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Abstract 

We introduce new classes of compact metric spaces: Cannon-Stan'ko, Cainian, and nonabelian 
compacta. In particular, we investigate compacta of cohomological dimension one with respect 
to certain classes of nonabelian groups, e.g., perfect groups. We also present a new method of 
constructing compacta with certain extension properties. 
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1. Introduction 

Cohomology theory is defined for arbitrary abelian groups. Consequently, one can de- 

fine cohomological  dimension, c -d ime  X,  of a compact  metric space X for any abelian 

group G. The standard definition of  c -d ime  X is via the Ei lenberg-MacLane  com- 

plexes K ( G ,  n) (see, e.g,, [6,15,25,26,28,33]). I f  we consider the class G of nonabelian 

groups G, then one still has well-defined Ei lenberg-MacLane complexes K ( G ,  1) [23]. 

Therefore it makes sense to consider the class of  compact  metric spaces X with coho- 

mological  dimension one for an arbitrary nonabelian group G E ~, c -d imc  X = 1. The 

purpose of  our paper is to study the special case when the group G E G is perfect, the 

subclass of  ~ which is often studied by geometric topologists (see, e.g., [1-3]).  
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Recall the Kuratowski notation XTY:  it means that for every closed subset Xo of X 
and any map f : Xo -4 Y there exists an extension f : X -4 Y of f over all of X [24]. 
A compact metric space X is said to be a Cainian compactum if for every perfect 
group G, X~-K(G, 1). 

The class /C of all Cainian compacta may play an important role in the celebrated 
4-dimensional Cell-like mapping problem: Can ceU-like maps on a 4-manifold raise 

dimension? (See [26,27].) Namely, we prove that every Cainian compactum is at most 
2-dimensional (Corollary 5.6). Next, we show that in every topological 4-manifold M 
there exists a 1-dimensional N0beling net such that every compactum in its complement 
is necessarily Cainian (Theorem 5.12). So in order to prove that a cell-like image X 
of a topological 4-manifold M, f : M  -4 X is at most 4-dimensional (note that X is 
necessarily a Z-homology 4-manifold), it would suffice to find a similar N6beling net 
in X. Therefore our result might represent a possible first step towards an affirmative 
solution of the 4-dimensional cell-like mapping problem--the only dimension in which 
the answer is still unknown. (See [27] for a different approach to this problem.) 

One of the most important concepts in geometric topology is the idea of the grope 

which was introduced in the 1970's by Stan'ko [31]. It was also used very effectively by 
Cannon [1] (whereas the name itself was suggested by D.R. McMillan, Jr.). The gropes 
were instrumental in the proofs of several key results in both taming theory as well as 
decomposition theory (cf. [ 1-3,31 ]). 

It is easy to see that the fundamental group/7 =/71 (M) of every grope M is perfect, 

i.e., [/7 : H] = / 7  [1]. In our paper we consider the class of compact metric spaces X 
which are characterized by the property that X-cM* for the so-called minimal grope M* 
(equivalently, the cohomological dimension of X is at most one with respect to the 
fundamental group of the minimal grope M*, c-dimrll (M*) X ~ 1). We call such spaces 
Cannon-Stan'ko compacta. One of the main results of the present paper is that there exist 
Cannon-Stan'ko compacta of arbitrary high dimensions (Theorem 3.3). This is quite in 
contrast with the class of Cainian compacta which cannot be more than 2-dimensional 
(Corollary 5.6). In fact, we prove that the weakly Cainian compacta are precisely the 
2-dimensional Cannon-Stan'ko compacta (Corollary 5.10). 

We also introduce and study the class of nonabelian compacta X: they are characterized 
by the property that for every closed subset X0 C X of X and for every map f : X0 -4 ~T 
there is an extension f : X  -4 T of X into T, where T is a torus with one hole (and 
~T = S 1 is its boundary). We prove that every nonabelian compactum is a Cannon- 
Stan'ko compactum (cf. Theorem 4.3). These compacta played an important role in the 
recent solution by the first author of the following problem in dimension theory proposed 
by Sternfeld [32] (in connection with the Hilbert's 13th problem): If a 2-dimensional 
compactum X is embedded in the product Y × Z of two 1-dimensional compacta Y and Z, 
does then X necessarily contain a product Y1 × Zl of two 1-dimensional compacta Y1 
and Z1 ? (The answer is negative [ 13]. Another such counterexample was published earlier 
by Pol [29].) 

The present paper has a rather long history. It was started during the visit by the 
first author to Ljubljana in the Spring of 1989. The preliminary announcement [16] was 
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written during the second author's visit to Moscow in the Spring of 1991 (see also [17]). 
The main results of this paper were presented by the second author at the Workshop 
on Cohomological Dimension Theory (Knoxville, May 19-21, 1992), at the Conference 
on Topology and Its Applications (Amsterdam, August 15-18, 1994), at the Conference 
on Set-Theoretic Topology and Its Applications (Matsuyama, December 12-16, 1994), 
and at the Spring Topology and Southeast Dynamics Conference (Newark, March 30- 
April 2, 1995). 

2. Constructing compacta with certain extension properties 

We shall work in the category of separable metrizable spaces and continuous maps 
throughout this paper. A compactum is a compact metric space. A space X is said 
to have cohomological dimension at most n, n E N U {0}, with respect to a group 
of coefficients G, c-dima X ~< n if for every closed subset A c X and every map 
f : A  --+ K(G, n) of A into the Eilenberg-MacLane complex K(G, n) (see [23] for 
the definition and properties of Eilenberg-MacLane complexes), there is an extension 
of f over all of X, i.e., XTK(G,  n). Equivalently, K(G, n) E AE(X) .  (For several 
equivalent versions of definition of c-dimc X see [6,25,33], where its properties are 
studied in details.) 

