access

On some (q, h)-analogues of integral inequalities on discrete time scales

Mohamad Rafi Segi Rahmat*
Department of Applied Mathematics, The University of Nottingham Malaysia Campus, 43500 Semenyih, Selangor Darul Ehsan, Malaysia

ARTICLE INFO

Article history:

Received 15 December 2010
Accepted 12 June 2011

Keywords:

Integral inequalities
Discrete time scales
(q, h)-calculus
q-calculus
h-calculus

Abstract

Here we provide some Feng Qi type (q, h)-integral inequalities on discrete time scales, by using analytic and elementary methods in (q, h)-calculus. We show that these inequalities are reduced for $h=0$ to the Feng Qi type q-integral inequalities on quantum calculus, reduced for $q=1$ to the Feng Qi type h-integral inequalities on h-calculus and reduced for $q=h=1$ to the Feng Qi type integral inequalities on difference calculus.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

In [1], Qi studied some interesting integral inequalities and the following open problem was proposed: under what conditions does the inequality

$$
\int_{a}^{b}[f(x)]^{t} d x \geq\left[\int_{a}^{b} f(x) d x\right]^{t-1}
$$

holds for $t>1$. Many generalization, extension and applications of the above inequality were investigated in recent years, for example see [1-3] and the reference therein. Particularly, in [4-6], the authors have solved the above problem in q calculus (or quantum calculus) and in h-calculus, respectively.

In this paper, following closely theorems and methods from [5,6], we solve the above mentioned open problem in (q, h)calculus, which can be reduced to the quantum calculus (the case $h=0, q>1$), h-calculus (the case $q=1, h>0$) or to the difference calculus (the case $q=h=1$).

First, we mention several fundamental definitions and results from the calculus on time scales which appears in an excellent introductory text by Bohner and Peterson [7,8] and also the paper [9]. For (q, h)-calculus, we refer to [10].

2. Preliminaries

By a time scale \mathbb{T} we understand any nonempty, closed subset of reals with the ordering inherited from reals. Thus the reals \mathbb{R}, the integers \mathbb{Z}, the natural numbers \mathbb{N}, the non-negative integers \mathbb{N}_{0}, the h-numbers $h \mathbb{Z}=\{h k: k \in \mathbb{Z}\}$ with fixed $h>0$, and the q-numbers $q^{\mathbb{N}_{0}}=\left\{q^{k}: k \in \mathbb{N}_{0}\right\}$ with fixed $q>1$ are examples of time scales.

For any $t \in \mathbb{T}$, we define the forward (backward) jump operator by the relation $\sigma(t):=\inf \{s \in \mathbb{T}: s>t\}(\rho(t):=$ $\sup \{s \in \mathbb{T}: s<t\}$) and the forward (backward) graininess function $\mu(t):=\sigma(t)-t(v(t):=t-\rho(t))$, respectively.

[^0]The symbol $f^{\Delta}(t)\left(f^{\nabla}(t)\right)$ is called the Δ-derivative (∇-derivative) of $f: \mathbb{T} \rightarrow \mathbb{C}$ at $t \in \mathbb{T}^{\kappa}\left(t \in \mathbb{T}_{\kappa}\right)$ and defined by

$$
f^{\Delta}(t):=\lim _{s \rightarrow t} \frac{f(\sigma(t))-f(s)}{\sigma(t)-s}\left(f^{\nabla}(t):=\lim _{s \rightarrow t} \frac{f(t)-f(\rho(s))}{t-\rho(s)}\right),
$$

respectively. Considering discrete time scales (i.e., such that $\mu(t) \neq 0$ and $\nu(t) \neq 0$ for $t \in \mathbb{T}) f^{\Delta}(t)$ and $f^{\nabla}(t)$ exist for all $t \in \mathbb{T}$ and they are given by

$$
\begin{equation*}
f^{\Delta}(t)=\frac{f(\sigma(t))-f(t)}{\mu(t)} \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
f^{\nabla}(t)=\frac{f(t)-f(\rho(t))}{v(t)} \tag{2}
\end{equation*}
$$

The Δ-integral of f and the ∇-integral of g over the time scale interval

$$
[a, b]_{\mathbb{T}}:=\{t \in \mathbb{T}: a \leq t \leq b\} \cup \mathbb{T}
$$

are defined by $\int_{a}^{b} f(t) \Delta t:=F(b)-F(a)$ and $\int_{a}^{b} g(t) \nabla t:=G(b)-G(a)$ where $F^{\Delta}=f$ on \mathbb{T}^{κ} and $G^{\nabla}=g$ on \mathbb{T}_{κ}, respectively.
It is known that considering discrete time scales these integrals are exist and can be calculated (provided $a<b$) via the formulae

$$
\begin{equation*}
\int_{a}^{b} f(t) \Delta t=\sum_{t \in[a, b)} \mu(t) f(t) \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{a}^{b} g(t) \nabla t=\sum_{t \in(a, b]} v(t) g(t) \tag{4}
\end{equation*}
$$

