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1. Introduction

In [1], Qi studied some interesting integral inequalities and the following open problem was proposed: under what
conditions does the inequality

b b t=1
f FGoTdx = [ / f(X)dX}

holds for t > 1. Many generalization, extension and applications of the above inequality were investigated in recent years,
for example see [1-3] and the reference therein. Particularly, in [4-6], the authors have solved the above problem in g-
calculus (or quantum calculus) and in h-calculus, respectively.

In this paper, following closely theorems and methods from [5,6], we solve the above mentioned open problem in (g, h)-
calculus, which can be reduced to the quantum calculus (the case h = 0, q > 1), h-calculus (the case g = 1, h > 0) or to the
difference calculus (the case ¢ = h = 1).

First, we mention several fundamental definitions and results from the calculus on time scales which appears in an
excellent introductory text by Bohner and Peterson [7,8] and also the paper [9]. For (g, h)-calculus, we refer to [10].

2. Preliminaries

By a time scale T we understand any nonempty, closed subset of reals with the ordering inherited from reals. Thus the
reals R, the integers Z, the natural numbers N, the non-negative integers Ny, the h-numbers hZ = {hk : k € Z} with fixed
h > 0, and the g-numbers "0 = {q* : k € Ny} with fixed g > 1 are examples of time scales.

For any t € T, we define the forward (backward) jump operator by the relation o (t) := inf{s € T : s > t}(p(t) =
sup{s € T : s < t}) and the forward (backward) graininess function w(t) := o (t) — t(v(t) ;= t — p(t)), respectively.
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The symbol f2(t)(fV (t)) is called the A-derivative (V-derivative) of f : T — Catt € T* (t € T,) and defined by
FA@) = limf(d(f)) = f(s) (fv(t) — limf(t) —f(p(S))) ’
s—t O(t) —S st t— ,0(5)

respectively. Considering discrete time scales (i.e., such that p(t) % 0and v(t) % Ofort e T)f2(t) and fV (t) exist for all
t € T and they are given by

_ fle®) —f(©)

Ay SO =T 1
f2@®) ) (n
and
v, FO —f(p®)
fre= o (2)

The A-integral of f and the V-integral of g over the time scale interval
[a,blr ={teT:a<t<bhlUT
are defined by fabf(t)At := F(b) —F(a) and jab g(t)Vt :== G(b) — G(a) where F2 = f on T and GV = g on T\, respectively.

It is known that considering discrete time scales these integrals are exist and can be calculated (provided a < b) via the
formulae

b
[ s0at= ¥ wwro 3)
a tela,b)
and
b
f gOVE= Y v(Dg(). (4)
a te(a,b]

The most significant discrete time scales are those originating from arithmetic and geometric sequence of reals, namely
TP ={to+hk:tez), h>0 and TP :=({tog":tez}U{0}, q>1,
respectively, where ty, € R. These sets form the basis for the study of h-calculus and g-calculus in the literature. In [10], the

authors have introduced the two parameter discrete time scale Ti?z n) generalizing time scales 11‘;10 and Tf{’. Both time scales

are characterized by linearity of the forward (as well as backward) jump operator, because o (t) =t + hor o (t) = qt.
Forq > 0, q # 1 we set
k
—1
[klg = qil, k € Np.

Fora given t; € R™, we define the time scale
TO i ftog + [Kloh: k € Z} U { —"
(q,h) ~—{0q +[]q LK E } ‘17—(] i
forq > 1,h > 0and q+ h > 1. It follows that o (t) = qt + h, p(t) = q~'(t — h). In general, we have
ok () = gt + [klgh,  pk(t) = q7*(t — [Klgh) = ¢ "t + [—k],h, kez™.

The introduction of (g, h)-derivative of f : Ti‘é,h) — C follows naturally from formulae (1) and (2): let t € Tz?a,h)' The
Aq,n-derivative of f at t is given by
t+h) —f(t
founy L@ O )
q@—Dt+h
and the V(g y)-derivative of f at t is given by
t)—fq@ i (t—h
fraay = LO S =) -
g '((q— Dt +h)
Lett € Tg,h) andt > to, i.e. there exists n € Z* such that t = toq" + [n]qh. Then we define the Ay )-integral by
t n—1
/ FO)As = (@ = Dto+h) Y ¢ (toq" + [klgh). (7)
to k=0
For 1th < a < t, the V(g p-integral over the interval [a, t] is defined by
t n—1
f fEVs = (=g t+q"'h)> g (gt + [klgh). €)
a

k=0



1792 M.R. Segi Rahmat / Computers and Mathematics with Applications 62 (2011) 1790-1797

For any function f : TE?; n — C,we have

t Aq,hy t Vig,n
( / f(S)AS) _ ( / f(S)VS> — £(0).

