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We construct the general renormalizable actions for the scalar field and the gauge field at a Lifshitz point
characterized by the dynamical critical exponent z. The Lorentz invariance is broken down in the UV
region, but is recovered in the IR limit. Even though the theories are UV complete, the speed of light
is related to the momentum by z(k/M)z−1 which can go to infinity in the UV limit for z � 2. Since the
Lorentz invariance is broken down, the dispersion relation is modified and the time delays in gamma-ray
bursts can be easily explained. In addition, we also discuss the thermal dynamics and the size of causal
patch in a FRW universe for the field theory at a Lifshitz point.

© 2009 Elsevier B.V. Open access under CC BY license. 
1. Introduction

Recently Horava proposed a quantum field theory of gravity
with the dynamical critical exponent equal to z = 3 in the UV re-
gion [1]. Though the spatial isotropy is still assumed to be kept,
the isometry between space and time is got lost. The degree of
anisotropy between space and time is measured by the dynamical
critical exponent z,

�x → b�x, t → bzt. (1)

The theory proposed in [1] describes the interaction of non-
relativistic gravitons at short distances, and recovers nearly the
Einstein’s gravity in the IR region with some highly suppressed
higher-spatially-derivative modifications. Such a theory is at least
power-counting renormalizable in the (3 + 1)-dimensional space-
time. Some solutions of Horava gravity theory were given in [2–4].
Since Horava gravity has a very nice UV behavior, it has been ap-
plied to investigate the physics in the early universe in [5–11]. An
interesting result is that the perturbation of the scalar field with
z = 3 is scale-invariant in the universe where the scale factor goes
like a(t) ∼ t p with p > 1/3 [8]. It may provide an alternative model
to the inflation. But there are still many open questions in this
area, for example how to solve the flatness problem without infla-
tion. Other related works are given in [12–20].

In fact, the first field theory model exhibiting the above
anisotropic scale invariance (1) has been known for a long time.
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It is the so-called Lifshitz scalar field theory with the critical expo-
nent z = 2 [21],

L =
∫

d2x dt
(
(∂tφ)2 − λ

(
�2φ

)2)
. (2)

It has a line of fixed points parameterized by λ. Such fixed points
with anisotropic scale invariance are usually called the Lifshitz
points. The Lifshitz scalar field theory and its generalizations have
been used to study quantum phase transitions in various strongly
correlated electron systems [22]. Moreover, the nontrivial gauge
theories with the Lifshitz fixed points in 2 + 1 dimensions has
been discussed in [23]. And in [12] a different construction on the
non-Abelian gauge theories with z = 2 in arbitrary dimensions was
presented.

In this Letter we temporarily forget about the gravity and only
focus on the classical field theory at a possible Lifshitz point with
arbitrary dynamical critical exponent z and figure out the most
general renormalizable actions for the scalar and the gauge fields.
Due to the anisotropic scaling, the power counting of the fields
is different from the one in usual field theory. As a result, for
a field theory with z � 2, it has the marginal terms with higher
spatially derivatives and also has more renormalizable interactions.
This leads to the modification of the dispersion relation in the UV
limit. And more importantly, due to the breaking of Lorentz invari-
ance, the speed of light at UV may turn to infinity. The fact that
the Lorentz invariance just appears as accidental symmetry at IR
provide a natural mechanism of Lorentz symmetry breaking. As an
application, the issue of time delays in gamma-ray bursts could be
addressed in this context.

Our Letter is organized as follows. The general renormalizable
actions for the scalar field and the gauge field are proposed in Sec-
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tions 2 and 3 respectively. As an application, we provide a possible
explanation for the time delays in gamma-ray bursts due to the
modification of the dispersion relation in Section 4. The thermal
dynamics and the size of causal patch in a FRW universe for the
field theory at a Lifshitz point are discussed in Sections 5 and 6
respectively. Some inspired discussions are included in Section 7.

