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Abstract

Let Γ be the fundamental group of a manifold modeled on 3-dimensional Sol geometry. We prove that Γ

has a finite index subgroup G which has a rational growth series with respect to a natural generating set. We
do this by enumerating G by a regular language. However, in contrast to most earlier proofs of this sort our
regular language is not a language of words in the generating set, but rather reflects a different geometric
structure in G.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Let Γ be a group with a finite generating set S. For g ∈ Γ , let ‖g‖ be equal to the length of
the shortest word in S ∪ S−1 representing g, and for g1, g2 ∈ Γ set d(g1, g2) = ‖g−1

1 g2‖. This
is known as the word metric on Γ . The growth of the size of balls in this metric constitutes a
central object of study in geometric group theory (see [10, Chapters 6–7] for a survey).

To study the growth of Γ , it is natural to define the growth series of Γ to be the power series

G(Γ ) =
∞∑
i=0

ciz
i ,

where ci = |{g ∈ Γ : ‖g‖ = i}|. In many cases, it turns out that G(Γ ) is a rational function. The
first non-trivial example of this is in [3], where an exercise outlines a proof that all Coxeter groups
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have rational growth with respect to a Coxeter generating set. Perhaps the most remarkable the-
orem of this type is in Cannon’s paper [5], which proves that all word hyperbolic groups have
rational growth with respect to any finite generating set ([5] only proves this for fundamental
groups of compact hyperbolic manifolds, but it contains all the ideas necessary for the extension
to word hyperbolic groups—see [7] for a complete account).

In this paper we study the growth series of the fundamental groups Γ of torus bundles over
the circle with Anosov monodromy. In other words, Γ = Z

2
�M Z with M ∈ SL2(Z) a matrix

with two distinct real eigenvalues. These are the fundamental groups of 3-manifolds modeled on
Sol geometry. Our main theorem is the following:

Theorem 1.1 (Main theorem). Let Γ be the fundamental group of a 3-dimensional Sol manifold.
Then there exists a finite index subgroup G generated by a finite set S so that G has rational
growth with respect to S. In other words, Γ is virtually rational.

This theorem is part of two different streams of research. On the one hand, there have been
many papers investigating the growth series for lattices in Thurston’s eight 3-dimensional model
geometries (see [1,2,5,13,15,16,19]). After Theorem 1.1, the only remaining geometry for which
there is not some general theorem is S̃L2, although some progress has been made on this case by
Shapiro [16].

On the other hand, there has also been significant research on the growth series of finitely
generated solvable groups. Kharlampovich has produced a 3-step solvable group which has an
unsolvable word problem [11]. Since all groups with rational growth series have a solvable word
problem (the rational growth series allows one to calculate the size of balls in the Cayley graph,
which one can then construct using a brute force enumeration), it follows that Kharlampovich’s
example does not have rational growth with respect to any set of generators.

One can therefore hope for general results only for 1- and 2-step solvable groups. The 1-step
solvable groups are the finitely generated abelian groups. Benson has proven that more generally
all finitely generated virtually abelian groups have rational growth with respect to any finite
set of generators [1]. The 2-step solvable groups are divided into the nilpotent and non-nilpotent
groups. A fundamental set of examples of 2-step nilpotent groups are the lattices in 3-dimensional
Nil geometry. These correspond to groups of the form Z

2
�M Z with M ∈ SL2(Z) a matrix with

two different non-real eigenvalues, which necessarily must lie on the unit circle. Benson, Shapiro,
and Weber [2,15,19] have shown that lattices in 3-dimensional Nil geometry have rational growth
with respect to a certain generating set. This has been generalized by Stoll [17], who showed that
all 2-step nilpotent groups with infinite cyclic derived subgroup have rational growth with respect
to some generating set. He also showed that many such groups (those with “Heisenberg rank at
least 2”) have transcendental growth with respect to some other generating set. This demonstrates
that, in contrast to most natural group properties studied by geometric group theorists, rational
growth can depend strongly on the choice of generating set.

The non-nilpotent solvable case is divided into the polycyclic and the non-polycyclic cases.
A fundamental set of examples of 2-step solvable non-polycyclic groups are the solvable
Baumslag–Solitar groups BS(1, n). Brazil and Collins–Edjvet–Gill have shown that these have
rational growth with respect to the standard set of generators [4,6]. A fundamental set of ex-
amples of 2-step solvable polycyclic groups are the torsion-free abelian-by-cyclic groups. These
are groups of the form Z

n
�M Z with M ∈ SLn(Z). Theorem 1.1 combined with the result of

Benson, Shapiro, and Weber referred to in the previous paragraph cover the case n = 2, with ours
being the “generic” case since our eigenvalues do not lie on the unit circle.
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The strategy of our proof is as follows. The subgroup G we consider is generated by two
elements a and t . We first define a surjective function which associates to a word w in the free
group on a and t a pair (t̃ype(w),h(w)) where t̃ype(w) ∈ Z[z, z−1] and h(w) ∈ Z. The word
metric on the free group induces a “size function” on such pairs for which there is a rather simple
formula. It turns out that two words w1 and w2 determine the same element of G if and only if
h(w1) = h(w2) and t̃ype(w1) = t̃ype(w2) modulo a certain principal ideal I of Z[z, z−1]. It is
easy to construct a “size-preserving” enumeration of Z[z, z−1]⊕Z by a regular language L. The
map

Z
[
z, z−1] ⊕ Z −→ (

Z
[
z, z−1]/I) ⊕ Z

induces a “quotient” L/P of L with an induced “size function.” We conclude by proving that
L/P satisfies a certain negative curvature-like condition (the falsification by fellow traveler prop-
erty). This allows us to enumerate L/P by a regular language, which by well-known results is
enough to prove that it (and therefore G) has a rational growth series.

Remark. Though in theory our methods are entirely constructive, in practice the finite state
automata we build are so huge that it is impractical to calculate any examples.

History and comments

In his unpublished thesis [9], Grayson claimed to prove Theorem 1.1 whenever the trace of
the monodromy is even. However, his proof is insufficient (see the remarks in Section 4 for
a more detailed discussion). Our methods are rather different from his methods. He attempts
to write down a complicated recurrence relation between balls of different radii. As indicated
above, we instead use the theory of finite state automata. In addition, the generating sets we
use are slightly different from his generating sets. We do, however, use some of his ideas. In
particular, he introduced the notions of types and heights described in Section 4 (though he did
not distinguish between the reduced and unreduced types), and the elegant proof of Theorem 4.2
is due to him.

After this paper was complete, we learned that in an unpublished paper Parry had given a
proof of Theorem 1.1, following Grayson’s basic outline [14]. Like Grayson, he assumes that the
trace of the monodromy is even. However, Parry was able to use a computer to calculate some
growth functions explicitly. We reproduce the result of his calculation in Section 6.

