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This study was designed to evaluate antimicrobial activities against methicillin-susceptible Staphylococcus
aureus in both sessile and planktonic forms and to detect genes associated with this biofilm phenotype.
Minimal biofilm inhibition and eradication concentrations (MBIC and MBEC, respectively) were determined
by an in vitro biofilm model, and icaA, atlA, and sasG genes were detected by polymerase chain reaction.
Vancomycin and tigecycline presented better biofilm inhibitory activity (MBIC range: 4–8 μg/mL) (P ≤ 0.05)
and lowerMBEC/MIC ratios (P≤ 0.001) than other antimicrobials. All isolates harbored icaA and atlA, whereas
sasG was present only in strong biofilm formers (P ≤ 0.05). Interestingly, antimicrobial activities against
sasG− weak biofilm formers were significantly higher than those against sasG+ strong biofilm formers
(P ≤ 0.05), demonstrating that number of cells in a biofilm matrix affected the antimicrobial activity,
which was also variable, and might be associated with specific genetic determinants. To our knowledge,
this was the first study reporting the presence of sasG in clinical isolates of S. aureus in South America.
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1. Introduction

Bacterial adherence to implanted or indwelling devices, bone or
natural tissue, and other hydrophobic surfaces is the leading virulence
factor in staphylococci. These microorganisms are extensively known
for their ability to grow as a bacterial cell community, be embedded in
biofilm, exchange essential nutrients, and for their mobile genetic
materials (Götz, 2002).

In biofilm, bacteria encase themselves in an extracellular material
(slime), which embeds them together and attaches them firmly to a
surface. Biofilm formation is a multistep virulence process that
initiates with attachment mediated by specific proteins called
autolysins, one of which is known as AtlA in Staphylococcus aureus,
encoded by the atlA gene (Biswas et al., 2006). Furthermore,
intercellular adhesion occurs due to production of a polysaccharide
intercellular adhesin (PIA) encoded by the icaADBC locus (ica-
dependent pathway) or due to other proteins involved in this
accumulation phase (ica-independent pathway) such as a surface
protein called SasG (Heilmann et al., 1996; Corrigan et al., 2007;
Geoghegan et al., 2010; Montanaro et al., 2011). Autolysins are often
produced throughout the growth cycle and have been shown to play a
central role in other functions such as cell growth, cell-to-surface
adhesion, genetic competence, and pathogenicity (Heilmann et al.,
1997; Smith et al., 2000; Takahashi et al., 2002). Maybe, its major role
in the process of biofilm formation is to orientate and expose cell-
surface adhesins correctly to maximize and ensure effective interac-
tion with biotic or abiotic surfaces (Stevens et al., 2009).

Biofilm-related infections are particularly serious in patients with
indwelling medical devices, since cells or clusters of cells may detach
from this mucoid slime, resulting in bloodstream infection, emboli,
and metastatic spread. Treatment of these infections is increasingly
problematic because cells embedded in biofilms are inherently
resistant to host immune responses and antimicrobial chemotherapy
(Fitzpatrick et al., 2005). Vancomycin is the preferred treatment for S.
aureus infections (Michel and Gutmann, 1997), and divergent
prevalence of this microorganism around the world could guide the
antimicrobial therapy to another course, mainly due to increasing
rates of vancomycin failure on S. aureus infection therapy (Hidayat
et al., 2006; Neoh et al., 2007; Hsu et al., 2008). In addition, knowledge
of specific antimicrobial activity against biofilm-forming staphylo-
cocci is an important determinant for choosing preventive or curative
antimicrobial therapy, as well as MIC measurement against sessile
cells (cells embedded in biofilm). Even if a biofilm-related infection
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seems to be cured by antimicrobial therapy, a subset of bacteria can
survive within the remaining biofilm and then the infection persists
(Costerton et al., 1999; Mah and O'Toole, 2001). Consequently,
device-related biofilm-associated infections usually require device
removal besides systemic antimicrobial therapy. However, access vein
loss, device replacement, and the high cost of this procedure call for
saving the infected device when the clinical situation allows it
(Mermel et al., 2001).