The most significant discrete time scales are those originating from arithmetic and geometric sequence of reals, namely

$$
\mathbb{T}_{h}^{t_{0}}:=\left\{t_{0}+h k: t \in \mathbb{Z}\right\}, \quad h>0 \quad \text { and } \quad \mathbb{T}_{q}^{t_{0}}:=\left\{t_{0} q^{k}: t \in \mathbb{Z}\right\} \cup\{0\}, \quad q>1
$$

respectively, where $t_{0} \in \mathbb{R}$. These sets form the basis for the study of h-calculus and q-calculus in the literature. In [10], the authors have introduced the two parameter discrete time scale $\mathbb{T}_{(q, h)}^{t_{0}}$ generalizing time scales $\mathbb{T}_{h}^{t_{0}}$ and $\mathbb{T}_{q}^{t_{0}}$. Both time scales are characterized by linearity of the forward (as well as backward) jump operator, because $\sigma(t)=t+h$ or $\sigma(t)=q t$.

For $q>0, q \neq 1$ we set

$$
[k]_{q}=\frac{q^{k}-1}{q-1}, \quad k \in \mathbb{N}_{0}
$$

For a given $t_{0} \in \mathbb{R}^{+}$, we define the time scale

$$
\mathbb{T}_{(q, h)}^{t_{0}}:=\left\{t_{0} q^{k}+[k]_{q} h: k \in \mathbb{Z}\right\} \cup\left\{\frac{h}{1-q}\right\}
$$

for $q \geq 1, h \geq 0$ and $q+h>1$. It follows that $\sigma(t)=q t+h, \rho(t)=q^{-1}(t-h)$. In general, we have

$$
\sigma^{k}(t)=q^{k} t+[k]_{q} h, \quad \rho^{k}(t)=q^{-k}\left(t-[k]_{q} h\right)=q^{-k} t+[-k]_{q} h, \quad k \in \mathbb{Z}^{+}
$$

The introduction of (q, h)-derivative of $f: \mathbb{T}_{(q, h)}^{t_{0}} \rightarrow \mathbb{C}$ follows naturally from formulae (1) and (2): let $t \in \mathbb{T}_{(q, h)}^{t_{0}}$. The $\Delta_{(q, h)}$-derivative of f at t is given by

$$
\begin{equation*}
f^{\Delta_{q, h}}(t)=\frac{f(q t+h)-f(t)}{(q-1) t+h} \tag{5}
\end{equation*}
$$

and the $\nabla_{(q, h)}$-derivative of f at t is given by

$$
\begin{equation*}
f^{\nabla_{q, h}}(t)=\frac{f(t)-f\left(q^{-1}(t-h)\right)}{q^{-1}((q-1) t+h)} . \tag{6}
\end{equation*}
$$

Let $t \in \mathbb{T}_{(q, h)}^{t_{0}}$ and $t>t_{0}$, i.e. there exists $n \in \mathbb{Z}^{+}$such that $t=t_{0} q^{n}+[n]_{q} h$. Then we define the $\Delta_{(q, h)}$-integral by

$$
\begin{equation*}
\int_{t_{0}}^{t} f(s) \Delta s:=\left((q-1) t_{0}+h\right) \sum_{k=0}^{n-1} q^{k} f\left(t_{0} q^{k}+[k]_{q} h\right) \tag{7}
\end{equation*}
$$

For $\frac{h}{1-q}<a<t$, the $\nabla_{(q, h)}$-integral over the interval $[a, t]$ is defined by

$$
\begin{equation*}
\int_{a}^{t} f(s) \nabla s:=\left(\left(1-q^{-1}\right) t+q^{-1} h\right) \sum_{k=0}^{n-1} q^{-k} f\left(q^{-k} t+[-k]_{q} h\right) \tag{8}
\end{equation*}
$$

For any function $f: \mathbb{T}_{(q, h)}^{t_{0}} \rightarrow \mathbb{C}$, we have

$$
\left(\int_{t_{0}}^{t} f(s) \Delta s\right)^{\Delta_{(q, h)}}=\left(\int_{t_{0}}^{t} f(s) \nabla s\right)^{\nabla_{(q, h)}}=f(t)
$$

3. Delta (q, h)-integral inequalities

In this section, we give some Feng Qi type delta (q, h)-integral inequalities on discrete time scale $\mathbb{T}_{(q, h)}^{t_{0}}$. We begin with the following useful lemma.