1.1. Outline and conventions

In Section 2, we review some preliminary material on Sol manifolds, regular languages, etc.
Next, in Section 3 we discuss a technical condition on partitions of regular languages which
implies rational growth. This condition, the falsification by fellow traveler property, is inspired
by but different from the condition of the same name defined by Neumann and Shapiro in [13].
Section 4 is then devoted to the bijection

G −→ (
Z

[
z, z−1]/I) ⊕ Z
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discussed above. Finally, in Section 5 we construct a sequence of regular languages Ln which
enumerate Z[z, z−1]⊕Z in a “size-preserving” manner, and we prove that the partition Pn of Ln

induced by the natural map

Z
[
z, z−1] ⊕ Z −→ (

Z
[
z, z−1]/I) ⊕ Z

satisfies the falsification by fellow traveler property for sufficiently large n. This proves Theo-
rem 1.1. We conclude by discussing some open questions in Section 6.

We will frequently manipulate Laurent polynomials over Z, that is elements of Z[z, z−1].
When we refer to such a polynomial as

∑
j cj z

j , we mean that all but finitely many of the cj

equal 0.

2. Preliminaries

2.1. Sol manifolds

As discussed in [18], 3-dimensional Sol manifolds are 2-dimensional torus bundles over the
circle whose monodromy M ∈ SL2(Z) is Anosov, that is M has two distinct real eigenvalues.
Equivalently, |trace(M)| > 2. Let M be such a matrix, and let a and b be the standard generators
for Z

2. Hence, Ma and Mb are well defined. Abusing notation in the obvious way, we say that
the torus bundle group with monodromy M is the group with the presentation

Γ = 〈
a, b, t | [a, b] = 1, tat−1 = Ma, tbt−1 = Mb

〉
.

Observe that G = 〈a, t〉 is a finite index subgroup of Γ . Now, the minimal polynomial of the
matrix M is equal to 1 − trace(M)z + z2. Hence Mka is in the lattice generated by a and Ma. In
other words, the group G corresponds to the 2-dimensional torus bundle whose fiber is generated
by a and Ma. It is easy to see that G is isomorphic to the torus bundle group with monodromy(

0 −1

1 trace(M)

)
.

We will prove that G has rational growth with respect to the generating set {a, t}.

2.2. Sized sets and languages

In the course of our proof, we will construct a series of objects whose growth reflects the
growth series of G. The “size functions” on these objects come from very different sources. The
following formalism provides a language with which to compare these objects:

Definition. A sized set is a set X together with a size function ‖ · ‖ :X → Z�0.

Set ci = |{x ∈ X: ‖x‖ = i}|. We will only consider sized sets with ci < ∞ for all i. There is
therefore an associated generating function

G(X) =
∞∑
i=0

ciz
i .
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Definition. Let X be a sized set and P be a partition of X. In other words, P is a set of pairwise
disjoint subsets of X so that ⋃

A∈P

A = X.

We define X/P to be the sized set whose elements are elements of P and whose size function is

‖A‖ = min
{‖x‖: x ∈ A

}
.

If x ∈ X, then we will denote by x the set A ∈ X/P with x ∈ A. If x, y ∈ X satisfy x = y, then
we will say that x equals y modulo P .

Definition. Let (X1,‖ · ‖1) and (X2,‖ · ‖2) be sized sets. A bijection ψ :X1 → X2 is a near-
isometry if there is some constant c so that for all x ∈ X1 we have ‖x‖1 = ‖ψ(x)‖2 + c. If c = 0,
then a near-isometry is an isometry.

Remark. Observe that if X1 and X2 are near-isometric with respect to a constant c then
G(X1) = zcG(X2). In particular, G(X1) is a rational function if and only if G(X2) is. Our use
of near-isometries is purely a matter of convenience—they allow us to have a somewhat simpler
definition of the languages Ln we construct in Section 5.

Our primary source of sized sets will be the following:

Definition. Let A be a finite set, which we will call the alphabet. A language L over A is a subset
of A∗, the set of finite sequences of elements of A. Elements of L are called words.

Languages can be considered sized sets in the following way. Let L be a language over A.
Consider some φ :A → Z>0, which we will call the weighting. For a1a2 · · ·ak ∈ L, define

‖a1a2 · · ·ak‖ =
k∑

i=1

φ(ai).

Example. Let H be a group with a finite set of generators S. Let L be the language of all words
in S ∪ S−1 with weighting 1 for each generator. Finally, let P be the partition which identifies
two words if they represent the same element in H . The series G(L/P ) is then the usual growth
series for H .

2.3. Regular languages

We quickly review the theory of finite state automata and regular languages. For more details
see, e.g., [8, Chapter 1].

Definition. A finite state automaton on n strings is a 5-tuple(
A, (V,E),S,F, l

)
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with A a finite set (called the alphabet), (V ,E) a finite directed graph (called the state graph),
S ∈ V (called the start state), F ⊂ V (called the final state), and l :E → ∏n

i=1(A ∪ {$}) with $
some symbol disjoint from A (l is called the transition label; “$” is a symbol for the end of a
word) satisfying the following condition: if l(e) = (. . . ,$, . . .) with the $ in the kth place, then
l(f ) also has a $ in the kth place for all edges f so that there is a finite (oriented) path

e = e0, e1, . . . , em = f.

Definition. Let Z = (A, (V,E),S,F, l) be a finite state automaton on n strings. We define the
language L(Z) ⊂ ∏n

i=1 A∗ to be the following. Consider any element (w1, . . . ,wn) ∈ ∏n
i=1 A∗.

Assume that the longest word in this tuple has m letters. For 1 � i � n and 1 � j � m define w
j
i

to be the j th letter of wi if j is at most the length of wi and $ otherwise. Then (w1, . . . ,wn) ∈
L(Z) if and only if there is some path

S = v1, e1, v2, e2, . . . , em, vm+1 ∈ F

so that for 1 � j � m we have

l(ej ) = (
w

j

1 ,w
j

2 , . . . ,w
j
n

)
.

We say that L(Z) is a regular language.

Remark. Observe that we are abusing the word “language” in this definition: only the case n = 1
is an actual language.

Remark. One should think of this as a machine able to keep track of a finite amount of informa-
tion. The vertices of the state graph correspond to the different states in which the machine can
be, and the machine moves from the state s1 to the state s2 upon reading α if there is an edge e

between s1 and s2 with l(e) = α.

The following theorem demonstrates the flexibility of regular languages:

Theorem 2.1. [8, Proposition 1.1.4, Theorem 1.2.8, Corollary 1.4.7] The class of regular lan-
guages is closed under all first order predicates (i.e. ∪, ∩, ¬, ∀, and ∃) and under concatenation.
In addition, if L is a regular language on n strings then the following language is regular:

rev(L) = {
(a1,1 · · ·a1,m1, . . . , an,1 · · ·an,mn): (a1,m1 · · ·a1,1, . . . , an,mn · · ·an,1) ∈ L

}
.

We will also need the following theorem:

Theorem 2.2. Let Z = (A, (V,E),S,F, l) be a finite state automaton on one string and let
φ :A → Z>0 be a weighting. Then the generating function G(L(Z)) with the language L(Z)

weighted by φ is a rational function.

Proof. It is a standard fact (see, for instance, [7, Theorem 9.1]) that G(L(Z)) is rational if φ is
the constant function 1. To deduce the general case from this, replace each edge e in (V ,E) by a
path of length φ(l(e)) with each edge in the path labeled by l(e). �
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Remark. When we refer to a regular language without specifying how many strings it has, we
are referring to a regular language on one string.