The aim of this study was to evaluate erythromycin, gentamicin,
oxacillin, rifampicin, tigecycline, and vancomycin activities against
methicillin-sensitive S. aureus (MSSA) in both sessile and planktonic
forms and determine the frequency of specific genes associated with
biofilm phenotype.

2. Materials and methods

2.1. Bacterial isolates

Fifteen known biofilm-forming MSSA obtained from different
patients with catheter-related bloodstream infections at Complexo
Hospitalar Santa Casa de Misericordia de Porto Alegre (Porto Alegre,
Brazil) were evaluated. They were selected between August and
December 2010 and previously studied according to general charac-
teristics such as resistance profile, presence of mecA gene, and ability
to produce biofilm. All MSSA strains were mecA negative and capable
of biofilm formation, and they seemed to be more prevalent in our
setting, so they warrant attention in this study (Reiter et al., 2011).

2.2. Biofilm phenotypic assay

Biofilm production was determined by microtiter plate assay,
and optical density results were scored and interpreted as
described elsewhere (Stepanović et al., 2007; Reiter et al., 2011).
Briefly, 180 μL of trypticase soya broth (Becton Dickinson, Franklin
Lakes, NJ, USA) supplemented with glucose 1% was added to each
well of a sterile 96-well polystyrene flat-bottom microtiter plate
(TPP Techno Plastic Products, Trasadingen, Switzerland), followed
by 20 μL of 1 × 108 CFU/mL bacterial suspension (1:10 dilution).
The plates were incubated for 24 h at 35 ± 2 °C under static
conditions. After incubation and broth removal, wells were washed
3 times with sterile saline and bacteria attached were fixed with
methanol for 20 min and left to air dry overnight in an inverted
position at room temperature. Finally, adherent bacteria were
stained with crystal violet 0.5% for 15 min and biofilm was eluted
with ethanol for 30 min without shaking. Absorbance was
measured at 492 nm using the microtiter plate reader Expert Plus
(ASYS Hitech, Eugendorf, Austria).

The cut-off value (ODc; optical density of negative control at 492
nm)was defined as 3-fold the standard deviation (SD) above negative
control (in practical terms, a reading around 0.090 at 492 nm), and
isolates were categorized into strong (2ODc ≤ OD ≤ 4ODc) and weak
(ODc b OD b 2ODc) biofilm formers.

2.3. Biofilm genotypic assay

Genotypic characteristics were determined by polymerase chain
reaction (PCR) and negative results were performed in duplicate. The
genes icaA (Abraham and Jefferson, 2010), atlA (Wootton et al., 2005),
and sasG (Abraham and Jefferson, 2010) were evaluated, and the
fragments were compared to a molecular weight pattern, respective-
ly, as follows: icaA-F 5′-AAACTTG GTGCGGTTACAGG-3′, icaA-R 5′-
GTAGCCAACGTCGACAACTG-3′ (188 bp), atlA-F 5′-CAGTTAGCAA-
GATTGCTCAAG-3′, atlA-R 5′-CCGTTACCTGTTTCTAATAGG-3′ (1035
bp), and sasG-F 5′-ACCACAGGGTGTAGAAGCTAAATC-3′, sasG-R 5′-
CGAGC TTTTCTAA CCTTAGGTGTC-3′ (188 bp). All 3 primer pairs were
confirmed as amplifying conserved regions of their correspondent
genes. Investigation of strain variation and B subunit repeats of sasG
was not performed, since the primer pair annealing occurs upstream
of these repeats in the gene conserved region.

PCR was performed for each gene alone. Briefly, 1 μL of bacterial
DNA (10 μg/mL) was added to 24 μL of PCR mixture containing Tris–
HCl buffer (pH 8.4), 1.5 μmol/L of MgCl2, 0.25 mmol/L of each
deoxynucleotide triphosphate (Invitrogen, Carlsbad, CA, USA), 1.25 U
of Platinum Taq DNA polymerase (Invitrogen), and 0.4 μmol/L of a
specific primer (Invitrogen).