Lemma 3.1. Let $p \geq 1$ be a real number, G be a non-negative increasing function on $\mathbb{T}_{(q, h)}^{t_{0}}$ and $t \in \mathbb{T}_{(q, h)}^{t_{0}}$. Then we have

$$
\begin{equation*}
p G^{p-1}(t) G^{\Delta_{(q, h)}}(t) \leq\left[G^{p}(t)\right]^{\Delta_{(q, h)}} \leq p G^{p-1}(q t+h) G^{\Delta_{(q, h)}}(t) \tag{9}
\end{equation*}
$$

Proof. By (5), we have

$$
\begin{equation*}
\left[G^{p}(t)\right]^{\Delta_{q, h}}=\frac{G^{p}(q t+h)-G^{p}(t)}{q^{\prime} t+h}=\frac{p}{q^{\prime} t+h} \int_{G(t)}^{G(q t+h)} u^{p-1} d u \tag{10}
\end{equation*}
$$

where $q^{\prime}=q-1$. Since G is a non-negative increasing function, we have

$$
G^{p-1}(t)[G(q t+h)-G(t)] \leq \int_{G(t)}^{G(q t+h)} u^{p-1} d u \leq G^{p-1}(q t+h)[G(q t+h)-G(t)] .
$$

Hence, according to relation (10), we obtain

$$
p G^{p-1}(t) G^{\Delta_{(q, h)}}(t) \leq\left[G^{p}(t)\right]^{\Delta_{(q, h)}} \leq p G^{p-1}(q t+h) G^{\Delta_{(q, h)}}(t)
$$

Now, we prove the Feng Qi type delta (q, h)-integral inequalities on discrete time scales.
Theorem 3.2. If $f:[a, b]_{\mathbb{T}_{(q, h)}^{t_{0}}} \rightarrow \mathbb{C}$ is a non-negative increasing function and satisfies

$$
f^{\alpha-2}(t) f^{\Delta_{(q, h)}}(t) \geq(\alpha-2) q\left(q^{2} t+[2]_{q} h-a\right)^{\alpha-3} f^{\alpha-2}\left(q^{2} t+[2]_{q} h\right)
$$

for $t \in[a, b]_{\mathbb{T}_{(q, h)}^{t_{0}}}$ and $\alpha \geq 3$, then

$$
\int_{a}^{b} f^{\alpha}(u) \Delta u \geq\left(\int_{a}^{b} f(u) \Delta u\right)^{\alpha-1}
$$

Proof. For $t \in[a, b]_{\mathbb{T}_{(q, h)}}$, let $g(t)=\int_{a}^{t} f(u) \Delta u$ and

$$
F(t)=\int_{a}^{t} f^{\alpha}(u) \Delta u-\left(\int_{a}^{b} f(u) \Delta u\right)^{\alpha-1}
$$

We have

$$
F^{\Delta_{(q, h)}}(t)=f^{\alpha}(t)-\left[g^{\alpha-1}(t)\right]^{\Delta_{(q, h)}} .
$$

Since f and g increase in $[a, b]_{\mathbb{T}_{(q, h)}^{t_{0}}}$, by virtue of Lemma 3.1, it follows that

$$
\begin{aligned}
F^{\Delta_{(q, h)}}(t) & \geq f^{\alpha}(t)-(\alpha-1) g^{\alpha-2}(q t+h) g^{\Delta_{(q, h)}}(t) \\
& =f^{\alpha}(t)-(\alpha-1) g^{\alpha-2}(q t+h) f(t)=f(t) G(t)
\end{aligned}
$$

where $G(t)=f^{\alpha-1}(t)-(\alpha-1) g^{\alpha-2}(q t+h)$.
On the other hand, we have

$$
G^{\Delta_{(q, h)}}(t)=\left[f^{\alpha-1}(t)\right]^{\Delta_{(q, h)}}-(\alpha-1)\left[g^{\alpha-2}(q t+h)\right]^{\Delta_{(q, h)}} .
$$

Applying Lemma 3.1 again, we get

$$
\begin{aligned}
G^{\Delta_{(q, h)}}(t) & \geq(\alpha-1) f^{\alpha-2}(t) f^{\Delta_{(q, h)}}(t)-(\alpha-1)(\alpha-2) g^{\alpha-3}\left(q^{2} t+[2]_{q} h\right) g^{\Delta_{(q, h)}}(q t+h) \\
& =(\alpha-1) f^{\alpha-2}(t) f^{\Delta_{(q, h)}}(t)-(\alpha-1)(\alpha-2) g^{\alpha-3}\left(q^{2} t+[2]_{q} h\right) q f(q t+h)
\end{aligned}
$$

Since f is a non-negative increasing function, we have

$$
g\left(q^{2} t+[2]_{q} h\right)=\int_{a}^{q^{2} t+[2]_{q} h} f(u) \Delta u \leq\left(q^{2} t+[2]_{q} h-a\right) f\left(q^{2} t+[2]_{q} h\right)
$$