In [6-9,11,20,21], compacta with differing cohomological and covering dimensions 
were constructed, using the so-called Edwards-Walsh modification of polyhedra. Here 
we use an alternative approach, based on [10]. Whereas, the Edwards-Walsh modification 
exists only with the Eilenberg-MacLane space K(R, n), where R is a ring with unit, our 
present approach is valid for an arbitrary group G (however, it is not so geometric). 

A map f : L  -+ K between polyhedra L and K with triangulations A and ~, re- 
spectively, is said to be combinatorial with respect to A and ~, provided f - l ( A )  is a 
subpolyhedron of A for every simplex A C K.  This means that the preimage of every 
polyhedron A with respect to ~ is a polyhedron with respect to A. 

For every pair (X, A), every CW complex K,  and every map f : A  --+ K, we shall 
denote the classical extension problem: 

A f > K  

/ 

/ / 7  
X 

by (fX,A, K) and we shall call the map f :  X ~ K a solution of the extension problem. 
(This should not be confused with the notion of a resolution of the extension problem 
(fX, A, K) introduced below.) Note that by the Borsuk homotopy extension theorem, for 
every pair f ,  f ' : A  --+ K of homotopic maps, the extension problems (fX,A, K) and 
(fiX,A, K) are equivalent, i.e., there is an extension f :  X --+ K of f if and only if there 

is an extension ff  : X ~ K of ft. We shall denote the corresponding equivalence classes 
by ([fIx,A, K). A map g : Y  --+ X is said to be a resolution of the extension problem 
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( f X , A , K )  if there is a map h : Y  -+ K such that hlg-m(a) = f o (glg-~(A)), i.e., the 
following diagram is commutative: 

y I  9 > X 

An inverse system/2 = {(Li ,  A/), q~+l}/~>o of polyhedra Li with triangulations Ai is 
said to be K-resolvable, for some CW complex K,  provided that for every i /> 0, for 
every finite subpolyhedron A C L/ (with respect to the triangulation A/) and for every 
map f : A --+ K,  there exists k E N such that the map q~+k : Li+k --+ L/ is a resolution 
of the extension problem ( f L , A ,  K) ,  i.e., the following diagram is commutative: 

q i +  k I 
(ai.+k~-l(A) ' '> A ~ K 

Li+k )- Li  

Suppose that {(L/, A/), q~+l}/~>0 is an inverse system of polyhedra L /wi th  triangula- 
tions A/. We say that the mesh of triangulations {A/} converges to zero, mesh{Ai} -+ O, 
if for every k E N, limi~o~{mesh(q~+/(Ak+/))} = O. (This should not be mistaken with 
the notion {mesh A/} --+ O, which simply means that lim/_..o~ mesh A/=  0.) 

Lemma 2.1. Suppose that K is a countable CW complex and that X is a compactum 
such that X li__m{(L~, Ai), _i+11 i+1 = u~ f, where £ = { (L i ,A / ) ,q /  }/>~0 is a K-resolvable 

inverse system of compact polyhedra Li with triangulations Ai such that mesh{A/} --+ O. 
Then X ' r K .  

Proofi Suppose that for some closed subset A C X we have a map f '  A --+ K.  We may 
assume without losing generality, that X C I ~ .  Since K is an ANR there is an open 
neighborhood U C I ~ of A i n / ~  and a map f f ' U  --+ K such that ff  I A = f .  Since 
X = lim{(L/, Ai), q~+l}i/>0 there exists for every integer i ~> 0, a finite subpolyhedron 

+_._ 

A/ C L/ of L/ with respect to the triangulation A/, such that A = lim{(A/,A/ Ia,), 
¢r---- 

q/+l / IA~+,}i/>0. Therefore for some integer io ~ O, A~ o C U. Let f* = ff  [ A/o. Since 
the inverse system {(L/,A/),q~+l}i>lo is K-resolvable for K,  there exists an integer 
k >~ 0 such that the map q~+k : A/o+ k ._+ A~ ° is the resolution of the extension problem 

(f~o,A~0, K).  So there is a map f* :Lio+ k --+ K such that 

~qlo ) - l (A io  ) = o qio I ~o+k - '  • " 
(qi o ) (A,o)  
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Since mesh{A~} -4 0, we can choose i0 big enough so that the composition f = f--7 o 
(qio~+k) : X --4 K solves the extension problem ( f  x ,n,  K) .  

q~ 
Lo < 

0 q°~lA' 

10 

4 d,0-, 
i l  < ' ' "  

iO . < 

2~ln2 .. .q~-,IA'0 i 

1 0 + k  oo 

Lio <qiO Lio+k < q~'°+t¢ X 

\ \ f - -  7111 
I "'~ 1~1 I 
/ ~ K /incl- 

< - ' l i o + k  < A 
[] 

L e m m a  2.2. Suppose that K is a CW complex and that X is a compactum. Then for 

every extension problem ( f  x,A, K)  there exists a resolution 9 : Y ~ X such that for every 
point x C X ,  9 -1 (x) is either contractible or homotopy equivalent to K. Moreover, if X 

and K are simplicial complexes then Y can be chosen to be a simplicial complex with 

simplicial map 9 for some triangulations of X and Y.  