Amplification was performed in a LifePro Thermal Cycler (Hang-
zhou Bioer Technology, Hangzhou, China) beginning with an initial
denaturation step at 94 °C for 5 min followed by 35 cycles of 94 °C for
1 min, 54 °C for 1 min, and 72 °C for 1 min, ending with a final
extension step at 72 °C for 5 min. PCR products were detected on a
1.5% agarose gel and stained with ethidium bromide.

2.4. Antimicrobials

Tigecycline, vancomycin, rifampicin, erythromycin, gentamicin,
and oxacillin were selected for susceptibility tests. Vancomycin,
gentamicin, and rifampicin are the most recommended therapeutic
choices for staphylococcal biofilm-related infection treatment, mainly
when they are used in combination (Olson et al., 2010; McConeghy
and LaPlante, 2010). Erythromycin and oxacillin are the most
prescribed agents in our setting, mostly for multisusceptible S. aureus,
and tigecycline is one of the newest drugs available for antimicrobial
therapy in our country. Analyses of other antimicrobials were
considered unnecessary.

Tigecycline powder was provided by Wyeth Pharmaceuticals
(Pearl River, NY, USA); vancomycin, rifampicin, oxacillin, erythromy-
cin, and gentamicin analytical powders were provided by Sigma-
Aldrich (St. Louis, MO, USA).

2.5. Planktonic-cell susceptibility tests

Each antimicrobial conventional MIC and minimal bactericidal
concentration (MBC) was determined by twofold serial broth
microdilution according to CLSI (2009). S. aureus ATCC 29213 was
tested as quality control.

2.6. Sessile-cell susceptibility tests

Minimal biofilm inhibition and eradication concentration (MBIC
and MBEC, respectively) experiments were performed as described
elsewhere (Labthavikul et al., 2003; Cafiso et al., 2010), with minor
modifications. In brief, 20 μL of 108 CFU/mL bacterial suspensions was
added to 180 μL of trypticase soy broth supplemented with 1% glucose
(final bacterial concentration = 107 CFU/mL) placed into a sterile 96-
well polystyrene flat-bottom microtiter plate (TPP Techno Plastic
Products, Trasadingen, Switzerland) and incubated for 24 h at 35 °C
without shaking, to allow bacterial attachment. Nonadherent cells
were removed by gentle washing 3 times with sterile saline. Serial
twofold dilutions of each antimicrobial agent in cation-adjusted
Mueller-Hinton broth (CAMHB) were added to wells containing
adherent cells, andmicroplates were incubated at 35 °C for another 24
h. MBIC was defined as the minimal antimicrobial concentration at
which there was no observable bacterial growth in wells containing
adherent microcolonies.

After MBIC determination, CAMHB containing antimicrobials was
removed and wells were washed twice with sterile saline and replaced
with 100 μL of antimicrobial-free CAMHB, followed by incubation for
24 h at 35 °C. MBEC was defined as the minimal antimicrobial
concentration at which bacteria fail to regrow after antimicrobial
exposure, i.e., the minimal concentration required for eradicating the
biofilm. All determinations were performed in duplicate.



Table 1
Susceptibility results for planktonic and sessile MSSA.

Erythromycin Gentamicin Oxacillin Rifampicin Tigecycline Vancomycin

Planktonic cells
MIC50 0.5 0.125 0.25 b0.03 0.25 1
MIC90 2 0.25 1 b0.03 0.5 1
MIC range 0.5–64 0.125–0.5 0.25–2 b0.03 0.125–0.5 0.5–1
MBC50 4 2 0.5 0.06 1 1
MBC90 16 4 2 0.06 2 2
MBC range 0.5–256 0.25–4 0.5–4 0.06 1–4 1–4

