e p e a t e d  appl ica t ions  of  e. 

(ii) I t  was shown in Sect ion  2 that  con juga t ion  by 0 = 0(2)o -(~) is an 
a u t o m o r p h i s m  of  H of  o r d e r  2 which in te rchanges  r and  /x. W e  no te  tha t  
con juga t ion  by 6 = 6(1b - inverts  bo th  r and  /x. I t  appea r s  that  the  4-group  
( 6, 0 ) is the  g roup  of  ou t e r  a n t o m o r p h i s m s  of  H.  

(iii) Def ine  R l to be the  n o r m a l  c losure  of  ( ~ k ( r ) ,  ek( r ' ) ]0  < k _< l )  
in the  f ree  g roup  F .  I t  can be  p roven  that  {Rt[l  >_ 0} is a strictly ascending  
chain  of  subgroups  and,  there fore ,  H is not  f ini tely p resen tab le .  

(iv) The  p r o o f  of  P ropos i t ion  14 provides  an a lgor i thm for solving 
the  word  p r o b l e m  in H.  It  wou ld  be in teres t ing  to see if the  app roach  of  
Wi l son  and Zalesski i  [15] leads  to the  so lu t ion  of  the  conjugacy p r o b l e m  
for this group.  

(v) A to rs ion- f ree  g roup  which is an extens ion of  an abel ian  group  
of  infini te  r ank  by the  Gr igo rchuk  2-group  has been  def ined  to act on a 
t ree  with infini te valency and was shown to have i n t e rme d ia t e  growth [7]. 
This raises the  ques t ion  abou t  the  growth funct ion of  our  group.  
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