Proof .  Given a map f : A  -4 K consider its extension (which exists since K E ANR 

hence C(K)  E A R )  to the cone C(K)  over K (i.e., C(K)  = K x [0, 1]/K x {1}), 
-f: X -4 C(K)  and let 7r : K x [0, 11 -4 C(K)  be the natural quotient map. Define Y to 

be the pull-back of the diagram below 

y - h - -  ~ K x [0,1] 

' l g l  7r 

* 7 
x , c ( I c )  

and let g : Y  -4  X be the projection corresponding to 7< Let w : K x [0, 1] --4 K be the 
obvious projection. Then 

w o (h Ig-'(A)) = f o (9 lg_l(A)) 

hence g is indeed a resolution of the extension problem. Also, for every y E C(K) ,  
obviously 7r-I(y)  = * or K ,  so for point-inverses of  9 we have that 9 -1 (x )  -~ • 

o r  ~ / ~ .  

g_ l (A  ) gl > A : ) I f  

/ 
/ 

" K x [0,1] 

/ 7r 
/ 

-" 7 
Y ~ , x , C ( K )  
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If X is a polyhedron, then we can replace the extension problem ( fX ,A ,  K )  by a simplicial 
one (ffX,A', K)  so that A C A' and any resolution of a new problem is also a resolution of 

the old one. Then the extension f can be chosen to be simplicial for some triangulations. 
In this case the pull-back space Y is a simplicial complex. [] 

Lemma 2.3. Suppose that K is a countable CW complex. Then for every n E N, there 
exists an inverse sequence £ = {(Li,Ai),q~+l}i>>.o of countable polyhedra Li with 
triangulation Ai, such that: 

(i) Lo ~- Sn; 
(ii) mesh{Ai} ~ O; 

(iii) E is K-resolvable; and 
(iv) for every i >>. 0 and every point y E L i ,  (q~+l)-l(y) is either contractible or 

homotopy equivalent to K. 

Proof. The proof consists of an inductive construction. Define Ao to be any triangulation 
of S n with mesh A0 < 1. There exist only countably many different extension problems 
o~ 0 = {(fLo,A,K)} with finite subpolyhedron A. (Indeed, K x is a separable metric 
space hence there exists a countable dense subset {fi}isN C K X. Since K is an ANR it 
follows that every f E K x is homotopic to some fi.) We shall enumerate them by even 
integers: a2,° O~4,0 etc. Let ai = a~, for every i 6 2Z. 

Apply Lemma 2.2 to get a map q~ : Ll --+ L0 with the property (iv) and such that q~ 
resolves the extension problem c~2 = c~ °, i.e., 

(ql)- t (A)  q~' " ~ Y-~ 

i 

i Jq~ 
L1 , Lo 

K 

Choose any triangulation )q of Ll such that meshAl < 1/2 and meshq01(Al) < 1/2. 
Again, there are only countably many different extension problems a 1 = {(fL1,A, K)}.  
We enumerate them by odd numbers, divisible by 3: a~, a91, als, a~l, etc. Define ai  = a/k, 
k c {0, 1}, i E 2Z U 3Z. Apply Lemma 2.2 to get a map q21:L2 --+ L1 with the 
property (iv) and such that ql 2 resolves the extension problem a3 = a~, i.e., 

(q~)_l(A) q~l , A ~ K  

L z " / q ~  , L1 

Choose any triangulation A2 of L2 such that meshA2 < 1/4, meshq2(),z) < 1/4, and 
meshq0Z(A2) < 1/4. Again, there are only countably many different extension problems 
a2 = {(fL2,A, K)}.  We enumerate them by integers, divisible by 5 but not divisible by 2 
or 3: a 2, c~5, a~5, c~5, etc. Define ai = a/k, k E {0, 1,2}, i E 2Z U 3Z U 5Z. 
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C o n s i d e r  o~4 --- o~ 0 --- (fLo,A, g). It defines an extension problem 

(q02)-1(~4) = ( f  o (q~I)L~,(qX)- , (A) ,K) • 

Apply Lemma 2.2 to resolve the extension problem (qo2) -1 (c~4) by the map q3:L3 ~ L2: 

q3 -1 q3 q021 (~)  ((q02)_l(A)) ~1 ) (q~)_l(A) > A 

L3 ~ ) L2 ) L0 

f 
~ - K  

Note that then the map q~ resolves the original extension problem c~4. We can proceed in- 
ductively, to construct a system {(Li, )`i), q~+l }i>~o. All equivalence classes of extension 
problems ([f]r,,A, K)  will be enumerated by N\{1}: c~2, c~3, c~4, etc. 

Clearly, the property (ii) holds by the construction. Next, for every i E N\{1}, every 
extension problem (~i is resolved by the map q~-I : Li - i  ~ Lk, where c~i = ~ ,  hence the 
property (iii) holds. Finally, property (iv) holds by Lemma 2.2 and the construction. [] 

A generalized cohomology theory h* is said to be continuous if for every countable 
CW complex W with a compact stratification W1 c Wz C . . .  C Wi C ..- there is an 
equality h* (W) = lim h* (W~). 

+..-- 

Theorem 2.4. Let K be a countable CW complex and h be a nontrivial homology theory 
(respectively, nontrivial continuous cohomology theory) with -h.(K) = 0 (respectively, 
h* (K)  : 0). Then for every integer n >~ 1, there is a compactum X of dimension 
dim X ~ n with the property X 'rK.  

Proof. We'll give a proof for cohomology (for homology it is analogous). Apply 
Lemma 2.3 to obtain an inverse system £ = {(Li, A~),q~+l}~>0 of polyhedra L~ with 
triangulations Ai, such that (i) Lo ~ S'~; (ii) mesh {A~) --+ 0; (iii) £ is K-resolvable; and 
(iv) For every y E L i  and every i, (q~+l)-l(y) ~ point or ~ K.  