Hence,

$$
\begin{aligned}
G^{\Delta_{(q, h)}}(t) & \geq(\alpha-1) f^{\alpha-2}(t) f^{\Delta_{(q, h)}}(t)-(\alpha-1)(\alpha-2) q\left(q^{2} t+[2]_{q} h-a\right)^{\alpha-3} f^{\alpha-3}\left(q^{2} t+[2]_{q} h\right) f(q t+h) \\
& \geq(\alpha-1) f^{\alpha-2}(t) f^{\Delta_{(q, h)}}(t)-(\alpha-1)(\alpha-2) q\left(q^{2} t+[2]_{q} h-a\right)^{\alpha-3} f^{\alpha-2}\left(q^{2} t+[2]_{q} h\right) \\
& =(\alpha-1)\left\{f^{\alpha-2}(t) f^{\Delta_{(q, h)}}(t)-(\alpha-2) q\left(q^{2} t+[2]_{q} h-a\right)^{\alpha-3} f^{\alpha-2}\left(q^{2} t+[2]_{q} h\right)\right\} \geq 0 .
\end{aligned}
$$

We conclude that G is an increasing function. Since $G(t) \geq G(a) \geq 0$, it follows that $F^{\Delta_{(q, h)}}(t)=f(t) G(t) \geq 0$. Hence, F is increasing and since $F(t) \geq F(a)=0$ this concludes the proof of Theorem 3.2.

Theorem 3.3. Let $f:[a, b]_{\mathbb{T}_{(q, h)}^{t_{0}}} \rightarrow \mathbb{C}$ is a non-negative increasing function satisfying

$$
f^{\beta}(t) f^{\Delta_{(q, h)}}(t) \geq \frac{\beta q\left(q^{2} t+[2]_{q} h-a\right)^{\beta-1}}{(b-a)^{\beta-1}} f^{\beta}\left(q^{2} t+[2]_{q} h\right)
$$

for $t \in[a, b]_{\mathbb{T}_{(q, h)}^{t_{0}}}$ and $\beta \geq 3$. Then

$$
\int_{a}^{b} f^{\beta+2}(u) \Delta u \geq \frac{1}{(b-a)^{\beta-1}}\left(\int_{a}^{b} f(u) \Delta u\right)^{\beta+1}
$$

Proof. For each $t \in[a, b]_{\mathbb{T}_{(q, h)}^{t_{0}}}$, let $g(t)=\int_{a}^{t} f(u) \Delta u$ and

$$
F(t)=\int_{a}^{t} f^{\beta+2}(u) \Delta u-\frac{1}{(b-a)^{\beta-1}}\left(\int_{a}^{t} f(u) \Delta u\right)^{\beta+1}
$$

Then, we have

$$
F^{\Delta_{(q, h)}}(t)=f^{\beta+2}(t)-\frac{1}{(b-a)^{\beta-1}}\left[g^{\beta+1}(t)\right]^{\Delta_{(q, h)}}
$$

Since f and g increase in $[a, b]_{\mathbb{T}_{(q, h)}^{t_{0}}}$, by virtue of Lemma 3.1, we have

$$
\begin{aligned}
F^{\Delta_{(q, h)}}(t) & \geq f^{\beta+2}(t)-\frac{(\beta+1)}{(b-a)^{\beta-1}} g^{\beta}(q t+h) g^{\Delta_{(q, h)}}(t) \\
& =f^{\beta+2}(t)-\frac{(\beta+1)}{(b-a)^{\beta-1}} g^{\beta}(q t+h) f(t)=f(t) H(t)
\end{aligned}
$$

where $H(t)=f^{\beta+1}(t)-\frac{(\beta+1)}{(b-a)^{\beta-1}} g^{\beta}(q t+h)$.
On the other hand, we have

$$
H^{\Delta_{(q, h)}}(t)=\left[f^{\beta+1}(t)\right]^{\Delta_{(q, h)}}-\frac{(\beta+1)}{(b-a)^{\beta-1}}\left[g^{\beta}(q t+h)\right]^{\Delta_{(q, h)}}
$$

Applying Lemma 3.1 again, we get

$$
\begin{aligned}
H^{\Delta_{(q, h)}}(t) & \geq(\beta+1) f^{\beta}(t) f^{\Delta_{(q, h)}}(t)-\frac{(\beta+1) \beta}{(b-a)^{\beta-1}} g^{\beta-1}\left(q^{2} t+[2]_{q} h\right) g^{\Delta_{(q, h)}}(q t+h) \\
& \geq(\beta+1) f^{\beta}(t) f^{\Delta_{(q, h)}}(t)-\frac{(\beta+1) \beta}{(b-a)^{\beta-1}} g^{\beta-1}\left(q^{2} t+[2]_{q} h\right) q f(q t+h)
\end{aligned}
$$

Since f is a non-negative increasing function, we have

$$
g\left(q^{2} t+[2]_{q} h\right)=\int_{a}^{q^{2} t+[2]_{q} h} f(u) \Delta u \leq\left(q^{2} t+[2]_{q} h-a\right) f\left(q^{2} t+[2]_{q} h\right)
$$