2. The renormalizable scalar field theory at a Lifshitz point in
d + 1 dimensions

In this section we will construct the most general renormal-
izable action for the scalar field theory with a dynamical critical
exponent z in d + 1 dimensions. The spacetime is assumed to be
R × Rd with the coordinates

(t, �x) ≡ (
t, xi), (3)

for i = 1,2, . . . ,d. The spacetime metric takes the form

ds2 = −N2 dt2 + gij
(
dxi − Ni dt

)(
dx j − N j dt

)
, (4)

where gij are the d-dimensional spatial metric of signature
(+· · ·+), N is the lapse function, and Ni is the shift factor. The
field theory is assumed to have a UV fixed point with the scaling
properties given in Eq. (1). In the case of general z, the classical
scaling dimensions of the coordinates in the unit of the spatial
momenta are

[t]s = −z, [�x]s = −1,
[
� ≡ ∂ i∂i

]
s = 2, (5)

and the classical scaling dimensions of the fields are

[gij]s = 0, [Ni]s = z − 1, [N]s = 0. (6)

The prototype of a quantum field theory is the theory of a
single Lifshitz scalar φ(t, �x) whose dynamics is supposed to be
governed by the following action,

S = 1

2

∫
dt ddx N

√
g

[
1

N2

(
∂tφ − Ni∂iφ

)2 −
∑
J�2

O J � φ J
]
, (7)

where O is an operator which can be expanded by

O J =
n J∑

n=0

(−1)n λ J ,n

M2n+ d−1
2 J−d−1

�n, (8)

here λ J ,n are the energy dimensionless coupling constant. The �

product in Eq. (7) contains all possible independent combinations
of � and φ up to a total derivative. For example,

�3 � φ3 = c1(�φ)3 + c2
(
�2φ

)
(�φ)φ + c3

(
�3φ

)
φ2, (9)

where c1, c2, c3 are the dimensionless parameters. For simplicity
we can assume c1 = 1. Here we mainly work in the Minkowski
spacetime and then have gij = δi j , Ni = 0 and N = 1. From the
kinetic term in the action (7), the scalar field φ has the scaling
dimension

[φ]s = d − z

2
. (10)

The case of z = d corresponds to a very special field theory in
which the scalar field is dimensionless and the power of φ can
be arbitrary large. The action for the scalar field with z = d = 3
has been written down in [7]. In general, the scaling dimension of
the coupling constant λ J ,n in the unit of the spatial momenta is

[λ J ,n]s = z + d + z − d
J − 2n. (11)
2

In order that this theory is power-counting renormalizable, [λ J ,n]s

is required to be not less than zero, namely

n � z + d

2
+ z − d

4
J . (12)

Therefore

n J = max

{
n ∈ Z

∣∣∣n � z + d

2
+ z − d

4
J

}
. (13)

If z < d, n � 0 implies J � 2(z + d)/(d − z). If z � d, there is no
upper bound on J .1 For J = 2, we have n � z.

In the UV limit, the operator O J is dominated by

(−1)n J
λ J ,n J

M2n J + d−1
2 J−d−1

�n J , (14)

which takes the form of

λ J ,n J

k2n J

M2n J + d−1
2 J−d−1

(15)

in the momentum space, where k = |�k|. Therefore the stability of
the field theory in the UV limit requires that λ J ,n J be positive.

Without loss of generality, we assume

λ2,z = 1. (16)

The effective mass term corresponds to J = 2, namely

1

2

z∑
n=0

(−1)n λ2,n

M2n−2
φ�nφ

= 1

2

∑
2�n�z

(−1)n λ2,n

M2n−2
φ�nφ − 1

2
λ2,1φ�φ

+ 1

2
λ2,0M2φ2. (17)

In the IR fixed point, the mass square is nothing but m2 = λ2,0M2

and the speed of light is given by c = √
λ2,1. Here we assume that

the Lorentz invariance of the field theory is recovered in the IR
limit, which requires λ2,1 = 1. Now the dispersion relation for this
field theory can be written down by

ω2 = m2 + �k2 +
∑

2�n�z

λ2,n

M2n−2
�k2n. (18)

For z = 1, the last term in the above equation does not exist and
the standard dispersion relation is recovered. For z � 2 the disper-
sion relation is changed. The group velocity is given by

v g = k

ω

[
1 +

∑
2�n�z

nλ2,n

(
k

M

)2n−2]
. (19)

In the UV limit (k 	 M),

v g 
 z

(
k

M

)z−1

, (20)

which goes to infinity for k → ∞ if z � 2. It is not surprised be-
cause the special relativity is broken down in the UV limit. In the
IR region, the speed of light is modified to be

cg = 1 + 3

2
λ2,2

(
k

M

)2

+ O
(
(k/M)4). (21)

1 A similar result was obtained in [13].
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If z � 3, λ2,2 can be positive or negative. As long as ω2 is positive,
the field theory is always stable.