We shall construct inductively a K-resolvable inverse system 

Q {(Q. i+1 
= )`~IQ,), qi IQ,}i>~o 

of compact subpolyhedra Qi of Li with respect to triangulations )`i. Define Q0 = L0 
and consider any 70 = 7 ¢ 0 E h*(Lo). It follows by the property (iv) above that 
(q~)* : h*(L0) ~ h*(Ll) is an isomorphism [18]. Since by hypothesis, h* is continuous, 
the nonzero element 71 = (q~)*(70) lives in some compact subpolyhedron Q1 of L1 
with respect to the triangulation )`1. Repeat this argument for 71 to get a compact sub- 
polyhedron Q2 of L: with respect to the triangulation ),2 with (q~)*(71) ¢ 0 living 
in QE, etc. Let X lim{(Qi,)` ~+1 = ~lQ,),qi IQ,)i>~0. Clearly, (q~)*(7o) ¢ 0 therefore 

(__..- 

q~ :X  --+ L0 ~- S '~ is essential so dim X ~> n. Also, by Lemma 2.1, X'rK.  [] 
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Proposition 2.5. For every compacta X,  Y and Z the following implication holds: 
X T ( Y  V Z)  =:~ X T Y .  

Proof, Straightforward (cf., e.g., [12]). [] 

By using Proposition 2.5 it is possible to generalize Theorem 2.4 in a straightforward 
manner to the following: 

Theorem 2.6. Let {K~}~N be an arbitrary sequence of countable CW complexes, 
acyclic with respect to a nontrivial homology (respectively, continuous cohomology) 

theory h. Then for every integer n >~ 1, there exists a compactum X of dimension 
dim X >1 n, having the property X'rK~ for every i E N. 

3. Cannon-Stan'ko compacta 

We begin by briefly recalling the construction of a grope M. (For more about gropes 

Pi+l }i~>0 of a direct system of see [1].) One defines M as the direct limit M = li__m{Li, i 

compact 2-dimensional polyhedra Li and the injective bonding maps P~+I : L~ --+ Li+l. 
The polyhedron L,~ is called the nth stage of the grope construction. Here, L0 is an 
oriented compact surface S 9 of genus g > 0 with an open disk deleted. Let Ao c S 9 be 
a set of 2 9 circles which generate the 1-dimensional homology of the surface Sg. The 
complex L,~+I is then obtained from Ln for every n />  0, by attaching for every circle 
a E A,~, an oriented compact surface $9o of genus 9a, with an open disk deleted, by 
identifying the boundary aSgo of the surface $9o with the circle a E An. The generators 
of homology of Sg a then determine the set of 2ga circles An+1 C $9~ which generate 
the 1-dimensional homology of the surface Soo. 

= , P~+1 }~>~o which In particular, we shall need the so-called minimal grope M* lim{L~" 

is distinguished by the fact that the genus of L0 is one and that for every i >~ 0, we attach 
only two 1-handles to each 1-handle pair of generators of the 1-dimensional homology 
of the complex L~'. 

Definition 3.1. A compactum X is said to be a Cannon-Stan'ko compactum provided 
that for the minimal grope M*, X'rM*. Equivalently, for the minimal grope M*, 

X ' r K ( H I ( M * ) ,  1), i.e., c-dimgt(M. ) X ~< 1. 

Examples 3.2. Every compactum of dimension <~ 1 is evidently also a Cannon-Stan'ko 
compactum. The Pontryagin disk ID 2, introduced in [27], is an example of a 2-dimensional 
Cannon-Stan'ko compactum. By glueing two copies of 1132 along the boundary aD z = S 1 
one gets the so-called Riemannian surface of infinite local genus $2 which is an example 
of a homogeneous 2-dimensional Cannon-Stan'ko compactum [13]. 

We shall now prove that there actually exist examples of Cannon-Stan'ko compacta 
of arbitrary high dimensions: 
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Theorem 3.3. For every integer n >~ 1, there exists an n-dimensional Cannon-Stan'ko 

compactum. 

Proof. By Theorem 2.4 it suffices to find a nontrivial homology theory h, such that 
h,  (M*) = 0. For h, we take the singular homology theory with integer coefficients, h,  = 
H ,  (__;Z) .  Clearly, for the minimal grope M* ' • i = li__~m{Li ,Pi+l}z)0, all bonding maps 

P~+I :Li* -'+ Li+l* induce the zero-homomorpbisms (P~+t)* :H, (L~;Z)  --+ H,(L*+I ;Z ) 
since: 

(i) For every 1-cycle-y E Hl (L  i ,Z) ,  i • . • " (Pi+l)*(7) bounds a 2-chain in H,(L~+I,Z ), 

= (L i ,Z), (Pi+l)*}i~>o = O; and hence H1 (M*; Z) li__m{gl *' i 

(ii) For every j ) 2, Hj (L*;Z)  = 0 since L~ is homotopically just a bouquet of 
finitely many circles S 1, thus it follows again that H j  (M*;Z) = 0. 

Finally, since h. is an ordinary homology theory, we may assume that in the proof of 
Theorem 2.4, in the construction of the inverse system Q = {(Qi, AilQ~), q~+l}i)0, the 
subpolyhedra Qi of L~ are all n-dimensional. We can achieve this by starting with an 
n-dimensional cycle 3' E h.(L~)) and then the n-dimensional homology will always live 

already in the n-skeleton QI n) of the polyhedron Q¢. [] 

If instead of Theorem 2.4 one uses Theorem 2.6, the same proof yields the following 
stronger statement: 

Theorem 3.4. Let .Ad = {Mk}k~r~ be an arbitrary (at most countable) collection o f  

gropes. Then fo r  ever), integer n ) 1, there exists an n-dimensional compactum X such 

that for  every index k E N, X~-Mk. 