3. Delta (q, h)-integral inequalities

In this section, we give some Feng Qi type delta (g, h)-integral inequalities on discrete time scale T?z);,h)‘ We begin with
the following useful lemma.

Lemma 3.1. Let p > 1 be a real number, G be a non-negative increasing function on Tﬁ‘;,h) andt € T?(J;,h)' Then we have
p G ()G en (1) < [GP()]*6eh < p G~ (gt + h)GAen (¢). 9
Proof. By (5), we have

GPgt+h) —GP@)  p /G(q”")
gt+h T qt+hJe

[GP(t)]Aeh = uP~ldu, (10)

()
where ¢ = q — 1. Since G is a non-negative increasing function, we have

G(qt+h)
G ([G(gt +h) — G(1)] < / udu < P~ (gt + h)[G(qt + h) — G(t)].
G()
Hence, according to relation (10), we obtain

p G (6)GAan (1) < [GP()]*eh < p G~ (gt + )Greh (t). O
Now, we prove the Feng Qi type delta (q, h)-integral inequalities on discrete time scales.

Theorem 3.2. If f : [a, b]Tt0 — C is a non-negative increasing function and satisfies
(@.h)

FEAOfAN () = (@ — 2)q(@°t + [2lgh — ) f“ 2 (@t + [2]gh),

fort € [a, b] and @ > 3, then

)

b b a1
/f“(u)Auz </ f(u)AU> .

Proof. Fort € [a,b]  ,letg(t) = fa[f(u)Au and
@h

t b «
F(t) =f W) Au — (/ f(u)Au)

We have
FAam () = f(t) — [g°7 (6)] 4.

Since f and g increase in [a, b]Tf0 , by virtue of Lemma 3.1, it follows that
@@.h)

to
T

-1

FAah () > f(t) — (& — Dg*~>(qt + h)g*@n ()
= f4() — (@ = Dg*2(qt + Wf (t) = FOG(©)

where G(t) = f*~1(t) — (a — 1)g*%(qt + h).
On the other hand, we have

GAan (£) = [F*71 (O] — (@ — D[g* (gt + h)]*@n.
Applying Lemma 3.1 again, we get
GAam(t) > (@ — DF2(OF 00 (1) — (@ — Dl — 2)g* > (@°t + [2]h)g @ (gt + h)
= (& = DF*2OF 2P (£) — (@ — D(@ — 2)g" > (@°t + [2]gh)af (gt + h).
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Since f is a non-negative increasing function, we have

Pe+2]
g(@’t + [21gh) = / q fWwAu < (@t + [21gh — a)f (¢t + [2]4h).

Hence,
GAam () > (a — DY 2(OF *an (1) — (@ — D — 2)q(q°t + [21gh — O“*f* 7> (¢t + [2]gM)f (gt + h)
> (o — DFF2(Of 2@ (t) — (@ — Dl — 2)q(q°t + [2]gh — a)* 2 (g°t + [2]gh)
= (¢ — Df**(OF *@v (1) — (@ — 2)q(q°t + [2]gh — ©)*>f*7*(¢*t + [2]gh)} > 0.

We conclude that G is an increasing function. Since G(t) > G(a) > 0, it follows that FA@h (t) = f(t)G(t) > 0. Hence, F is
increasing and since F(t) > F(a) = 0 this concludes the proof of Theorem 3.2. O

Theorem 3.3. Let f : [a, b] 4o — Cis anon-negative increasing function satisfying

qh)

Ba(q*t + [2]gh — ) !
(b —a)f-1
fort € [a, b]Tto and 8 > 3. Then
(q.h)

Bt1
/fﬁ”(u)Auz = (/ f(u)Au) .

Proof. Foreacht € [a, bl « ,letg(t) = fatf(u)Au and
@@.h)

t pe2 1 t B+1
_ + -
F(t) = fa fP(u)Au b (/a f(u)Au) .

Then, we have

FE@Of2an () > fP(@t + [214h).

Faan () = f*2() — [g7 (O] an.

1
(b — a)p—1
Since f and g increase in [aq, b],]rro , by virtue of Lemma 3.1, we have
@h)

e+ gt o

%g (@t + Wf () = FOH()

where H(t) = fF+1(t) — (b(ﬁg;;) )P (qt + h).