3. Partitioning regular languages

Fix a regular language L with weighting φ. Consider a partition P of L. By Theorem 2.2,
we know that L has a rational generating function. In this section we give a sufficient condition
for L/P (see Section 2.2 for the definition of L/P ) to have a rational generating function. Our
condition, the falsification by fellow traveler property, allows us to construct a regular sublan-
guage of L containing exactly one word of minimal size from each set in P . It is inspired by the
property of the same name in [13]. We begin with two preliminary definitions.

Definition. We say that L/P has a regular cross section if there is some regular sublanguage
L′ ⊂ L so that for all A ∈ P there is a unique x ∈ L′ with x ∈ A. If in addition all such x satisfy

‖x‖ = min
{‖x′‖: x′ ∈ A

}
then we say that L′ is a regular minimal cross section of L/P .

Definition. We say that a regular language R ⊂ L × L is an acceptor for a partition P of L if

(w,w′) ∈ R �⇒ w = w′ and (w′,w) ∈ R.

Our condition is the following:

Definition. We say that a partition P with an acceptor R has the falsification by fellow traveler
property if there is some constant K and some regular sublanguage L′ of L containing at least one
minimal size representative of each set in P so that if w ∈ L′ is not a minimal size representative
in L/P then there is some word w′ ∈ L so that the following are true.

• (w,w′) ∈ R (and, in particular, w = w′).
• ‖w′‖ < ‖w‖.
• For any j , let s and s′ be the initial segments of w and w′ of length j . Then |‖s‖−‖s′‖| � K

(the words w and w′ are said to K-fellow travel).

We also require that if w,w′ ∈ L′ are both minimal size representatives of the same element
of L/P then (w,w′) ∈ R.

Our main theorem about such partitions is the following:

Theorem 3.1. Let P be a partition of a weighted regular language L with an acceptor R. Assume
that P has the falsification by fellow traveler property. Then L/P has a regular minimal cross
section.

Theorems 3.1 and 2.2 imply the following:

Corollary 3.2. Let P be a partition of a weighted regular language L with an acceptor R so that
P has the falsification by fellow traveler property. Then L/P has rational growth.
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Before proving Theorem 3.1, we need a lemma.

Lemma 3.3. Let P be a partition of a regular language L with a weighting φ and an acceptor R,
and let K be a natural number. Then the following language is regular:

LK = {
(w1,w2) ∈ L × L: (w1,w2) ∈ R, ‖w1‖ > ‖w2‖, and w1 and w2 K-fellow travel

}
.

Proof. Observe that LK is the intersection of R and the language

L′
K = {

(w1,w2) ∈ (
A∗)2

: ‖w1‖ > ‖w2‖ and w1 and w2 K-fellow travel
}
.

By Theorem 2.1 it is therefore enough to show that L′
K is regular. We construct an automaton

accepting L′
K as follows. For simplicity, we will extend φ to A∪{$} by setting φ($) = 0. Our au-

tomaton has 2K + 1 states labeled −K, . . . ,K plus a failure state. The label on a numbered state
represents the difference between the portions of w1 and w2 read thus far. We begin in state 0.
Now assume that we are in a state i and read a from w1 and b from w2. If |i +φ(a)−φ(b)| > K ,
then w1 and w2 have ceased to K-fellow travel, so we go to the failure state. Otherwise, we go
to the state i + φ(a) − φ(b). We succeed and accept (w1,w2) if we end in a state with a positive
label, and we fail otherwise. �

We now prove Theorem 3.1.

Proof of Theorem 3.1. Let L′ be the regular sublanguage of L and K be the constant given by
the definition of the falsification by fellow traveler property. By Lemma 3.3

LK = {
(w1,w2) ∈ L × L: (w1,w2) ∈ R, ‖w1‖ > ‖w2‖, and w1 and w2 K-fellow travel

}
is a regular language. Hence by Theorem 2.1

L′′ = {
w ∈ L′: there does not exist any w′ ∈ L so that (w,w′) ∈ LK

}
is a regular language. This language is composed of minimal size representatives in L/P . It
contains at least one representative of each element. By [8, Remark, p. 57], the language

S = {
(w1,w2) ∈ L′′ × L′′: w1 is short-lex less than w2

}
is regular (see [8, p. 56] for the definition of the short-lex ordering. For our purposes its only im-
portant property is that it is a total ordering on the set of words). We conclude from Theorem 2.1
that

L′′′ = {
w ∈ L′′: for all w′ ∈ L′′ we have (w′,w) /∈ S ∩ R

}
is regular. By the definition of the falsification by fellow traveler property, L′′′ contains a unique
representative of minimal length for each element of L/P ; i.e. it is a regular minimal cross
section of L/P . �
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4. Types and heights

Fix a torus bundle group Γ with monodromy M . Recall that we are examining the finite index
subgroup G = 〈a, t〉.

4.1. Definitions

Consider some g ∈ G. Since G ⊂ Γ = Z
2
�M Z, we can regard g as a pair (x,h) with x ∈ Z

2

and h ∈ Z. We will call h the height of g (denoted h(g)) and x the type of g (denoted type(g)).
Denote by FT the free group on a set T . Consider w ∈ F{a,t} which maps to w ∈ G. Set

h(w) = h(w) and type(w) = type(w) (we will refer to these as the height and type of w). We wish
to determine the relationship between w and type(w). Let N be the normal subgroup of F{a,t}
generated by a. The exact sequence

1 −→ N −→ F{a,t} −→ F{t} −→ 1

splits, so we have F{a,t} = N � F{t}. This fits into the following commutative diagram:

1 N N � F{t} F{t} 1

1 Z
2 Z

2
�M Z Z 1

The map N → Z
2 factors through the abelianization Nab of N . Now, it is well known (see, e.g.,

[12, Exercise 3.2.3–4]) that N is the free group on the generating set{
tkat−k: k ∈ Z

}
.

The map

tkat−k �−→ zk

therefore defines an isomorphism from Nab to the group Z[z, z−1] of Laurent polynomials. Sum-
ming up, we have factored the map

type :F{a,t} −→ Z
2

as a composition

F{a,t} −→ N −→ Nab = Z
[
z, z−1] −→ Z

2.

Denote by t̃ype(w) the image of w in Z[z, z−1]; we will call this the unreduced type of w.
More concretely, the splitting F{a,t} = N � F{t} shows that every word w ∈ F{a,t} can be

expressed as a product

w =
(

n∏
tki ali t−ki

)
th
i=1
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with h, ki ∈ Z and li ∈ {±1}. Observe that h(w) = h. Also, t̃ype(w) equals the Laurent polyno-
mial

n∑
i=1

liz
ki ∈ Z

[
z, z−1].

Since (continuing our systemic confusion of a with the vector (1,0) ∈ Z
2)

type
(
tki ali t−ki

) = liM
ki a

we have the following lemma:

Lemma 4.1. All w ∈ F{a,t} satisfy type(w) = [t̃ype(w)(M)] · a.

4.2. Appearance of types

We now determine the length of the shortest word with a specified unreduced type and height.
We begin with some terminology. Consider an unreduced type

t (z) =
∑

i

ciz
i ∈ Z

[
z, z−1]

with ci ∈ Z and a height h ∈ Z. The Laurent polynomial t (z) can be divided into three different
pieces (depending on h). There are two cases. If h � 0, we define

Th(t) :=
−1∑

i=−∞
ciz

i,

Ch(t) :=
h∑

i=0

ciz
i ,

Hh(t) :=
∞∑

i=h+1

ciz
i,

T h := max
{|i|: i = 0 or i < 0, ci �= 0

}
,

Hh := max{i − h: i = h or i > h, ci �= 0}.