4. Nonabelian compacta 

Definition 4.1. Let T = (S 1 x S1) \ IntB be a 2-torus with a hole (obtained by removing 
the disk B) and denote its boundary by 0T (hence 0T = $1). A compactum X is said 
to be nonabelian if for every closed subset A C X of X and every continuous map 
f : A ~ a t  there exists a continuous map f : X ~ T such that ]IA = f . We shall 
denote this extension property by X T ( T ,  a t ) .  

Examples 4.2. Every compactum of dimension ~ 1 is evidently also nonabelian. An 
example of a 2-dimensional nonabelian compactum is the classical Pontryagin mod 2 
"surface" [30], i.e., the inverse limit of an inverse system of modifications of the 2-sphere 
where disks are replaced by MSbius bands (observe that R P 2 # R P 2 # R P  2 is homeomor- 
phic to IRp2# (1-handle)) [13]. 

Theorem 4.3. For every integer n >~ 1, every n-dimensional nonabelian compactum is 

also a Cannon-Stan'ko compactum. 
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We shall first need to prove two lemmas. As before, let Sg be the 2-sphere with 9 > 0 
orientable 1-handles and one hole, and let D 2 be the Pontryagin disk [27] (recall that 
a]i]l 2 = S1). 

Lemma 4.4. For every compactum X, the following statements are equivalent." 
(1) X is nonabelian; 
(2) for every g > O, X r (  Sg, OSg), where S 9 is a compact orientable surface of genus g 

and with one hole; and 
(3) X T ( ~  2, a~I~2). 

Proof .  (1) =~ (2) Take in S 9 a bouquet A = Vig_~ A~ of g - 1 arcs such that for every i: 
(i) aA~ = {a, ai}; 

(ii) Ai n A j  = {a}, for  every i }g j ;  
(iii) aAi N S 9 = aA~ N aSg = ~Ai; and 
(iv) if one cuts Sg along A then each of the resulting pieces E l , . . . ,  Eg is a disk with 

just one of the g 1-handles Hi.  

By shrinking the bouquet A to the point a one gets a cell-like map f : S 9 ~ Y of 
= Vi=l Di,  where for every i, Di --- f(E~) is a 2-torus with a Sg onto a bouquet Y g 

hole. (Note that f (aEi)  C aDi, for every i. For the definition and the main properties of  
cell-like maps see, e.g., the survey [26].) By collapsing every Di  onto an interval Ii c D~ 
one furthermore gets a surjective map g : Y --+ Z of Y onto a bouquet Z g = Vi=I Ii. 

Take now any nonabelian compactum X,  an arbitrary closed subset A C X and any 
continuous map ~ : A ~ aSg. Then the compositum ¢ = g o f o ~ : A --+ Z gives a 
continuous map of A into Z. Since Z is obviously an absolute retract (AR), the map ¢ 
can be extended to a continuous map on X,  ~b : X --+ Z. 

For every k E { 1 , . . . ,  g}, consider the restriction 

{k = f o (,01~-, (i~)r_l(AO~-i (a)): ~ -1 (ik) a (A U ¢ - '  (a)) -~ ODk. 

Note that ¢ l (a)  separates X into components the closures of  which are ¢ - l ( I k ) ,  

k E { 1 , . . .  ,g}. Since by hypothesis, X is nonabelian, so is ~ - l ( I k )  hence there is 
- - -1  I an extension over all of~b ( ~ ) ,  ~ k : ¢  l ( ik)  --~ Dk. Let ~ g = U k = l ~ k : X  -+ Y .  

Clearly, ~ is well-defined and continuous. Since f : Sg --+ Y is cell-like there is a lifting 

~: X -+ Sg which is up to homotopy, an extension o f ~ "  A --~ ~Sg over X,  i.e., ~[A --~ 7 ~. 
(2) ~ (1) This is obvious---consider the case when 9 = 1. 
(3) =~ (1) Suppose that f : A --+ ~T is a continuous map from a closed subset A C X 

of a compactum X with the property XT(D 2, ~]D2). Recall the inverse limit construction 
of the Pontryagin disk ]D 2 from [27]: ID l im{Ki,  _ i+ l l  = p~ j~i~>0 where Ko is a 2-disk and 

4----- 

Ki+l is a Pontryagin-like modification of Ki  ( i )  0) except that instead of M6bius bands 
we attach orientable 1-handles. In particular, for every i ~> 1, Ki is a compact  orientable 
surface of some finite genus gi > 0 and gi+l > gi. Also, we can identify a K i  - S 1 -~ 
OD e for every i. Therefore there is a continuous map qo : (1132, aD 2) --+ (T, a T )  obtained 

as the composi tum of the canonical projection p ~  : (D 2, OlD 2) ~ (K1, aK1),  followed 

by the obvious onto map ~3" (K1, i}Kl ) --+ (T, aT)  which simply kills the extra handles. 
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By hypothesis, the map ((ploD2) -1 o f : A  --+ OD 2 extends over all of X to a map 
g : X --+ II~ 2. Obviously, the composition f = qo o g : X -4 T is then the desired extension 

of f over all of  X .  This verifies that X is indeed nonabelian. 
(1) =~ (3) Represent again I13 2 as the inverse limit, ID 2 = li_m{K~,p~+l}i>~o of 2- 

disks-with-handles Ki ,  i.e., Ks = Sgl for some gi >~ 0. Suppose that X is a nonabelian 
compactum and pick any closed subset A c X and any continuous map ~ : A  --~ 0II~ 2. 