On the other hand, we have

FAan(t) > fPr2 () —

= fP2(t) -

HAan (6) = [fF (0] %0n —

((ﬂ;l)[g’S (gt + B} *en.

b —a)f—1
Applying Lemma 3.1 again, we get

(B+ DB sy
(b—af-t i
B+1p
(b—a)f-

Since f is a non-negative increasing function, we have

HAan (£) = (B 4+ DFF (O)f *an () — (@°t + [2]gh)g @ (gt + h)

> (B+ DFFOf*an (t) — ———=g" (@t + [21haf (at + h).

q°t+(2]
g(@*t +[2]h) = / ’ fAu < (¢t + [2]gh — a)f (¢t + [2]gh).
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Hence,

B(B + Da(g?*t + [2]gh — a)?

-1
HA@h (t) > (B4 DFF(E)f2am (t) — P71 (g%t + [21h)f (gt + h)

(b — a)p1
2 _ n\B-1
> (B+ Dff (f v (t) - e 1)(1((;1 ij)z[fz,]fh 9 FP(@’t + 1210
2 _ mn\s-1
= (B+ DU (o an (1) — 21 t(lj——[zc]l;;l—l DA+ (21} = 0.

We conclude that H is an increasing function. Since H(t) > H(a) > 0, it follows that F2@h (t) = f(t)H(t) > 0. Hence, F is
increasing and since F(t) > F(a) = 0 this concludes the proof of Theorem 3.3. O

The following examples show the Feng Qi type h-integral inequalities and Feng Qi type g-integral inequalities in the sense
of forward sum inequalities.

Example 1. Let ¢ = 1in Theorem 3.2. Then, clearly we have
FEROF(E) = (0 = 2)(t 4 2h — a)*F*72(t + 2h),

fort € [a, b]TrtO and o > 3 implies
h

b b o
/ fYw Apu > (/ f(u)Ahu>

Let ¢ = 1in Theorem 3.3. Then, we have

—q)f1
%ﬂ*(wzh),

fort € [a, b]qr‘(’ and 8 > 3 implies
h

b 1 b B+1
/ fﬂ+2(u)Aqu = W </ f(u)Aqu> .

The above results are found in [6].

-1

FPoftn e =

Example 2. By letting h = 0 in Theorem 3.2, we found that
FAOf0) = (@ = 29t — a)*f* 72 (@),
fort € [a, b]jrr0 and o > 3, then
q

b b a—1
/ feu)Aqu > </ f(u)Aqu> .

By letting h = 0 in Theorem 3.3, we have

Ba(g’t —a)f !
(b —a)f1
fort € [a, b]TrtO and 8 > 3 implies
q

b 1 b B+1
/ fﬂ+2(u)Aqu Z W (/ f(u)Aqu> .

4. Nabla (q, h)-integral inequalities

FPofa) = 2@,

In this section, we give the nabla (g, h)-type integral inequalities on TE‘; py-Asin the case of delta (q, h)-calculus, we have
the following useful lemma.

Lemma 4.1. Let p > 1 be a real number, G be a non-negative increasing function on Tﬁz.h) andt € T;‘; hy- Then we have

p G (g (¢ — h)GYan(t) < [GP(H)]Veh < p PGV (¢). (11)
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Proof. By (6), we have

GP(t)— G (t—h c®
@ (o = O - @ «=m _ : P uPdu,
g ' (q't+h) q (@'t +h) Jog-1(e—ny
where ¢ = q — 1. Since G is a non-negative increasing function, we have
G(t)
¢ (q ¢~ Wic - 6q (e~ b = [ W du
Gg~1(t—h))

< OIG) — G(g ' (t — h))].
Hence, according to relation (12), we obtain the desired result:
p G (gt —h)GYen (1) < [GP()]Veh < p I (OGYeP (1), D

Theorem 4.2. If f : [a, IJ]Tf0 — C is a non-negative increasing function and satisfies
(q.h)

fran () = (@ = 2)(t — a7,

fort € [a, b] and o > 3, then

to
Tig.n

b b a—1
/f“(u)Vuz (/ f(q‘l(u—h))Vu> .