If h � 0, we define

Th(t) :=
h−1∑

i=−∞
ciz

i,

Ch(t) :=
0∑

ciz
i ,
i=h
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Hh(t) :=
∞∑
i=1

ciz
i,

T h := max
{|i| − |h|: i = h or i < h, ci �= 0

}
,

Hh := max{i: i = 0 or i > 0, ci �= 0}.

We will refer to Th(t) as the tail, Ch(t) as the center, and Hh(t) as the head. Also, we will call
T h(t) the length of the tail and Hh(t) the length of the head. Observe that

t = Th(t) + Ch(t) +Hh(t).

Our theorem is the following:

Theorem 4.2. Let h be a height and let

t (z) =
∑

i

ciz
i ∈ Z

[
z, z−1]

be an unreduced type. Then the shortest word with this unreduced type and height has length

2T h(t) + 2Hh(t) + |h| +
∑

i

|ci |.

Proof. We begin by describing an algorithm for determining the unreduced type and height of a
word w in {a±1, t±1}. The algorithm keeps track of two pieces of data, the partial height H ∈ Z

and the partial unreduced type T ∈ Z[z, z−1]. Both are initialized to 0. We read w from left to
right. If we read the letter t l with l = ±1, we add l to H . If we read the letter al with l = ±1, we
add lzH to T . After reading all of w, it is clear that H = h(w) and that T = t̃ype(w).

Now consider any word w with the desired height and unreduced type. Observe that each a±1

in w contributes exactly one term of the form ±zi . Hence w must contain at least
∑

i |ci | letters
of the form a±1. To prove that w is at least as long as the theorem indicates, it is therefore enough
to show that w contains at least 2T h(t) + 2Hh(t) + |h| letters of the form t±1. We first consider
the case h � 0. In this case, either Th(t) = 0 or Th(t) must contain a non-zero term of degree
−T h(t). This implies that during our algorithm the partial height H must at some point equal
−|Th(t)|. Similarly, either Hh(t) = 0 or Hh(t) must contain a non-zero term of degree h+Hh(t).
This implies that during our algorithm the partial height H must at some point equal h +Hh(t).
Since h(w) = h, our algorithm must end with H = h. Summing up, the partial height H (which
changes by ±1 each time a letter of the form t±1 is read) starts at 0, ends at h, at some point
equals −T h(t), and at some other point equals h+Hh(t). Clearly at least 2T h(t)+2Hh(t)+|h|
letters of the form t±1 are necessary, as desired. The case of h � 0 is proven in a similar fashion,
with the roles of Th(t) and Hh(t) reversed.

This proves that the indicated expression is a lower bound on the length of a word with the
desired unreduced type and height. We now prove that this lower bound is realized. Like in the
proof of the lower bound, the proofs in the cases h � 0 and h � 0 are similar; we will only
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consider h � 0. In this case, the following word has the desired length, unreduced type, and
height:

t−T h(t)

( −1∏
i=−T h(t)

aci t

)
ac0

(
h+Hh(t)∏

i=1

taci

)
t−Hh(t). �

Remark. After proving a version of Theorem 4.2, Grayson attempts to set up a complicated
system of recurrence relations between various subsets of the group. He expresses the growth
function as a power series whose coefficients are themselves power series. He demonstrates that
there is a sort of linear recurrence relation between these (power series) coefficients. He then
claims that this is enough to prove that the growth series is rational. However, absent a proof that
(say) the first coefficient is in fact a rational function this is insufficient.

Let T = trace(M). Since M is Anosov, it has two distinct real eigenvalues. Let λ and λ′ be
the eigenvalues with eigenvectors v and v′. Let α,α′ ∈ R be such that

(1,0) = αv + α′v′.

Theorem 4.3. Let w1 and w2 be words in {a±1, t±1}. Then w1 and w2 represent the same element
of G if and only if h(w1) = h(w2) and 1 − T z + z2 divides the Laurent polynomial t̃ype(w1) −
t̃ype(w2).

Proof. Let

t̃ype(w1) =
∑

i

ciz
i ,

t̃ype(w2) =
∑

i

c′
iz

i .

Observe that with respect to the basis {v, v′} Lemma 4.1 says that we have

type(w1) =
(

α
∑

i

ciλ
i, α′ ∑

i

ciλ
′i
)

,

type(w2) =
(

α
∑

i

c′
iλ

i, α′ ∑
i

c′
iλ

′i
)

.

Since M is a 2×2 matrix with irrational eigenvalues, λ and λ′ have the same minimal polynomial
as M ; i.e. 1 − T z + z2, whence the theorem. �

Consider the set

X = Z
[
z, z−1] × Z.
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Define a size function on X by setting∥∥∥∥(∑
i

ciz
i , h

)∥∥∥∥ := 2T h

(∑
i

ciz
i

)
+ 2Hh

(∑
i

ciz
i

)
+ |h| + 1 +

∑
i

|ci |.

Define a partition P on X by the following equivalence relation:

(t1, h1) ∼ (t2, h2) ⇐⇒ [
h1 = h2 and 1 − T z + z2 divides t1 − t2

]
.

We can now state the following important corollary to the above calculations:

Corollary 4.4. G is near-isometric to X/P (with constant c = 1).

Remark. The extra 1 in the definition of the size function on X simplifies the language L we
construct in Section 5, as it forces every monomial in the center of a Laurent polynomial to
contribute something to the size, even if it equals 0.

5. The language

By Corollary 3.2, to prove Theorem 1.1 it is enough to produce a regular language L with
a partition P ′ satisfying the falsification by fellow traveler property so that L/P ′ is isometric
to X/P . We first prove a number of finiteness results about X. Next, we will define a series
of languages Ln and a series of corresponding partitions Pn. Finally, we will prove that for n

sufficiently large Ln/Pn is isometric to X/P and satisfies the falsification by fellow traveler
property.

5.1. Finiteness lemmas

The coefficients of the Laurent polynomials associated to elements of X are unbounded. To
apply the theory of finite state automata to X/P , we will first prove a lemma which bounds the
coefficients of the Laurent polynomials associated to elements of minimal size in a single subset
in P . We will then prove two other lemmas which bound the information we need to keep track
of while comparing elements of X modulo P .

Lemma 5.1. Let x = (t, h) ∈ X be so that

‖x‖ = min
{‖x′‖: x = x′ modulo P

}
.

Then the coefficients ci of t satisfy |ci | < 5|T |.

Proof. By the definition of P , we can for each i add or subtract zi−1 − T zi + zi+1 from t

without changing x. Now, if |ci | � 5|T |, add or subtract 5zi−1 − 5T zi + 5zi+1 in such a way
as to decrease |ci |. Examining the formula for the size of an element of X, we see that we have
subtracted 5|T | from the size of x and added at most 2 + 2 + 5 + 5 = 14. Since |T | � 3, we
conclude that x was not of minimal size, a contradiction. �
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Lemma 5.2. For every positive integer A, there exists some positive integer BA so that the fol-
lowing holds. For i = 1,2 let fi = ∑

j ci,j z
j with |ci,j | � A. Assume that 1 − T z + z2 divides

f1 − f2. Then the coefficients of (f1 − f2)/(1 − T z + z2) are bounded by BA.