Of particular interest is the case when z = 3, d = 3. In this case,
the scalar field could couple to Horava–Lifshitz gravity and provide
an alternative to inflation. Note that in this case, the scalar field
is dimensionless and renormalizability gives no constraint on the
scalar potential V (φ).

3. The renormalizable Yang–Mills theory at a Lifshitz point in
d + 1 dimensions

In this section we switch to the Yang–Mills theory with an
arbitrary dynamical critical exponent z in d + 1 dimensions. The
gauge field is a one-form in (d + 1)-dimensional spacetime, with
the spatial components Ai = Aa

i (t, �x)Ta and a time component
A0 = Aa

0(t, �x)Ta . The Lie algebra generators Ta of the gauge group
G satisfy

[Ta, Tb] = i fab
c Tc . (22)

The Lie algebra is normalized to be Tr(Ta Tb) = 1
2 δab . The gauge

transformations are

δε A0 = ∂tε − i[A0, ε],
δε Ai = (

∂iε
a + fbc

a Ab
i ε

c)Ta ≡ Diε. (23)

The gauge-invariant field strengths are given by

Ei = (
∂t Aa

i − ∂i Aa
0 + fbc

a Ab
i Ac

0

)
Ta

= ∂t Ai − ∂i A0 − i[Ai, A0], (24)

Fij = (
∂i Aa

j − ∂ j Aa
i + fbc

a Ab
i Ac

j

)
Ta

= ∂i A j − ∂ j Ai − i[Ai, A j]. (25)

Since the symmetry between space and time is broken down for
z �= 1, we will write the action in terms of the electric field
strength Ei and the magnetic field strength Fij . The engineering
dimensions of the gauge field components at the Lifshitz point are

[A0]s = z, [Ai]s = 1, (26)

and then the engineering dimensions of the field strengths become

[Ei]s = z + 1, [Fij]s = 2. (27)

Similar to [12], we choose a natural gauge-fixing condition,

A0 = 0, and ∂i Ai = 0. (28)

In order to keep the unitarity, the Lagrangian should contain a
kinetic term which is only quadratic in the first time derivatives
of the gauge field. Here the only choice is Tr(Ei Ei). The action in
terms of the gauge field strength Ei and Fij could be of the form,

S = 1

2

∫
dt ddx

[
1

g2
E

Tr(Ei Ei) −
∑
J�2

O J � F J
]
, (29)

where

O J = 1

g J
E

n J∑
n=0

(−1)n λ J ,n

M2n+ d+1
2 J−d−1

D2n. (30)

Here F and D are the abbreviated denotation for the field strength
Fij and the covariant derivative Dk respectively, and λ J ,n are the
coupling with zero energy dimension. Similarly D2n � F J also con-
tains all possible independent combinations of Dk and Fij . Now
the scaling dimensions of gE and λ J ,n are respectively given by
[gE ]s = z − d

2
+ 1,

[λ J ,n]s = z + d + z − d − 2

2
J − 2n. (31)

The renormalizable condition for Ei is [gE ]s � 0, namely

z � d − 2. (32)

For z = 1, the gauge theory is renormalizable only when d � 3.
Since there is no symmetry relating the kinetic term and the po-
tential terms, we still need to find out the renormalizable condi-
tions for the potential terms. A simple way to work them out is to
rescale the gauge field Aa

i to the canonical one Ãa
i which is related

to Aa
i by

Ãa
i = Aa

i /gE , (33)

and then the gauge field strengths become

Ẽ i = ∂t Ãi = Ei/gE , (34)

F̃ i j = ∂i Ã j − ∂ j Ãi − igE [ Ãi, Ã j] = Fij/gE . (35)

The action for the canonical gauge field is

S = 1

2

∫
dt ddx

[
Tr(Ẽ i Ẽ i)

−
∑
J�2

n J∑
n=0

(−1)n λ J ,n

M2n+ d+1
2 J−d−1

D̃2n � F̃ J

]
. (36)

The renormalizable conditions for the potential terms are [λ J ,n]s �
0 which implies

n J = max

{
n ∈ Z

∣∣∣n � z + d

2
+ z − d − 2

4
J

}
. (37)

For J = 2, n � z − 1. In order to recover the z = 1 gauge theory in
the IR limit, we set λ2,0 = 1. On the other hand, the UV stability
requires that λ J ,n J should be positive and λ2,z−1 can be set to be
1 for simplicity.