Sessile cells
MBIC50 64 32 16 32 8 8
MBIC90 128 64 128 64 16 8
MBIC rangea 16–N256 8–N256 16–N256 16–64 2–32 4–8
MBEC50 128 128 128 64 16 32
MBEC90 256 256 256 128 64 128
MBEC rangeb 64–N256 16–N256 64–N256 32–128 8–256 16–128

One-way ANOVA (P b 0.001), followed by Bonferroni's post hoc test.
a Statistically significant differences: erythromycin × vancomycin (P = 0.004), erythromycin × tigecycline (P = 0.006), gentamicin × vancomycin (P = 0.004), oxacillin ×

vancomycin (P = 0.008), and oxacillin × tigecycline (P = 0.013).
b Statistically significant differences: erythromycin × vancomycin (P b 0.001), erythromycin × tigecycline (P b 0.001), gentamicin × vancomycin (P = 0.049), gentamicin ×

tigecycline (P = 0.013), oxacillin × vancomycin (P b 0.001), oxacillin × tigecycline (P b 0.001), rifampicin × erythromycin (P = 0.003), and rifampicin × oxacillin (P = 0.019).
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This method is not indicated to determine faithfully the number of
viable cells in biofilm before and after treatment, since colony
counting variability may be high. Therefore, some analyses were not
able to be performed and we considered it as a limitation of our study.

2.7. Statistical analysis

All statistical tests were performed using the Statistical Package for
the Social Sciences (SPSS) software version 16.0 (SPSS, Chicago, IL,
USA). Continuous variables were tested for normal distribution by
Shapiro–Wilk test, and data were expressed as numbers. Statistical
significance for associations between strong andweak biofilm formers
according to MBIC, MBEC, and MBEC/MIC ratios, and OD reading
according to sasG harboring was calculated using Student's t test for
independent samples, with significant P value ≤0.05. Comparisons
between antimicrobials groups (k = 6) and MBIC, MBEC, and MBEC/
MIC ratios were performed using 1-way ANOVA followed by
Bonferroni's post hoc test, with significant P value ≤0.05.

3. Results

All MSSA strains were previously evaluated for biofilm production.
Among them, 11 were classified as strong biofilm formers and 4 were
classified as weak biofilm formers. Detection of biofilm genes showed
that all harbored the icaA and atlA genes, whereas sasGwas present in
11 of 15 isolates—all strong biofilm formers (P ≤ 0.05).

Antimicrobial susceptibility against planktonic and sessile bacte-
ria is presented in Table 1. All 6 antimicrobials displayed MIC50 b1
μg/mL for planktonic cells and rifampicin displayed the lowest MIC90
(b0.03 μg/mL). All antimicrobials reached susceptibility breakpoints
(MIC range), except for erythromycin (MBC50 = 4 μg/mL; MBC90 =
Table 2
Intensity of biofilm production compared with each antimicrobial MBEC/MIC ratio.

Antimicrobial MBEC/MIC ratioa

Strong/moderate producer

Erythromycin 1024 (1)–512 (3)–256 (4)–128 (3)
Gentamicin 2048 (4)–1024 (3)–512 (2)–256 (2)
Oxacillin 1024 (4)–512 (5)–128 (1)–64 (1)
Rifampicin 4267 (6)–2133 (5)
Tigecycline 1024 (1)–512 (1)–256 (1)–128 (2)–64 (3)–32 (3)
Vancomycin 256 (2)–128 (3)–64 (6)

a Ratio (number of isolates); strong/moderate (n = 11) and weak producer (n = 4).
⁎ P ≤ 0.05 was considered statistically significant (Students' t test for independent sa
16 μg/mL). The results obtained on planktonic forms showed that all
antimicrobials tested were variably bactericidal, with MBC90 ranging
from 1 dilution higher to ≥3 dilutions higher than MIC90 values for
bacteriostatic agents.