Hence,

$$
\begin{aligned}
H^{\Delta_{(q, h)}}(t) & \geq(\beta+1) f^{\beta}(t) f^{\Delta_{(q, h)}}(t)-\frac{\beta(\beta+1) q\left(q^{2} t+[2]_{q} h-a\right)^{\beta-1}}{(b-a)^{\beta-1}} f^{\beta-1}\left(q^{2} t+[2]_{q} h\right) f(q t+h) \\
& \geq(\beta+1) f^{\beta}(t) f^{\Delta_{(q, h)}}(t)-\frac{\beta(\beta+1) q\left(q^{2} t+[2]_{q} h-a\right)^{\beta-1}}{(b-a)^{\beta-1}} f^{\beta}\left(q^{2} t+[2]_{q} h\right) \\
& \geq(\beta+1)\left\{f^{\beta}(t) f^{\Delta_{(q, h)}}(t)-\frac{\beta q\left(q^{2} t+[2]_{q} h-a\right)^{\beta-1}}{(b-a)^{\beta-1}} f^{\beta}\left(q^{2} t+[2]_{q} h\right)\right\} \geq 0 .
\end{aligned}
$$

We conclude that H is an increasing function. Since $H(t) \geq H(a) \geq 0$, it follows that $F^{\Delta_{(q, h)}}(t)=f(t) H(t) \geq 0$. Hence, F is increasing and since $F(t) \geq F(a)=0$ this concludes the proof of Theorem 3.3.

The following examples show the Feng Qi type h-integral inequalities and Feng Qi type q-integral inequalities in the sense of forward sum inequalities.

Example 1. Let $q=1$ in Theorem 3.2. Then, clearly we have

$$
f^{\alpha-2}(t) f^{\Delta_{h}}(t) \geq(\alpha-2)(t+2 h-a)^{\alpha-3} f^{\alpha-2}(t+2 h)
$$

for $t \in[a, b]_{\mathbb{T}_{h}}$ and $\alpha \geq 3$ implies

$$
\int_{a}^{b} f^{\alpha}(u) \Delta_{h} u \geq\left(\int_{a}^{b} f(u) \Delta_{h} u\right)^{\alpha-1}
$$

Let $q=1$ in Theorem 3.3. Then, we have

$$
f^{\beta}(t) f^{\Delta_{h}}(t) \geq \frac{\beta(t+2 h-a)^{\beta-1}}{(b-a)^{\beta-1}} f^{\beta}(t+2 h)
$$

for $t \in[a, b]_{\mathbb{T}_{h}}$ and $\beta \geq 3$ implies

$$
\int_{a}^{b} f^{\beta+2}(u) \Delta_{q} u \geq \frac{1}{(b-a)^{\beta-1}}\left(\int_{a}^{b} f(u) \Delta_{q} u\right)^{\beta+1}
$$

The above results are found in [6].
Example 2. By letting $h=0$ in Theorem 3.2, we found that

$$
f^{\alpha-2}(t) f^{\Delta_{q}}(t) \geq(\alpha-2) q\left(q^{2} t-a\right)^{\alpha-3} f^{\alpha-2}\left(q^{2} t\right)
$$

for $t \in[a, b]_{\mathbb{T}_{q}}$ and $\alpha \geq 3$, then

$$
\int_{a}^{b} f^{\alpha}(u) \Delta_{q} u \geq\left(\int_{a}^{b} f(u) \Delta_{q} u\right)^{\alpha-1}
$$

By letting $h=0$ in Theorem 3.3, we have

$$
f^{\beta}(t) f^{\Delta_{q}}(t) \geq \frac{\beta q\left(q^{2} t-a\right)^{\beta-1}}{(b-a)^{\beta-1}} f^{\beta}\left(q^{2} t\right)
$$

for $t \in[a, b]_{\mathbb{T}_{q}}$ and $\beta \geq 3$ implies

$$
\int_{a}^{b} f^{\beta+2}(u) \Delta_{q} u \geq \frac{1}{(b-a)^{\beta-1}}\left(\int_{a}^{b} f(u) \Delta_{q} u\right)^{\beta+1}
$$

4. Nabla (q, h)-integral inequalities

In this section, we give the nabla (q, h)-type integral inequalities on $\mathbb{T}_{(q, h)}^{t_{0}}$. As in the case of delta (q, h)-calculus, we have the following useful lemma.

Lemma 4.1. Let $p \geq 1$ be a real number, G be a non-negative increasing function on $\mathbb{T}_{(q, h)}^{t_{0}}$ and $t \in \mathbb{T}_{(q, h)}^{t_{0}}$. Then we have

$$
\begin{equation*}
p G^{p-1}\left(q^{-1}(t-h)\right) G^{\nabla_{(q, h)}}(t) \leq\left[G^{p}(t)\right]^{\nabla_{(q, h)}} \leq p G^{p-1}(t) G^{\nabla_{(q, h)}}(t) \tag{11}
\end{equation*}
$$