Since w e ' v e  already verified that the assertions (1) and (2) of the lemma are equivalent 
and since one can identify 0Ki  = 0II) 2, it follows that there is an extension of ~ to a 
map qoi : X --+ K~ for every i >/0. 

Fix an io /> 0 and consider any 2-simplex cr E K ~  2). Look at the pair ( ~ l ( a ) ,  
¢~oI(0a)).  Then one can lift the map 

~o1~,;o:(~ ) : ~ ( ~ r )  ~ g ~  

to ( p ~ + l ) - I  (a) C K,o+l (since X is nonabelian and since (p~+l ) - l (c r )  is a disk with 

one 1-handle), so by doing this operation for every a E K~: ), we get a lifting of the map 

cP~o : X -+ K~ o to Kio+l, i.e., a map ¢io+1 " X  --+ Kio+l. 

Kio < K~o+l ( D 2 

/ / 

X / / q o  

17" 
A 

_i0+1 Provided that io ~> 0 is chosen big enough, we may assume that qoio ~- 1% o ¢i0+l 
via some (~)-homotopy. Therefore, a map ¢ = lim ¢/0+~ : X --+ 113 2, where for every 

n ---4.(2~ 
k ~> 0, ¢~o+k+1 : X --+ Ki0+k+l is a lifting of the map ¢i0+k : X --+ Kio+k such that 

pio+k+l o ~)io+k+l ~io+k ~ io+k 

via some (2-k)-homotopy,  is well-defined and continuous, and it is, up to a homotopy, 

an extension of the given map cp : A -+ II3 2. (If necessary, one can choose an appropriate 

subsequence of the sets of indices {io,io + 1,io + 2 , . . . } . )  This verifies that indeed 
Xr(D 2, 01I)2). 

This completes the proof  of the lemma. [] 

L e m m a  4.5. Let M be any grope. Then for an arbitrary compactum X, the following 
statements are equivalent: 

(1) X'rM; and 
(2) X~-(M, 8M). 

Proof. 
(1) =~ (2) Obvious. 
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(2) ~ (1) Let X be any compactum and take any closed subset A C X and any 
continuous map f : A --+ M. Represent M as the direct limit of finite stages of the grope 

construction, M = li__m{Li,p~+l}i~>0. Since A is compact, its image ~(A) lies in some 

finite stage of M, i.e., for some i ~> 1, ~(A) C L~, where ~ = p ~  o ~ and p ~ "  L~ --+ M 

is the canonical inclusion. 
Wk(i) 

Now, Li is of the homotopy type of a finite bouquet of circles, i.e., L~ _~ Y = v j = ]  SJ, 

and moreover, Y C Z = ~/~(i I Nj, where Nj are gropes and ~Nj = Sj, for every 

j E { 1 , . . . ,  k(i)}. We have a deformation retraction r : Li --4 Y which we can follow by 
~/n(~) 

the map g : Z --+ W = v j = l  Ij which collapses each grope Nj onto the segment Ij .  The 

composition ¢ = g o r o ~ : A --~ W can now be extended over X to give ¢ : X ~ W. 

This map approximately lifts to ~2 : X --+ Z since g is cell-like. Since Z ~- M and since it 

suffices to solve our extension problem only up to homotopy, the proof is completed. [] 

A ~ :~L 

X - - , - M  T 

W < g Z <incl. g 

Proof of Theorem 4.3. If  X is nonabelian then X'r(SI, OS1), SO by Lemma 4.4, 
X. (S9 ,089) ,  for every g > 0, hence XT(M,  0M), for every grope M (in particular 
for the minimal grope M*) since obviously ($1, ~$1) c (M, OM), thus by Lemma 4.4, 

X r  M .  [] 

Obviously, the proof of Theorem 4.3 yields the following stronger statement: 

Theorem 4.6. For every integer n >~ 1, every n-dimensional nonabelian compactum X 
has the property XT-M, for every grope M. 

Proposition 4.7. Let X be a compactum, K a polyhedron and (L, L ~) a polyhedral 
pair. Suppose that the property X T ( K  * L, K * L I) holds, where * denotes the join of 
polyhedra. Then there is an Fa-set Z C X (respectively G6-set W C X )  such that Z 'rK 
(respectively W~-K) and ( X \ Z)~-( L, L ') (respectively ( X \  W)'c( L, L ') ). 

Proof. This proposition is a relative version of Corollary 2 from [14] and the proof is 
the same (see the proofs of Theorem 1 and Corollary 2 in [14]). [3 

Theorem 4.8. Let X be an arbitrary compactum. Then there exists a O-dimensional 
F~-set Z C X (respectively G~-set W C X )  such that every compactum Y C X \ Z  
(respectively Y C X \ W )  is nonabelian. 
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Proof .  Let X be an arbitrary compactum and define K = S °, where S O is the 0- 

dimensional sphere, and let (L, L ' )  = (T, 3T). Then ( K  * L, K * L')  = ( S T ,  S ( 3 T ) )  

and the inclusion-induced homomorphism I I . (S (3T) )  --+ I I . ( S T )  is trivial, hence 
the property X'r (K  * L, K * L ~) holds. Apply now Proposition 4.7 to obtain an F~- 
set Z C X (respectively G~-set W C X )  such that Z r K  (respectively W r K )  and 

( X \ Z )r( L , L ') (respectively ( X k W )T( L, L ') ). In particular, Z T S ° (respectively W r S °) 
implies that dim Z = 0 (respectively dim W = 0), whereas the other property of  Z 
(respectively W) clearly implies that every compactum Y C X \ Z  (respectively Y C 

X \ W )  is nonabelian. [] 

Coro l l a ry  4.9. For every integer n >. O, there exists an n-dimensional nonabelian com- 
pactum. 