Vancomycin and tigecycline presented better inhibitory activity
for adherent MSSA than others (MBIC ranges: 4–8 and 2–32 μg/mL),
despite high MBEC values (P≤ 0.05) (Table 1). Likewise, MBEC values
also demonstrated significant differences among all antimicrobials
(Table 1), emphasizing again the superior activity of vancomycin and
tigecycline. However, comparative analysis between vancomycin and
tigecycline showed that there was no difference in biofilm inhibition
between the 2 antimicrobials nor in biofilm eradication. MBIC and
MBEC results for all antimicrobials in general were significantly higher
in strong than in weak biofilm-forming MSSA (P ≤ 0.05).

In order to verify how high were the antimicrobial concentrations
when tested against adherent cells in comparisonwith planktonic cells,
MBEC/MIC ratios were determined and analyzed according to biofilm-
producing intensity (strong or weak) (Table 2). Except for tigecycline,
the MBEC/MIC ratios of other antimicrobials were significantly higher
in strong biofilm-forming than in weak biofilm-forming MSSA (P ≤
0.05). As rifampicin MIC values were extremely low (all results b0.03
μg/mL), the relation with MBEC resulted in a particularly high rate,
statistically different from all others (P ≤ 0.001). Conversely,
vancomycin showed the lowest rates compared with rifampicin,
erythromycin, gentamicin, oxacillin, and tigecycline (P ≤ 0.001).

4. Discussion

The activity of 6 different antimicrobials against planktonic and
biofilm embedded cells was studied. Several mechanisms have been
discussed on trying to explain antimicrobial resistance of cells in
P
value

Weak producer

256 (1)–128 (1)–64 (1)–4 (1) 0.040⁎

512 (1)–256 (2)–128 (1) 0.026⁎

256 (2)–128 (2) 0.022⁎

1066 (2)–2133 (2) 0.014⁎

128 (1)–64 (3) 0.108
16 (2)–32 (2) 0.019⁎

mples).
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biofilm, mainly for those that are susceptible when tested in routine
laboratories. Vancomycin and tigecycline showed better inhibitory
activities against adherent MSSA than erythromycin, gentamicin,
rifampicin, and oxacillin. Depending on biofilm characteristics and
antimicrobial agent used to treat the biofilm, different mechanisms
could account for this resistance. However, when performing
susceptibility tests in vitro, there are some issues that need to be
considered, because they may have an important impact on the
interpretation of in vivo situation. Stationary-phase cultures result in
diminished killing rates to such an extent that the bactericidal effects
of some cell-wall active antibacterial agents are eliminated (e.g.,
against nongrowing or slowly growing phases of S. aureus). It is also
important to understand that the definition of bacteriostatic or
bactericidal activity for an antibacterial agent applies only to the
particular organism (or even strain) against which it has been tested
under the particular test conditions used (Pankey and Sabath, 2004).
Moreover, different species could behave differently in an antimicro-
bial therapy, as demonstrated by Qu et al. (2009, 2010) for coagulase-
negative staphylococci. In their study, vancomycin MBEC had much
worst activity than the one demonstrated by our study, well beyond
the highest achievable serum concentrations.

In our study, MBEC results showed that stronger biofilm-
producing MSSA strains were more resistant to all antimicrobials
tested than weaker ones. Likewise, Antunes et al. (2011) also
demonstrated that stronger biofilm-producing staphylococci pre-
sented higher vancomycin MBEC results than weaker ones. This
characteristic may be associated with biofilm architecture, which is
known to be incredibly unique and prevents antimicrobial access due
to several circumstances (Mah and O'Toole, 2001). For example,
eletrostatic interaction of the antimicrobial with biofilm exopolysac-
charide matrix and the physical or chemical structure of these
exopolysaccharides may delay antimicrobials penetration or even
exclude them from the bacterial community (Mah and O'Toole, 2001).
It is possibly created by staphylococcal cells in terms of quantity and
exopolysaccharide matrix content—strong biofilm producers present
higher numbers of bacterial cells, which contributes to improving the
design and shape of biofilm arrangement. In fact, thicker biofilms
could present a barrier to compound penetration, in addition to other
mechanisms such as antimicrobial degradation by enzymes (Anderl
et al., 2000) and antimicrobial binding to the biofilm components
(Mah and O'Toole, 2001), so the slow penetration through biofilm
exopolysaccharide matrix could facilitate this process.