Proof. By (6), we have

$$
\begin{equation*}
\left[G^{p}(t)\right]^{\nabla_{q, h}}=\frac{G^{p}(t)-G^{p}\left(q^{-1}(t-h)\right)}{q^{-1}\left(q^{\prime} t+h\right)}=\frac{p}{q^{-1}\left(q^{\prime} t+h\right)} \int_{G\left(q^{-1}(t-h)\right)}^{G(t)} u^{p-1} d u \tag{12}
\end{equation*}
$$

where $q^{\prime}=q-1$. Since G is a non-negative increasing function, we have

$$
\begin{aligned}
G^{p-1}\left(q^{-1}(t-h)\right)\left[G(t)-G\left(q^{-1}(t-h)\right)\right] & \leq \int_{G\left(q^{-1}(t-h)\right)}^{G(t)} u^{p-1} d u \\
& \leq G^{p-1}(t)\left[G(t)-G\left(q^{-1}(t-h)\right)\right]
\end{aligned}
$$

Hence, according to relation (12), we obtain the desired result:

$$
p G^{p-1}\left(q^{-1}(t-h)\right) G^{\nabla_{(q, h)}}(t) \leq\left[G^{p}(t)\right]^{\nabla_{(q, h)}} \leq p G^{p-1}(t) G^{\nabla_{(q, h)}}(t)
$$

Theorem 4.2. If $f:[a, b]_{\mathbb{T}_{(q, h)}^{t_{0}}} \rightarrow \mathbb{C}$ is a non-negative increasing function and satisfies

$$
f^{\nabla_{(q, h)}}(t) \geq(\alpha-2)(t-a)^{\alpha-3}
$$

for $t \in[a, b]_{\mathbb{T}_{(q, h)} t_{0}}$ and $\alpha \geq 3$, then

$$
\int_{a}^{b} f^{\alpha}(u) \nabla u \geq\left(\int_{a}^{b} f\left(q^{-1}(u-h)\right) \nabla u\right)^{\alpha-1}
$$

Proof. For $t \in[a, b]_{\mathbb{T}_{(q, h)}^{t_{0}}}$, let $g(t)=\int_{a}^{t} f\left(q^{-1}(u-h)\right) \nabla u$ and

$$
F(t)=\int_{a}^{t} f^{\alpha}(q u+h) \nabla u-\left(\int_{a}^{b} f\left(q^{-1}(u-h)\right) \nabla u\right)^{\alpha-1}
$$

We have

$$
F^{\nabla_{(q, h)}}(t)=f^{\alpha}(t)-\left[g^{\alpha-1}\right]^{\nabla_{(q, h)}}(t)
$$

Since f and g increase in $[a, b]_{\mathbb{T}_{(q, h)}^{t_{0}}}$, by virtue of Lemma 4.1, it follows that

$$
\begin{aligned}
F^{\nabla_{(q, h)}}(t) & \geq f^{\alpha}(t)-(\alpha-1) g^{\alpha-2}(t) g^{\nabla_{(q, h)}}(t) \\
& =f^{\alpha}(t)-(\alpha-1) g^{\alpha-2}(t) f\left(q^{-1}(t-h)\right) \\
& \geq f^{\alpha}(t)-(\alpha-1) g^{\alpha-2}(t) f(t)=f(t) G(t)
\end{aligned}
$$

where $G(t)=f^{\alpha-1}(t)-(\alpha-1) g^{\alpha-2}(t)$.
On the other hand, we have

$$
G^{\nabla_{(q, h)}}(t)=\left[f^{\alpha-1}\right]_{(q, h)}^{\nabla_{(q)}}(t)-(\alpha-1)\left[g^{\alpha-2}\right]_{(q, h)}^{\nabla_{(q)}}(t)
$$

Applying Lemma 4.1 again, we get

$$
\begin{aligned}
G^{\nabla_{(q, h)}}(t) & \geq(\alpha-1) f^{\alpha-2}\left(q^{-1}(t-h)\right) f^{\nabla_{(q, h)}}(t)-(\alpha-1)(\alpha-2) g^{\alpha-3}(t) g^{\nabla_{(q, h)}}(t) \\
& =(\alpha-1) f^{\alpha-2}\left(q^{-1}(t-h)\right) f^{\nabla_{(q, h)}}(t)-(\alpha-1)(\alpha-2) g^{\alpha-3}(t) f\left(q^{-1}(t-h)\right) \\
& =(\alpha-1) f\left(q^{-1}(t-h)\right)\left\{f^{\alpha-3}\left(q^{-1}(t-h)\right) f^{\nabla_{(q, h)}}(t)-(\alpha-2) g^{\alpha-3}(t)\right\}
\end{aligned}
$$

Since f is a non-negative increasing function, we have

$$
g(t)=\int_{a}^{t} f\left(q^{-1}(u-h)\right) \nabla u \leq(t-a) f\left(q^{-1}(t-h)\right)
$$

Hence,

$$
G^{\nabla_{(q, h)}}(t)=(\alpha-1) f^{\alpha-2}\left(q^{-1}(t-h)\right)\left\{f^{\nabla_{(q, h)}}(t)-(\alpha-2)(t-a)^{\alpha-3}\right\}
$$

We conclude that G is an increasing function. Since $G(t) \geq G(a) \geq 0$, it follows that $F^{\nabla_{(q, h)}}(t)=f(t) G(t) \geq 0$. Hence, F is increasing and since $F(t) \geq F(a)=0$ this concludes the proof of Theorem 4.2.