Proof. Since |T | � 3, the largest coefficient which is left when we expand out (1−T z+ z2)g(z)

is at least as large as the largest coefficient of g. Hence we may set BA = 2A. �
Lemma 5.3. For all positive integers A and B , there exists some positive integer CA,B so that
the following holds. For i = 1,2 let fi = ∑

j ci,j z
j with |ci,j | � A. Assume that

f1 − f2 =
((

1 − T z + z2)∑
j

dj z
j

)
+ (e1z + e2)

with |dj | � B . Then |e1|, |e2| � CA,B .

Proof. Observe that the coefficients of (1−T z+z2)
∑

j dj z
j are bounded by B(|T |+2). Hence

the coefficients of

e1z + e2 = f1 − f2 −
((

1 − T z + z2)∑
j

dj z
j

)

are bounded by CA,B := 2A + B(|T | + 2). �
5.2. The language

Fix a natural number n � 1. Let

An = {−n, . . . , n} × {−1,1,2}

be an alphabet with weighting

φ(c, k) = |c| + |k|.

Consider the language Ln on An whose words are of the following form:

(· ,2) · · · (· ,2)(· ,±1) · · · (· ,±1)(· ,2) · · · (· ,2).

We require words w in Ln to satisfy the following conditions.

(1) w must contain at least one letter of the form (· ,±1).
(2) The second entries in all the middle terms of w must be identical.
(3) If the common second entry in all the middle terms of w is −1, then there must be at least

two such middle terms.
(4) If the first or last letters of w equal (c,2), then c �= 0.
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We also define the language L′
n to consist of all such words w satisfying conditions (1)–(3) but

not necessarily (4). Both Ln and L′
n are clearly regular. Define a map ψ ′ :L′

n → X by

ψ ′
(

n1∏
i=1

(ci,2)

n2∏
i=0

(
c′
i ,1

) n3∏
i=1

(
c′′
i ,2

))

=
(

n1∑
i=1

ciz
i−n1−1 +

n2∑
i=0

c′
iz

i +
n3∑
i=1

c′′
i zn2+i , n2

)

and

ψ ′
(

n1∏
i=1

(ci,2)

n2∏
i=0

(
c′
i ,−1

) n3∏
i=1

(
c′′
i ,2

))

=
(

n1∑
i=1

ciz
i−n1−n2−1 +

n2∑
i=0

c′
iz

i−n2 +
n3∑
i=1

c′′
i z

i ,−n2

)
.

Let ψ be the restriction of ψ ′ to Ln ⊂ L′
n. Observe that ψ ′ induces a partition P ′

n of L′
n and ψ

induces a partition Pn of Ln. The map ψ is clearly a size-preserving map from Ln to X, and
the fact that we require that if the sign of the center terms is negative then there must be at least
two center terms forces it to be an injection (this condition prevents trouble from occurring when
h = 0). Lemma 5.1 implies the following:

Theorem 5.4. For n � 5|T | the induced map ψ :Ln/Pn → X/P is an isometry.

We now observe that the tripartite division of words in L′
n reflects the tail–center–head divi-

sion of the corresponding Laurent polynomials. If w ∈ L′
n with ψ ′(w) = (t, h), we define

T (w) = Th(t),

C(w) = Ch(t),

H(w) = Hh(t).

We will refer to these as the tail, the center, and the head of w. We also define T (w) and H(w)

to equal the number of letters of the form (c,2) at the beginning and end of w. We remark that if
w begins or ends with (0,2), then T (w) �= T h(t) or H(w) �= Hh(t).

5.3. The acceptor

Fix positive integers n and i. Define a language

Rn,i = {
(w1,w2) ∈ Ln × Ln: w1 = w2 in Ln/Pn

and
∣∣T (w1) − T (w2)

∣∣, ∣∣H(w1) −H(w2)
∣∣ � i

}
.

This section is devoted to proving the following theorem:
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Theorem 5.5. Rn,i is a regular language.

This has the following immediate corollary:

Corollary 5.6. Rn,i is an acceptor for the partition Pn of the language Ln.

To prove Theorem 5.5, we need the following lemma:

Lemma 5.7. Define

R′
n = {

(w1,w2) ∈ L′
n × L′

n: w1 = w2 in L′
n/P

′
n

and T (w1) = T (w2), H(w1) = H(w2)
}
.

Then R′
n is a regular language.

Proof. By Theorem 2.1, it is enough to construct an automaton accepting rev(R′
n), or (to put it

in another way) to construct an automaton which reads w1 and w2 from right to left. Let B = Bn

be the constant from Lemma 5.2 and C = Cn,Bn be the constant from Lemma 5.3. Our strategy
will be to imitate the usual polynomial long division algorithm to divide the difference between
the Laurent polynomials associated to w1 and w2 by 1 − T z + z2. We also will make sure that
w1 and w2 “line up” properly; that is that they have heads, centers, and tails of the same length.

Our automaton has a failure state plus the following set of states:

{
(r, l): r = c1z + c2 with ci ∈ Z so that |ci | � C and

l ∈ {H,T ,C1,C−1,C−1,1}
}
.

The second entry in a state keeps track of where we are in w1 and w2 (the label C1 means that the
center portion consists of terms of the form (· ,1), the label C−1,1 means that the center portion
consists of terms of the form (· ,−1) and we have only read one term of that form, and the label
C−1 means that the center portion consists of terms of the form (· ,−1) and we have read at least
two terms of that form). The first entry keeps track of the remainder obtained by dividing the
difference of the portion read so far by 1 − T z + z2. Recalling that our automaton reads w1 and
w2 from right to left, we begin in the state (0,H). Assume that ψ ′(wi) = (ti , hi) with

ti =
N2∑

j=−N1

ci,j z
j .

Assume now that we are in the state (r, l) after reading k letters. This means that there exists
some Laurent polynomial q (whose value does not matter—all that matters for determining the
transitions are the values of r and l) so that

N2∑
(c1,i − c2,i )z

i = zN2−k+1(q · (1 − T z + z2) + r
)
.

i=N2−k+1
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If we do not read entries of the form (c1,N2−k, e) from w1 and (c2,N2−k, e) from w2 (in other
words, if at this point w1 and w2 cease to “line up”), then we fail. Otherwise, the difference
between the portions read so far is

N2∑
i=N2−k

(c1,i − c2,i )z
i = zN2−k

(
zq · (1 − T z + z2) + (

zr + (c1,N2−k − c2,N2−k)
))

.

Note that zr + (c1,N2−k − c2,N2−k) is a quadratic polynomial. Divide it by 1 − T z + z2 to get

zr + (c1,N2−k − c2,N2−k) = q ′(1 − T z + z2) + r ′,

where r ′ is a linear function. If the coefficients of r ′ are not bounded by C, then by Lemma 5.3 it
is impossible for w1 and w2 to define equal elements of L′

n modulo P ′
n, and we fail. Otherwise,

we make the following transition: If l = H or l = T and e = 2, then we transition to (r ′, l).
If l = H and e = 1, then we transition to (r ′,C1). If l = H and e = −1, then we transition to
(r ′,C−1,1). If l = C1 and e = 1, we transition to (r ′,C1). If l = C1 or l = C−1 and e = 2, we
transition to (r ′,T ). If l = C−1,1 or l = C−1 and e = −1, we transition to (r ′,C−1). If we are not
in one of these situations, we fail.