Despite the large number of antimicrobial agents available to treat
infections caused by staphylococci, none has been described that
totally eradicates staphylococcal biofilms. Some studies have shown
that, when an antimicrobial agent is used for exopolysaccharide
matrix disruption, the penetration of other antimicrobials into the
biofilm could be facilitated (Glansdorp et al., 2008; Hajdu et al., 2009;
Smith et al., 2010). However, the necessity to develop methods to
treat and prevent biofilm infections has become of increased
importance since the last decades (Fitzpatrick et al., 2005) and still
remains relevant. Vancomycin and tigecycline were the most active
antimicrobials against MSSA. MBIC50 for both drugs and MBIC90 for
vancomycin reached 8 μg/mL, with a range from 4 to 8 μg/mL for
vancomycin. These are reachable serum concentrations for blood-
stream infections, and in the case of catheter-related ones, vancomy-
cin could be associatedwith gentamicin or rifampicin to improve their
activities, even more due to high MBEC values.

The biofilm-associated genes evaluated in this study are well
supported in the literature for their involvement in biofilm formation.
Carriage of the ica locus is strongly associated with a biofilm-forming
capacity in S. epidermidis (Fitzpatrick et al., 2002), but the correlation
between ica and biofilm formation in S. aureus is more ambiguous,
even though this locus is maintained and expressed in almost all S.
aureus isolates (Fitzpatrick et al., 2006; O'Neill et al., 2008). The role of
the ica locus in S. aureus is complex, particularly given that ica-
independent biofilm development has been described in this micro-
organism. Our choice regarding atlA and sasG for ica-independent
pathway was based on fewer available experimental studies toward
their prevalence and correlation with antimicrobial susceptibility of
sessile cells, since fibronectin binding factors, FnBPA and FnBPB, are
better documented as contributing to the ability of S. aureus to adhere
to specific surfaces (Greene et al., 1995; Roche et al., 2004).

All isolates harbored icaA and atlA genes, which are already
extensively proved as essential determinants for S. aureus biofilm
phenotype (Cramton et al., 1999; Biswas et al., 2006; Houston et al.,
2011). The expression of icaA induces a low enzymatic activity of
N-acetylglucosaminyltransferase, which is responsible for UDP-N-
acetylglucosamine synthesis which, in turn, produces PIA (Gerke et al.,
1998). On the other hand, the role of SasG in biofilm formation is
poorly studied and was first considered as a potential biofilm
promoter by Corrigan et al. (2007), a characteristic further
demonstrated by Kuroda et al. (2008) with the construction of a
sasG mutant. So far, SasG was considered as an adhesin to nasal
epithelium cells (Roche et al., 2003), but turned out to be an
important biofilm protein by facilitating adherence to host tissues in
S. aureus infections (Kuroda et al., 2008; Geoghegan et al., 2010).
Despite SasG being associated with ica-independent pathway
(Corrigan et al., 2007), we found that isolates with higher OD
readings (N0.20) harbored the sasG gene. Maybe, this increasing
adhesive phenotype operates in a SasG-dependent manner along
with PIA, and the sasG-mediated aggregation might facilitate
increasing cell population for the attachment (Kuroda et al., 2008).
Consequently, the lack of sasG gene could provide an enhancement
to antimicrobial activities in biofilm, which was demonstrated with
the rates given by MBEC and MIC values.

This study was able to demonstrate the significant differences
between erythromycin, oxacillin, gentamicin, vancomycin, and
rifampicin regarding biofilm production intensity by MSSA: the
number of cells in a biofilm matrix affects the antimicrobial activity,
and this characteristic may also be associated with specific genetic
determinants responsible for the expression of biofilm lifestyle. To our
knowledge, this was the first study reporting the presence of sasG in
clinical isolates of S. aureus in South America.
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