Theorem 4.3. Let $f:[a, b]_{\mathbb{T}_{(q, h)}^{t_{0}}} \rightarrow \mathbb{C}$ is a non-negative increasing function satisfying

$$
f^{\nabla_{(q, h)}}(t) \geq \beta\left(\frac{t-a}{b-a}\right)^{\beta-1}
$$

for $t \in[a, b]_{\mathbb{T}_{(0, h)}}$ and $\beta \geq 3$. Then

$$
\int_{a}^{b} f^{\beta+2}(u) \nabla u \geq \frac{1}{(b-a)^{\beta-1}}\left(\int_{a}^{b} f\left(q^{-1}(u-h)\right) \nabla u\right)^{\beta+1} .
$$

Proof. For each $t \in[a, b]_{\mathbb{T}_{(q, h)}^{t_{0}}}$, let $g(t)=\int_{a}^{t} f\left(q^{-1}(u-h)\right) \nabla u$ and

$$
F(t)=\int_{a}^{t} f^{\beta+2}(u) \nabla u-\frac{1}{(b-a)^{\beta-1}}\left(\int_{a}^{t} f\left(q^{-1}(u-h)\right) \nabla u\right)^{\beta+1} .
$$

Then, we have

$$
F^{\nabla_{(q, h)}}(t)=f^{\beta+2}(t)-\frac{1}{(b-a)^{\beta-1}}\left[g^{\beta+1}(t)\right]^{\nabla_{(q, h)}} .
$$

Since f and g increase in $[a, b]_{\mathbb{T}_{(q, h)}^{t_{0}}}$, by virtue of Lemma 4.1, we have

$$
\begin{aligned}
F^{\nabla(q, h)}(t) & \geq f^{\beta+2}(t)-\frac{(\beta+1)}{(b-a)^{\beta-1}} g^{\beta}(t) g^{\nabla(q, h)}(t) \\
& =f^{\beta+2}(t)-\frac{(\beta+1)}{(b-a)^{\beta-1}} g^{\beta}(t) f\left(q^{-1}(t-h)\right) \\
& \geq f^{\beta+2}(t)-\frac{(\beta+1)}{(b-a)^{\beta-1}} g^{\beta}(t) f(t)=f(t) H(t)
\end{aligned}
$$

where $H(t)=f^{\beta+1}(t)-\frac{(\beta+1)}{(b-a)^{\beta-1}} g^{\beta}(t)$.
On the other hand, we have

$$
H^{\nabla_{(q, h)}}(t)=\left[f^{\beta+1}(t)\right]^{\nabla_{(q, h)}}-\frac{(\beta+1)}{(b-a)^{\beta-1}}\left[g^{\beta}\right]^{\nabla_{(q, h)}}(t) .
$$

Applying Lemma 4.1 again, we get

$$
\begin{aligned}
H^{\nabla_{(q, h)}}(t) & \geq(\beta+1) f^{\beta}\left(q^{-1}(t-h)\right) f^{\nabla_{(q, h)}}(t)-\frac{(\beta+1) \beta}{(b-a)^{\beta-1}} g^{\beta-1}(t) g^{\nabla_{(q, h)}}(t) \\
& \geq(\beta+1) f\left(q^{-1}(t-h)\right)\left\{f^{\beta-1}\left(q^{-1}(t-h)\right) f^{\nabla_{(q, h)}(t)}-\frac{\beta}{(b-a)^{\beta-1}} g^{\beta-1}(t)\right\} .
\end{aligned}
$$

Since f is a non-negative increasing function, we have

$$
g(t)=\int_{a}^{t} f\left(q^{-1}(u-h)\right) \nabla u \leq(t-a) f\left(q^{-1}(t-h)\right) .
$$

Hence,

$$
\begin{aligned}
H^{\nabla_{(q, h)}}(t) & \geq(\beta+1) f\left(q^{-1}(t-h)\right)\left\{f^{\beta-1}\left(q^{-1}(t-h)\right) f_{(q, h)}(t)-\frac{\beta(t-a)^{\beta-1}}{(b-a)^{\beta-1}} f^{\beta-1}\left(q^{-1}(t-h)\right)\right\} \\
& =(\beta+1) f^{\beta}\left(q^{-1}(t-h)\right)\left\{f^{\left.\nabla_{(q, h)}(t)-\frac{\beta(t-a)^{\beta-1}}{(b-a)^{\beta-1}}\right\} .} .\right.
\end{aligned}
$$

We conclude that H is an increasing function. Since $H(t) \geq H(a) \geq 0$, it follows that $F^{\nabla}(q, h)(t)=f(t) H(t) \geq 0$. Hence, F is increasing and since $F(t) \geq F(a)=0$ this concludes the proof of Theorem 4.3.