Now we can easily write down the dispersion relation for a free
gauge field theory as follows

ω2 = k2
[

1 +
∑

1�n�z−1

λ2,n

(
k

M

)2n]
, (38)

where k = |�k|. The group velocity is

v g = dω

dk
= k

ω

[
1 +

∑
1�n�z−1

(n + 1)λ2,n

(
k

M

)2n]
. (39)

In the UV limit (k 	 M), we have

v g 
 z

(
k

M

)z−1

. (40)

The speed of light goes to infinity for k → ∞ if z � 2. In the IR
regime,

v g 
 1 + 3

2
λ2,1

(
k

M

)2

. (41)

Here a negative λ2,1 is allowed as long as ω2 is positive definitely
for z � 3. In the next section the above modified speed of light can
be used to explain the time delays in gamma-ray bursts.
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4. An explanation for the time delays in gamma-ray bursts

Recently the Fermi LAT and Fermi GBM Collaborations reported
that the photon with energy Eh = 13.22+1.70

−1.54 GeV arrived at the
Earth is 16.54 s later than the low-energy photon from GRB
08916C with measured redshift of z′ = 4.35 ± 0.15 [25].2 If the
high-energy photon was emitted at the same time as the low-
energy photon, this delay may encode the information of Lorentz
symmetry violation [26–28]. In [26–28], the dispersion relation of
the photon is proposed to be modified by the effect of quantum
gravity. Some other possible explanations were suggested in [29,
30]. In Section 4 we saw that the dispersion relation and the speed
of light of the photon field at a Lifshitz point was modified. This
fact suggests a natural way to explain the time delays in gamma-
ray bursts.

Here we would like to give a general discussion about the time
delays in the gamma-ray bursts. Assume that the velocity of the
photon with physical momentum k is given by

cg(k) = 1 + λ

(
k

M

)α

. (42)

This deformed velocity of the photon implies that the simultane-
ously emitted photons from the source of the gamma-ray bursts
reach the Earth at different times. In the FRW universe, the mo-
mentum of the photon is redshifted by the expansion of the
universe. The scale factor is related to the redshift factor z′ by
a = (1 + z′)−1 and the speed of light at the time of z′ becomes

cg
(
k, z′) = 1 + λ

(
k/a

M

)α

= 1 + λ
(
1 + z′)α(

k

M

)α

. (43)

The comoving distance between the source of the gamma-ray burst
and the Earth is xc which is given by

xc =
tk∫

tγ

cg(k)
dt

a
, (44)

where tγ is the time when the photon was emitted. If the high-
energy and low-energy photons were emitted at the same time tγ ,
the time delay can be easily obtained,

δt ≡ tkh − tkl 
 −λ
δkα

Mα

zγ∫
0

(1 + z′)α

H(z′)
dz′, (45)

where

δkα ≡ kα
h − kα

l . (46)

For �CDM model, we have

H
(
z′) = H0

√
Ω0

m
(
1 + z′)3 + Ω0

Λ, (47)

where H0 is the present Hubble parameter, and then

δt 
 −λH−1
0

δEα

Mα

zγ∫
0

(1 + z′)α√
Ω0

m(1 + z′)3 + Ω0
Λ

dz′, (48)

here E 
 k is the photon energy measured on the Earth and
δEα 
 Eα

h . In order to explain the time delays, λ should be neg-

ative. Here H−1
0 is roughly the same as the age of the universe,

but δt is only about 16.54 s, and hence M should be much larger

2 In this Letter, we use z′ to denote the redshift.
than Eh if |λ| is not so small. The WMAP 5 yr data [31] indi-
cates that H0 = 70.5 km s−1 Mpc−1, Ω0

Λ = 0.726 and Ω0
m = 0.274.

Taking Eq. (41) into account, we have λ = 3
2 λ2,1 and α = 2. For

Eh = 13.22 GeV and δt = 16.54 s, we get

M 
 60|λ2,1| 1
2

1√
H0δt

GeV 
 9.8 × 109|λ2,1| 1
2 GeV. (49)

Usually it is expected that |λ2,1| ∼ O(1) and then a conservative
estimation of M is roughly not lower than 1010 GeV. It would be
better to take this result as the constraint on the scale of Lorentz
symmetry breaking in the Lifshitz gauge field theory, taking into
account of the fact that there exist possible astrophysical sources
accounting for the time delays of the gamma-ray bursts.