Proof .  Given any integer n /> 0, consider the following compactum X = I n+l,  i.e., 
the (n + 1)-dimensional cube. By Theorem 4.8, there exists a G~-set W C X such that 

dim W = 0 and every compactum Y C X k W  is nonabelian. By the Urysohn-Menger  
sum formula, dim X k W  >~ n hence if we write the F~-set X \ W  as the countable union 

of compacta  Ci C X \ W ,  X k W  = [.J{Ci [ i E N} then by the Countable sum theorem 

there is at least one i0 E N such that dim Ci0 = n. Since Cio is also nonabelian this 

proves the assertion. [] 

5. Cainian compacta 

Definition 5.1. A compactum X is said to be Cainian provided that for every perfect 

group H, X-oK(H, 1). Equivalently, c -d imn X ~< 1. 

Examples  5.2. Every compactum of dimension ~< 1 is Cainian. The Pontryagin disk ~z  

and the Riemannian surface of infinite local genus 5 2 are examples of 2-dimensional 
Cainian compacta. 

Let us verify this for 113 2. So let H be a perfect group and choose any closed subset 
A c 113 2 and any continuous map f : A --+ K(II ,  1). Represent (D z, A) as the inverse 

limit of polyhedral pairs (assume all lie in I ~ ) :  

(D2, A) = Vl_m{(Di,A~), '-~+' -~+', "~ kPi ~ Pi IA~+l} }i/>0" 

Since K(H,  1) is an ANR, there is an integer i0 E N such that f can be extended over 
e~ A A, 0 to give a map f i ,  "Ai ~ K(H,  1) such that 7,0 o (Pio I ) -~ f .  Clearly, 7~o can be 

extended over the 1-skeleton D}~ ) of  Dio to give a map 9~o: A,, O D ~  ) --+ K ( H ,  1). This 
gives an extension up to homotopy, ~:  A t3 ll)0) --+ K(H,  1). 

(2) (2) 
Pick now any 2-simplex (rj C Dio \Aio and consider 7~¢ = 9io(Oaj) as the element 

of  H~ (K(H,  1)) = H.  Then 7~j is a product of commutators, -y~j = c l .  "- et(j) since H 
is a perfect group. 

Consider ~ -1 ]i)2. (P~o) (a j )  C We have a well-defined extension of f : A  -+ K(H,  1) 
over AU oo -1 ( p ~ - l ( ~ r ~  We procede as follows: Let (P~o) (~crj). We wish to extend over ~ ~0 J ~ J J" 
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/I --1 O" il ~> io be the smallest index such that (Pio) ( j )  is a disk with >~ tj handles. Clearly, 
then there is a map 

~1 "~ -]  K(H, 1) 

because all ci's can be represented by (orientable) 1-handles (and we can kill extra 1- 
. . ,  D(2)\A (2) and handles if necessary). We now do this for all 2-simplices a l , .  c%(~o) c i0 - ~o 

let imax = max{i l , . . .  ,in(~0)}. Then clearly, one gets a well-defined map 9max : D~m~ --~ 
K(/7,  1) such that it is an extension up to homotopy, of f : A ~ K(/7,  1) and so the 
composition 

g~-(gmaxOpim°°ax) : D  2 -.~ j r ( ( /7 ,  1) 

is again up to homotopy, the desired extension. 

Definition 5.3. Let N = N 1 U N2 be the (boundary connected) sum of two copies 
Nl = M* = N2 of the minimal grope M* along its boundary circle OM* = S 1. A 
compactum X is said to be weakly Cainian provided that for the fundamental group 
H = HI (N), X~-K(H, 1). Equivalently, c-dimn X ~< 1. 

Remark 5.4. Let ]/V be the class of all perfect groups H such that I-I2(H) = Z and 
Hq (H) = 0, for all q ~ 2. Note that obviously,/7 = H1 (N) E "142. 

Theorem 5.5. Every weakly Cainian compactum is at most 2-dimensional. 

Proof. If one glues together two minimal gropes N1 and N2 along the boundary then 
it follows by [5, Lemma (1.18)] (also by [4, Aspherical Pasting Lemma 4]) that the 
resulting space N is aspherical. Also/7 is perfect since H1 (N) = 0, for we have killed 
(in fact, twice) the only generator of HI(S l) =-- Z, therefore N = K(H, 1). 

Next, the suspension of N, S N  is a homotopy 3-sphere since it is the union of two 
suspensions of a grope glued along the suspension of a circle, i.e., it is the union of two 
homotopy 3-balls glued along their boundary. 

Suppose now that X is a weakly Cainian compactum. Then XT-N hence by [12], 
(X × I)~-(SN) and consequently, (X x / ) T S  3 so dim(X x I) <~ 3 hence dim X ~ 2. [] 

Corollary 5.6. Every Cainian compactum is at most 2-dimensional. 

Remark  5.7. In their recent preprint, J, Dydak and K. Yokoi renamed Cainian compacta 
as compacta of perfect cohomological dimension one. In particular, they obtained an 
alternative proof of our Corollary 5.6 (cf. [19, Corollary (3.7)]). 

Theorem 5.8. Every weakly Cainian compactum is a Cannon-Stan'ko compactum. 