Proof. Fort € [a, bl ,letg(t) = fatf(q”(u — h))Vu and
(@.h)

t b a—1
F(t) = / f(qu+ h)Vu — (/ f(q‘l(u—h))Vu> .
We have

FV(th) (t) =fct (t) _ [gafl]v(q,h) (t)

Since f and g increase in [a, b] , by virtue of Lemma 4.1, it follows that

fo
T(q,h)

FYab (t) > f*(t) — (@ — 1)g* 2(t)g V@ ()
= f*(t) — (@ — Dg* 2(O)f (g (t — h))
> () — (@ — Dg* 2(O)f (t) = F(O)G(D)

where G(t) = f*~1(t) — (o — 1)g*2(t).
On the other hand, we have

GYan (t) = [f*"Van (1) — (@ — D[g* Ve (¢).
Applying Lemma 4.1 again, we get
GYan (1) = (o — Df*2(@ " (t — W)FYan (6) — (@ — D(a — 2)g* > (0)g"en (1)
= (& — Df*2(q " (t — h)fYan () — (@ — (e — 2)g* > (O)f (g7 (t — h))
= (& — Df(q7 "¢t —){F* (@'t — h)fYab (t) — (o — 2)g* (1)}

Since f is a non-negative increasing function, we have

t
g(t) = / f@ ' —h)Vu <t —a)f(q 't —h).
Hence,
GVan (t) = (¢ — DF* (g~ (t — W{FVaeh () — (@ — 2)(t — a)* ).

1795

(12)

We conclude that G is an increasing function. Since G(t) > G(a) > 0, it follows that F¥@n (t) = f(t)G(t) > 0. Hence, F

is increasing and since F(t) > F(a) = 0 this concludes the proof of Theorem 4.2. O

Theorem 4.3. Let f : [a, bl — Cis a non-negative increasing function satisfying

t
(q.h)

t—a\f!
fVan () > B ( ) ,
b—a
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fort € [a, b]TtO and 8 > 3. Then
(q.h)

B+1
/ PRV ( f f(q‘l(u—h))Vu> .

Proof. Foreacht € [a, b]Tto Jetg(t) = fatf(q‘l(u — h))Vuand
(q.h)

t g2 1 t » B+1
Fo= [ 1 (u)Vu—W(/a i@ (u—h))Vu> .

Then, we have

FYan () = f42(0) — W[gﬁ“an%w.
Since f and g increase in [a, b]Tf0 , by virtue of Lemma 4.1, we have
(q.h)
FYan () > fP2(6) — (,fﬂ_;a),&gﬁ(nng ®)
+1
=[P — %gﬁ(t)f(q”(r —hy)
+
> () — %g OF () = FOH)
where H(t) = f#*1(t) — 525758 (o).
On the other hand, we have
HYen () = [fP (O] Vam — %[gﬂlv<w>(t>.
Applying Lemma 4.1 again, we get
B+

P ngan (o)

> (B+ Df(q'(t —h)) [f’“(ql(t — hy)fVan () — ﬂ_lgﬁl(t)} .
(b—a)f

HYan(©) 2 (B 4+ DF (@€ = W) Yon (o) — = e

Since f is a non-negative increasing function, we have

t
gt) = / f@ w—m)Vu < (¢ = a)f (g (¢ = h)).

Hence,
— a)f1
HYan(t) = (B4 Df(@~'(t — h)) {fﬁl(q1(t — h)fVen (6) — %J:ﬁq(qq(f - h))}
- N Bt —a)f!
= B+ Dff (g7t —h)) {fv(q’ () — (b—a)ﬂ_l}

We conclude that H is an increasing function. Since H(t) > H(a) > 0, it follows that F¥@n (t) = f(t)H(t) > 0. Hence, F is
increasing and since F(t) > F(a) = 0 this concludes the proof of Theorem 4.3. O

The following examples show the Feng Qi type h-integral inequalities and g-integral inequalities in the sense of backward
sum inequalities.

Example 3. Let ¢ = 1in Theorem 4.2. Then, we have
F) = (@ = 2)(t — )2,

fort € [a, b]Tr0 and o > 3, implies that
h

b b a—1
/ fEW)Vhu = (/ fu— h)th) )
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Let ¢ = 1in Theorem 4.3. Then, we have

_ -1
RIOEY. (t a) ,

b—a
fort € [a, b]Tr0 and 8 > 3, implies that
h

b 1 b B+1
/ fﬁ-u(u)vhu = W </ fu— h)V;ﬂJ) .

Example 4. Let h = 0 in Theorem 4.2. Then, we have
FYa®) = (@=2)(t -7,

fort € [a, b]Tr0 and @ > 3, implies that
q

b b a—1
/ fEW)Veu > </ fl@ '~ h))un> :

Let h = 0 in Theorem 4.3. Then
v t—a\’!
frue) =B ;

b—a
fort € [a, b]T’O and 8 > 3, implies that
q

b 1 b B+1
/ fﬁﬂ(u)un > W (/ f(q’lu)un> .
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