The following examples show the Feng Qi type h-integral inequalities and q-integral inequalities in the sense of backward sum inequalities.

Example 3. Let $q=1$ in Theorem 4.2. Then, we have

$$
f^{\nabla_{h}}(t) \geq(\alpha-2)(t-a)^{\alpha-3}
$$

for $t \in[a, b]_{\mathbb{T}_{h}^{t_{0}}}$ and $\alpha \geq 3$, implies that

$$
\int_{a}^{b} f^{\alpha}(u) \nabla_{h} u \geq\left(\int_{a}^{b} f(u-h) \nabla_{h} u\right)^{\alpha-1}
$$

Let $q=1$ in Theorem 4.3. Then, we have

$$
f^{\nabla_{h}}(t) \geq \beta\left(\frac{t-a}{b-a}\right)^{\beta-1}
$$

for $t \in[a, b]_{\mathbb{T}_{h}}$ and $\beta \geq 3$, implies that

$$
\int_{a}^{b} f^{\beta+2}(u) \nabla_{h} u \geq \frac{1}{(b-a)^{\beta-1}}\left(\int_{a}^{b} f(u-h) \nabla_{h} u\right)^{\beta+1}
$$

Example 4. Let $h=0$ in Theorem 4.2. Then, we have

$$
f^{\nabla_{q}}(t) \geq(\alpha-2)(t-a)^{\alpha-3}
$$

for $t \in[a, b]_{\mathbb{T}_{q}}$ and $\alpha \geq 3$, implies that

$$
\int_{a}^{b} f^{\alpha}(u) \nabla_{q} u \geq\left(\int_{a}^{b} f\left(q^{-1}(u-h)\right) \nabla_{q} u\right)^{\alpha-1}
$$

Let $h=0$ in Theorem 4.3. Then

$$
f^{\nabla_{q}}(t) \geq \beta\left(\frac{t-a}{b-a}\right)^{\beta-1}
$$

for $t \in[a, b]_{\mathbb{T}_{q}^{t_{0}}}$ and $\beta \geq 3$, implies that

$$
\int_{a}^{b} f^{\beta+2}(u) \nabla_{q} u \geq \frac{1}{(b-a)^{\beta-1}}\left(\int_{a}^{b} f\left(q^{-1} u\right) \nabla_{q} u\right)^{\beta+1}
$$

Acknowledgement

The author is grateful to Professor J. Čermák for sending his paper.

References

[1] F. Qi, Several integral inequalities, J. Inequal. Pure Appl. Math. 1 (2) (2000) Art. 19. [Online] Available online at http://jipam.vu.edu.au/article.php? sid=113.
[2] F. Qi, A.J. Li, W.Z. Zhao, D.W. Niu, J. Cao, Extensions of several integral inequalities, J. Inequal. Pure Appl. Math. 7 (3) (2006) Art. 107. [Online] Available online at http://jipam.vu.edu.au/article.php?sid=706.
[3] A. Witkowski, F. Qi, On integral inequality, J. Inequal. Pure Appl. Math. 6 (2) (2005) Art. 36. [Online] Available online at http://jipam.vu.edu.au/article. php?sid=505.
[4] K. Brahim, N. Bettaibi, M. Sellami, On some Feng Qi type q-integral inequalities, J. Inequal. Pure Appl. Math. 9 (2) (2008) Art. 43. [Online] Available online at http://jipam.vu.edu.au/article.php?sid=975.
[5] Y. Miao, F. Qi, Several q-integral inequalities, J. Math. Inequal. 3 (1) (2009) 115-121.
[6] V. Krasniqi, A. Sh. Shabani, On some Feng Qi type h-integral inequalities, Int. J. Open Probl. Comput. Sci. Math. 2 (4) (2009) 516-521.
[7] M. Bohner, A. Peterson, Dynamic Equations on Time Scales: An Introduction With Applications, Birkhäuser, Boston, Mass, USA, 2001.
[8] M. Bohner, A. Peterson (Eds.), Advances in Dynamic Equations on Time Scales, Birkhäuser, Boston, Mass, USA, 2003.
[9] R.P. Agarwal, M. Bohner, Basic calculus on time scales and some of its applications, Results Math. 35 (1-2) (1999) 3-22.
[10] J. Čermák, L. Nechvátal, On (q, h)-analogue of fractional calculus, J. Nonlinear Math. Phys. 17 (1) (2010) 1-18.

[^0]: * Corresponding address: School of Applied Mathematics, The University of Nottingham Malaysia Campus, Jalan Broga, 43500 Selangor Darul Ehsan, Malaysia.

 E-mail address: Mohd.Rafi@nottingham.edu.my.