Assume now that we manage to successfully read all of w1 and w2 and end in a state (r, l).
This implies, in particular, that the heads, centers, and tails of w1 and w2 are of the same length.
Also, it is clear from the algorithm that r is the remainder of the difference of the Laurent poly-
nomials associated to w1 and w2 divided by 1 − T z + z2. We succeed if we end in one of the
following three states: (0,T ), (0,C1), or (0,C−1). The restriction on l is required to guarantee
that both w1 and w2 contain centers of the appropriate form. �

We now prove Theorem 5.5.

Proof of Theorem 5.5. Set Qr = ∏r
j=1(0,2). Observe that

Rn,i = {
(w1,w2): w1,w2 ∈ Ln and there exist r, s ∈ Z so that 0 � r, s � i

and either (Qrw1Qs,w2) ∈ R′
n, (Qrw1,w2Qs) ∈ R′

n,

(w1Qs,Qrw2) ∈ R′
n, or (w1,Qrw2Qs) ∈ R′

n

}
.

Since the integers r and s which appear in this expression are bounded, it can be expressed using
first order predicates and concatenation. Theorem 2.1 therefore implies that Rn,i is a regular
language. �
5.4. The falsification by fellow traveler property and proof of the main theorem

In this section we will complete the proof of Theorem 1.1. We will need the following defini-
tion:
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Definition. Consider w1,w2 ∈ Ln with ψ(wi) = (
∑

j ci,j z
j , hi). The divergence of w1 and w2

is the maximal absolute value of

k∑
j=−∞

|c1,j | − |c2,j |

as k varies.

The key step in our proof will be the following theorem:

Theorem 5.8. There exist constants K , L, and N so that N � 5|T | and the following are true.

(1) If w1 ∈ L5|T | is not a minimal size representative modulo P5|T |, then there exists some w2 ∈
LN so that:
• w1 = w2 and ‖w2‖ < ‖w1‖.
• |H(w1) −H(w2)| � L and |T (w1) − T (w2)| � L.
• The divergence of w1 and w2 is bounded by K .

(2) If w1,w2 ∈ L5|T | are two different minimal size representatives of the same element mod-
ulo P5|T |, then |H(w1) −H(w2)| � L and |T (w1) − T (w2)| � L.

Before proving Theorem 5.8, we will use it to prove Theorem 1.1.

Proof of Theorem 1.1. By Corollary 4.4 and Theorem 5.4, it is enough to show that LN/PN

has a rational growth series for large N . Let K , L, and N be the constants from Theorem 5.8. We
will prove that PN is a partition of LN with acceptor RN,L satisfying the falsification by fellow
traveler condition with respect to the constant K + (N + 6)L. By Theorem 3.2, this will imply
that LN/PN has a rational growth series, as desired.

We begin by observing that by Lemma 5.1, L5|T | contains minimal size elements from each
set in PN . Now, let w1 ∈ L5|T | not be a minimal size representative modulo P5|T |. Consider the
w2 ∈ LN given by the first conclusion of Theorem 5.8. It is clear that (w1,w2) ∈ RN,L and that
‖w2‖ < ‖w1‖. We must prove that w1 and w2 (K + (N + 6)L)-fellow travel.

We will assume that T (w2) � T (w1); the other case is similar. Consider length j initial
segments v1 and v2 of w1 and w2. Let v′

2 be the initial segment of w2 of length j − (T (w1) −
T (w2)). Since the divergence of w1 and w2 is bounded by K , we know that∣∣‖v1‖ − ∥∥v′

2

∥∥∣∣ � K + 4L.

The 4L term comes from the fact that each term in the initial segment of length T (w1)−T (w2) �
L of v1 contributes an extra 2 to the difference, and in addition either v1 or v′

2 may contain at
most L terms from the head which are absent from the other, each possibly contributing 2 more
to the difference. The remaining portion of v2 has length at most L and each term contributes at
most 2 + N to the size of v2. Hence we conclude that∣∣‖v1‖ − ‖v2‖

∣∣ � K + 4L + L(2 + N) = K + (N + 6)L

as desired.
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Now, by the second conclusion of Theorem 5.8, if w1 and w2 are two minimal size represen-
tatives of the same element of L5|T | modulo P5|T |, then (w1,w2) ∈ RN,L. This completes the
proof of the falsification by fellow traveler property, and hence of the theorem. �

We now prove Theorem 5.8.

Proof of Theorem 5.8. Let B := B5|T | be the constant from Lemma 5.2. We will prove that the
following choices of L, K , and N suffice:

L = (|T | + 2
)
B,

K = (|T | + 2
)
(3B + 4) + 8L + 1,

N = 5|T | + (|T | + 2
)
B.

We begin by proving the first conclusion of the theorem. Let w1 ∈ L5|T | not be a minimal size
representative modulo P5|T |. By Lemma 5.1, there exists some w2 ∈ L5|T | so that w1 = w2
and ‖w2‖ < ‖w1‖. Let t1, t2 ∈ Z[z, z−1] and h ∈ Z be so that (ti , h) = ψ(wi). Expand the ti
as ti = ∑

j ci,j z
j . By Lemma 5.2, there exists some Laurent polynomial q = ∑

j dj z
j with

|dj | � B so that t2 = t1 + (1 − T z + z2)q .
Our goal will be to modify t2 and q to produce new Laurent polynomials t ′2 and q ′ with

t ′2 = t1 + (1 − T z + z2)q ′ so that (expanding q ′ and t ′2 as q ′ = ∑
j d ′

j z
j and t ′2 = ∑

j c′
2,j z

j and

setting w′
2 = ψ−1(t ′2, h)) the following conditions are satisfied:

(1) |d ′
j | � B and ‖w′

2‖ < ‖w1‖.

(2) T (w′
2) − T (w1) � L and H(w′

2) −H(w1) � L.
(3) T (w1) − T (w′

2) � L and H(w1) −H(w′
2) � L.

(4) For all k we have
∑k

j=−∞(|c′
2,j | − |c1,j |) � K .

(5) For all k we have
∑k

j=−∞(|c1,j | − |c′
2,j |) � K .

The first part of condition (1) implies that w′
2 ∈ LN , and the rest of the conditions imply the first

conclusion of the theorem. Our modification will take several steps; to prevent a proliferation of
new notation we will continue to refer to the modified polynomials, words, and coefficients as t2,
q , w2, dj , and c2,j . The modifications are the following:

Claim 1. We can modify w2 so that conditions (1) and (2) are satisfied.

Proof. We will indicate how to achieve T (w2) � T (w1) + L; the other modification is similar.
Assume that T (w2) > T (w1) + (|T | + 2)B . We will show how to find a w′

2 so that condition (1)
is satisfied and so that ‖w′

2‖ < ‖w2‖; repeating this process will eventually yield the desired
conclusion. The idea of our construction is that since each element of the tail of w2 contributes
something to ‖w2‖, if the tail is sufficiently long then we can remove the first few terms from it
and shrink ‖w2‖. Let M be the smallest integer with dM �= 0. Hence

t2 = t1 + (
1 − T z + z2) ∞∑

dj z
i .
j=M
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Set M ′ = M + (|T | + 2)B and

t ′2 = t1 + (
1 − T z + z2) ∞∑

j=M ′
dj z

i .