Proof. Suppose that X is a weakly Cainian compactum and let M* be the minimal 
grope. Then X = K ( H ,  1) where/7 is the fundamental group of the space N = Nl ©N2, 
obtained by glueing two copies of M* along ~M* = S 1. Let A C X be any closed 
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subset and consider any map f "  A --+ N1 C NI U N2. Since X is weakly Cainian, there 
exists an extension f : X -+ N1 tA N2. Let qo : N1 U N2 --+ Nl be the obvious "flip". Then 

o f : X --+ Nl is the desired extension of the map f over all of X. [] 

Theorem 5.9. Every 2-dimensional Cannon-Stan'ko compactum is a weakly Cainian 
compactum. 

Proof. Suppose that X is a 2-dimensional Cannon-Stan'ko compactum. Then in partic- 
ular, XTM*, for the minimal grope M*. We must prove that X'rK(HI(N),  1), where 
N = N 1 U N 2 ,  N I = N 2 = M *  a n d ~ N l = 0 N 2 = S  1. 

Suppose now that we have a closed subset A C X and a map f : A --+ N. Then the 
pull-back of S 1 under f separates A. Let C' = f - i  (S 1). Since dim X = 2 there exists a 
subset C such that C tO C' separates X, C separates X \ A ,  and dim C = 1. Denote the 
components of X \ C  by X1 and X2, i.e., X1 D f - l ( N 1 )  and X 2 D f - l (N2) .  

First, extend f lc '  over C (we can do this since dimC = 1 and we are mapping 
to S1), i.e., extend fIc, :C '  --4 S I to f :  CUC t --+ S 1. Now solve the extension problem 
separately for each "half" space X1 and X2, using the hypothesis that X'rM*. (Note 
that every subcompactum of a Cannon-Stan'ko compactum is also a Cannon-Stan'ko 
compactum. Indeed, given such a subcompactum X0 c X use the extension for all X 
and take its restriction onto X0.) This gives extensions Fi:Xi  --4 Ni, i c {1,2}, such 
that for every i, Filcuc, = f :CUC'  --+ ~Ni. Thus 

F = F1 UF2 :X  = X1 UX2 --+ N = N1UN2 

is then the desired extension of the map f .  [] 

Corollary 5.10 (Characterization of weakly Cainian compacta). Weakly Cainian com- 
pacta are precisely the 2-dimensional Cannon-Stan'ko compacta. 

Theorem 5.11. Every 2-dimensional nonabelian compactum is Cainian. 

A 

P~IA l 

Ai 

Proof. Let X be an arbitrary 2-dimensional nonabelian compactum. Let H be an arbitrary 
perfect group, A C X any closed subset of X and f : A --+ K(H,  1) any continuous 
map. 

Represent the compactum X as the inverse limit of compact 2-dimensional polyhe- 
dral pairs (L~, A~), (X, A) lim{(Li, A~), ,_~+1 _,i+1 ~ -  (,/3i ' / J i  [A,+l)}i>/0' We may assume that 

Li, X C I °° = the Hilbert cube. Since K(H, 1) is an ANR, there exists an integer i0 >/ 1 
such that f factors through Ai, i.e., the diagram below is commutative: 

K(H, 1) 

It is easy to extend fi over the 1-skeleton LI 1) of Li, f i :  A~ U L~ L) -4 K(II,  1). 
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Pick any 2-simplex a E L~ 2). Then a = f i ( 0 a )  E H and a is a product of com- 

mutators, a = [al,/31] • [a2, 3 2 ] ' "  [ak,/3k], since H is perfect. Glue onto a (in I ~ )  k 
orientable 1-handles HI, 1-12,..., Ilk, one for each commutator [ai, 3i]. Next, each ai 
and ~i is itself a product of commutators, e.g., ai  [ 7 ~ ]  • r7i6iI i i = L 2 2 J ' ' "  ['ffl 51]' SO again w e  

can glue onto Hi the corresponding 1 orientable 1-handles G~ , . . . ,  G~, etc. This infinite 
process ends in glueing of k gropes M1, M2, . . . ,  Mk onto or. Denote by ~ the resulting 
new complex, ~ -- a#{Mi [ 1 <~ i ~ k}. Then fi l~ : 0~ -4 K(//, 1) can be extended 
to a continuous map )~l~ :y  --+ K(H, 1). 

As a result, doing this construction simplex by simplex for all 2-simplex cr E L I  2), we 
get an extension fi :Li -4 K(1-I, 1) over the modified complex: 

aE L ~ 2) \ Ai aE L ~ :) \ A, 

so that the following diagram commutes up to homotopy: 

A f > K ( / / ,  1) 

pTIA 1if, 

mi incl. mi U LI 1) incl. > Li 

Finally, since by hypothesis, XTK(H1 (M), 1) we can get up to homotopy, an extension 
of f over X via fi, F : X --+ K(H,  1). In summary, we have the following diagram 
(commutative up to homotopy): 

A Y > K(H, 1) 

/ / t  fl 

Ai in~. Ai U LI ') incl. > Li 

P~IA [] 

Theorem 5.12. There exists a countable collection { Si}ieN of 1-dimensional compacta 
Si in t34 such that every compactum Z C B4\ UieN Si is Cainian. 

Proof. By Theorem 4.8, there exists a 0-dimensional F~-set Z1 C B 4 such that every 
compactum Y C 134\Z1 is nonabelian. Moreover, there exists a (standard) 1-dimensional 
NSbeling net Z2 C B 4, i.e., N is an F~-set and every compactum Y c Ba\z2 is at most 
2-dimensional (see, e.g., [22]). Then the union Z = Z1 U Z2 is a countable collection of 
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1-dimensional compacta and obviously, every compactum Y C B 4 \ Z  is 2-dimensional 
and nonabelian. Hence by Theorem 5.11, Y is also Cainian. [] 
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