Expand this as t ′2 = ∑
j c′

2,j z
j and set w′

2 = ψ−1(t ′2, h).
The only non-trivial fact we must prove is ‖w′

2‖ < ‖w2‖. Observe first that by construction
we have

T (w2) − T
(
w′

2

)
�

(|T | + 2
)
B.

Also,

∣∣c′
2,j

∣∣ =

⎧⎪⎪⎨⎪⎪⎩
0 for j < M ′,
|c2,j − dj−2 + T dj−1| � |c2,j | + (|T | + 1)B for j = M ′,
|c2,j − dj−2| � |c2,j | + B for j = M ′ + 1,

|c2,j | for j > M ′ + 1.

Finally, we may have lengthened the head of w2 by 1; i.e.

H(w2) −H
(
w′

2

)
� −1.

Summing up,

‖w2‖ − ∥∥w′
2

∥∥ = 2
(
T (w2) − T

(
w′

2

)) + 2
(
H(w2) −H

(
w′

2

)) +
∑
j

|c2,j | −
∣∣c′

2,j

∣∣
� 2

(|T | + 2
)
B − 2 − (|T | + 1

)
B − B = (|T | + 2

)
B − 2 > 0

as desired. �
Claim 2. We can modify the w2 produced in Claim 1 so that conditions (1)–(3) are satisfied.

Proof. Assume that T (w1) − T (w2) > L. The idea of our construction of w′
2 is that since each

term of the tail of w1 contributes something to ‖w1‖ and w2 has a much shorter tail than w1
we can use only the initial portion of the quotient q to shorten the tail of w1 by enough to
shrink ‖w1‖. Let M be the smallest integer with c1,M �= 0. Set M ′ = M + (|T | + 2)B and let

t ′2 = t1 + (
1 − T z + z2) M ′−1∑

j=−∞
dj z

i .

Expand this as t ′2 = ∑
j c′

2,j z
j and set w′

2 = ψ−1(t ′2, h).
Observe that c′

2,j = 0 for j < M ′. Informally, we have “chopped off” the first (|T | + 2)B

terms from the tail of w1. However, we may have been too successful: possibly c′
2,M ′ = 0, indi-

cating that we have shortened the tail more than we intended. If this is the case, add or subtract
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zM ′
(1 − T z + z2) from t ′2 in such a way as to insure that we still have w′

2 ∈ LN . There is therefore
some integer E ∈ {−1,0,1} so that

∣∣c′
2,j

∣∣ =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 if j < M ′,
|c1,j + dj−2 − T dj−1 + E| if j = M ′,
|c1,j + dj−2 − ET | if j = M ′ + 1,

|c1,j + E| if j = M ′ + 2,

|c1,j | if j > M ′ + 2

�

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 if j < M ′,
|c1,j | + (|T | + 1)B + 1 if j = M ′,
|c1,j | + B + |T | if j = M ′ + 1,

|c1,j | + 1 if j = M ′ + 2,

|c1,j | if j > M ′ + 2.

Also,

T (w1) − T
(
w′

2

) = (|T | + 2
)
B = L.

Finally, we may have changed the length of the head of w1 by 1; i.e.∣∣H(w1) −H
(
w′

2

)∣∣ � 1.

These facts imply that w′
2 satisfies conditions (2) and (3). To show that w′

2 also satisfies condi-
tion (1), we must show that ‖w′

2‖ < ‖w1‖. This follows from the following calculation:

‖w1‖ − ∥∥w′
2

∥∥ = 2
(
T (w1) − T

(
w′

2

)) + 2
(
H(w1) −H

(
w′

2

)) +
∑
j

|c1,j | −
∣∣c′

2,j

∣∣
� 2

(|T | + 2
)
B − 2 − ((|T | + 1

)
B + 1

) − (
B + |T |) − 1

= (|T | + 2
)
B − |T | − 4 = |T |(B − 1) + (2B − 4) > 0.

The final inequality follows from the fact that B � 2. In a similar way, one can show that if
H(w1) −H(w2) > L then one can modify w2 in an appropriate way. �
Claim 3. We can modify the w2 produced in Claim 2 so that conditions (1)–(4) are satisfied.

Proof. Assume that for some k we have

k∑
j=−∞

(|c2,j | − |c1,j |
)
>

(|T | + 2
)
B + 8L + 1 + 2

(|T | + 2
)
.

We will show that we can find some w′′
2 satisfying conditions (1)–(3) so that ‖w′′

2‖ < ‖w2‖;
repeating this process will eventually yield the desired conclusion. This construction will be a
two-step process. The idea of the first part of our construction is that since the initial portion
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of w2 is so much larger than the corresponding portion of w1 we can remove the initial portion
from q to get a w′

2 which begins like w1 and ends like w2 and is smaller than w2. Set

t ′2 = t1 + (
1 − T z + z2) ∞∑

j=k+1

dj z
j .

Expand this as t ′2 = ∑
j c′

2,j z
j and set w′

2 = ψ−1(t ′2, h). Observe that

∣∣c′
2,j

∣∣ =

⎧⎪⎨⎪⎩
|c1,j | if j � k,

|c2,j − dj−2 + T dj−1| � |c2,j | + (|T | + 1)B if j = k + 1,

|c2,j − dj−2| � |c2,j | + B if j = k + 2,

|c2,j | if j > k + 2.

Now, in a manner similar to that in Claim 2, we may have inadvertently shortened the tail or head
of w2 so much that w′

2 no longer satisfies condition (3). To fix this, create a new Laurent poly-
nomial t ′′2 by adding (E1z

M1 + E2z
M2)(1 − T z + z2) with E1,E2 ∈ {−1,0,1} and M1,M2 ∈ Z

to t ′2 in such a way as to assure that (setting w′′
2 = ψ−1(t ′′2 , h)) we have w′′

2 ∈ LN and∣∣H(w1) −H
(
w′′

2

)∣∣, ∣∣T (w1) − T
(
w′′

2

)∣∣ � L.

Observe that the divergence of w′
2 and w′′

2 is bounded by 2(|T | + 2). This implies that

‖w2‖ − ∥∥w′′
2

∥∥ � 2
(
T (w2) − T

(
w′′

2

)) + 2
(
H(w2) −H

(
w′′

2

))
+

(∑
j

(|c2,j | −
∣∣c′

2,j

∣∣) − 2
(|T | + 2

))
� 2

(
T (w2) − T (w1)

) + 2
(
T (w1) − T

(
w′′

2

))
+ 2

(
H(w2) −H(w1)

) + 2
(
H(w1) −H

(
w′′

2

))
+

k∑
j=−∞

(|c2,j | − |c1,j |
) − (|T | + 1

)
B − B − 2

(|T | + 2
)

> −8L + (|T | + 2
)
B + 8L + 1 + 2

(|T | + 2
)

− (|T | + 1
)
B − B − 2

(|T | + 2
)

= 1

as desired. �
Claim 4. We can modify the w2 produced in Claim 3 so that conditions (1)–(5) are satisfied.

Proof. Assume that for some k we have

k∑ (|c1,j | − |c2,j |
)
>

(|T | + 2
)
B + 8L + 1 + 2

(|T | + 2
)
.

j=−∞
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Pick this k to be the minimal k with this property. Since |c1,j | − |c2,j | � (|T | + 2)B , we have

k∑
j=−∞

|c1,j | − |c2,j | <
((|T | + 2

)
B + 8L + 1

) + 2
(|T | + 2

) + (|T | + 2
)
B.

We will construct from w2 a w′′
2 satisfying conditions (1)–(4) whose divergence from w1 is

bounded by K . Again, the construction of w′′
2 is a two-step process. The idea of the first part of

our construction is that since the initial portion of w2 is so much smaller than the corresponding
portion of w1 we can use only the initial portion of q to get a word w′

2 which is definitely smaller
than w1. Set

t ′2 = t1 + (
1 − T z + z2) k∑

j=−∞
dj z

j .

Expand this as t ′2 = ∑
j c′

2,j z
j and set w′

2 = ψ−1(t ′2, h). Observe that

c′
2,j =

{
c2,j if j � k,

c1,j if j > k + 2

and

∣∣∣∣c′
2,j

∣∣ − |c1,j |
∣∣ �

{
(|T | + 1)B if j = k + 1,

B if j = k + 2.

Now, like in Claim 3 we may have inadvertently shortened the tail or head of w2 so much that
w′

2 no longer satisfies condition (3). To fix this, create a new Laurent polynomial t ′′2 by adding
(E1z

M1 + E2z
M2)(1 − T z + z2) with E1,E2 ∈ {−1,0,1} and M1,M2 ∈ Z to t ′2 in such a way as

to assure that (setting w′′
2 = ψ−1(t ′′2 , h)) we have w′′

2 ∈ LN and∣∣H(w1) −H
(
w′′

2

)∣∣, ∣∣T (w1) − T
(
w′′

2

)∣∣ � L.

Observe that the divergence of w′
2 and w′′

2 is bounded by 2(|T | + 2). This implies that the di-
vergence of w1 and w′′

2 is bounded by 2(|T | + 2) plus the divergence of w1 and w′′
2 . The above

formulas plus the minimality of k imply that the divergence of w1 and w′
2 is bounded by

((|T | + 2
)
B + 8L + 1

) + 2
(|T | + 2

) + (|T | + 2
)
B + (|T | + 1

)
B + B

= (|T | + 2
)
(3B + 2) + 8L + 1.

We conclude that the divergence of w1 and w′′
2 is bounded by(|T | + 2

)
(3B + 2) + 8L + 1 + 2

(|T | + 2
) = (|T | + 2

)
(3B + 4) + 8L + 1 = K

as desired. It is enough, therefore, to prove that ‖w′′| < ‖w1‖. By the above,
2
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‖w1‖ − ∥∥w′′
2

∥∥ � 2
(
T (w1) − T

(
w′

2

)) + 2
(
H(w1) −H

(
w′

2

))
+

(∑
j

(|c1,j | −
∣∣c′

2,j

∣∣) − 2
(|T | + 2

))
> −2L − 2L + ((|T | + 2

)
B + 8L + 1 + 2

(|T | + 2
) − 2

(|T | + 2
))

− (|T | + 1
)
B − B

= 4L + 1 > 0

as desired. �
These claims complete the proof of the first conclusion of the theorem.
We now prove the second conclusion. We recall that the second conclusion of the theorem

is that if w1 and w2 are two minimal size representatives of the same element modulo P5|T |,
then |H(w1) −H(w2)| � L and |T (w1) − T (w2)| � L. Assume that w1 and w2 are equal mod-
ulo P5|T | and satisfy either |H(w1) − H(w2)| > L or |T (w1) − T (w2)| > L. Without loss of
generality assume that either H(w2)−H(w1) > L or T (w2)−T (w1) > L. The proof of Claim 1
tells us then that there exists some w′

2 satisfying w′
2 = w1 and ‖w′

2‖ < ‖w2‖. In particular, w2
was not of minimal size, as desired. �
6. Some questions

As we remarked in the introduction, using the methods of this paper to actually compute
growth series would be a long and unpleasant task. However, in an unpublished paper Parry has
calculated some growth series for torus bundle groups [14]. We reproduce his formulas here.
He considers a torus bundle whose monodromy has trace 2T . Letting 〈a, b, t〉 be the natural
generators, he calculates the growth series of the finite-index subgroup generated by 〈a, tat−1, t〉
with respect to that generating set (observe that this is the same subgroup we considered, but
with one additional generator. It is not too hard to adapt our proof to this new generating set). He
proves that the growth function is N(z)/D(z), where N(z) and D(z) are the following:

N(z) = (1 − z)2(1 + z)
(
1 + 3z + 4z2 + 4z3 + 3z4 + z5

− zT − 3zT +1 − 14zT +2 − 16zT +3 − 11zT +4 − 5zT +5 + 2zT +6

+ 2z2T +1 − 13z2T +2 + 35z2T +3 + 40z2T +4 + 6z2T +5

− 23z2T +6 − 7z2T +7 + 4z2T +8 + 4z2T +9

− 5z3T +2 + 31z3T +3 − 40z3T +4 − 44z3T +5

+ 33z3T +6 + 25z3T +7 − 12z3T +8 − 4z3T +9),
D(z) = (

1 − 2z − z2 − zT + 4zT +1 − zT +2)(1 − z − z2 − z3

− zT +1 + 3zT +2 + zT +3 − zT +4)2
.

Since Parry only dealt with the even trace case, we pose the following combinatorial challenge.
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Question 1. Explicitly compute the growth series of our finite index subgroups for torus bundles
with odd trace monodromy.

The 3-dimensional Sol groups are the fundamental groups of 2-dimensional torus bundles over
a circle whose monodromy has no eigenvalues on the unit circle. By considering n-dimensional
torus bundles over a circle with the same restriction on the monodromy, we get the (n + 1)-
dimensional Sol groups. It seems difficult to generalize our methods to these groups. This
suggests the following question.

Question 2. Do the higher-dimensional Sol groups have rational growth functions?

The fact that we were only able to find a finite index subgroup with rational growth suggests
the following question.

Question 3. Does there exist any group G which has irrational growth with respect to all sets of
generators but which contains a finite index subgroup G′ which has rational growth with respect
to some set of generators?

The following more general question also seems interesting.

Question 4. Consider the property of having rational growth with respect to some set of genera-
tors. How does this property behave under commensuration? under quasi-isometry?

Remark. Observe that S̃L2 and H
2 ×R are quasi-isometric, and hence the fundamental groups of

manifolds modeled on these geometries are quasi-isometric. An easy consequence of Cannon’s
work (see [5]) is that the fundamental groups of manifolds modeled on H

2 × R are rational with
respect to any generating set. The work of Shapiro suggests that this is probably false for mani-
folds modeled on S̃L2 (see [16]), so the property of being rational with respect to all generating
sets is likely not well-behaved under quasi-isometry. The question of whether the fundamental
group of any S̃L2-manifold has rational growth with respect to some generating set is still open.
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