Before closing this section, we need to stress that a negative
λ in Eq. (42) implies that the theory becomes unstable and ill-
defined in the UV region. However, for a field theory at Lifshitz
point with z � 3 it is a UV well-defined field theory which can
easily explain the time delays in gamma-ray bursts.

5. The thermal dynamics of the field theory at the Lifshitz point

It would be interesting to study the thermal dynamics of the
above field theories at Lifshitz point. From the discussions in Sec-
tions 2 and 3, the dispersion relations for both the scalar field and
the gauge field are given by

ω2 = m2 + k2 + · · · + k2z

M2z−2
. (50)

The energy density at finite temperature T is

ρ ∼
∞∫

0

ωe−ω/T kd−1 dk. (51)

In the high temperature limit (T 	 M), the dispersion relation can
be simplified to be w 
 kz/Mz−1, and hence

ρ ∼ M(z−1)d/z T 1+d/z. (52)

Similarly, the entropy density is found to be

s ∼ M(z−1)d/z T d/z. (53)

The above scaling behaviors imply that the field theory seems liv-
ing in a (ds = 1 + d/z)-dimensional spacetime. For z = d, ρ ∼
Md−1T 2 and s ∼ Md−1T . We see that the thermal behaviors of
these field theories are quite different from the ones of a relativis-
tic field theory.

We are also interested in the equation of state of matter at the
Lifshitz point with z in a FRW universe. Considering [E]s = z and
the spatial volume has dimension [V ]s = −d, we have

[ρ]s =
[

E

V

]
s
= z + d. (54)

The metric of a FRW universe is

ds2 = −dt2 + a2(t)d�x2. (55)

Taking Eq. (54) into account, we have

ρ ∝ a−(z+d). (56)

In the FRW universe, the energy density of matter with the equa-
tion of state w goes like ρ ∼ a−d(1+w) . Therefore the equation of
state of matter at the Lifshitz point with z is

w = z
. (57)
d
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Obviously, when z = 1, this is exactly the equation of state of
relativistic matter in a FRW universe. Since the energy density
ρ ∝ T 1+d/z , T ∝ a−z . The temperature of the radiation with z > 1
decreases faster than that of the relativistic matter in an expanding
universe. On the other hand, the entropy density s ∝ T d/z and then
s ∝ a−d . This is reasonable because the entropy density is inversely
proportional to the physical volume ad .

6. The size of causal patch for the field theory at the Lifshitz
point in the FRW universe

In this section we will figure out a new length scale LH which
characterizes the proper size of a causal patch in space for the
perturbation mode with physical momentum p. Consider two par-
ticles separated by a distance Lc in the comoving coordinates at
the time t in a flat FRW universe. The proper distance between
them is nothing but

L = a(t)Lc . (58)

If the spatial comoving coordinates of these two particles remain
unchanged, the relative speed between them due to the expansion
of the universe is

dL

dt
= ȧLc = H L. (59)

On the other hand, the propagation velocity of the message be-
tween these two particles through the field with dynamical critical
exponent z is cg ∼ pz−1/Mz−1. Therefore the size of the causal
patch LH satisfies

H LH ∼ pz−1/Mz−1. (60)

At the time when the perturbation mode stretches outside its
causal patch, we have p ∼ 1/LH and then we obtain

LH ∼ (
Mz−1 H

)−1/z
. (61)

For z = 1, LH is nothing but the Hubble length. For z = d = 3, it is
the same as the one found in [8].

For a (d + 1)-dimensional FRW universe dominated by the mat-
ter with the equation of state w , the scale factor grows up as

a(t) ∼ t
2

d(1+w) . (62)

If w < −1 + 2/d, the universe is in an inflationary phase. The
Hubble parameter decreases as 1/t if w > −1. In order that a per-
turbation mode is generated within the causal patch and stretches
outside the horizon in the future, we should have a(t) > LH (t) for
a sufficient large t , which implies

w < wc = −1 + 2z

d
. (63)

For z = 1, a causally generated quantum perturbation can stretch
outside its causal patch and be frozen to be a classical perturba-
tion only in an inflationary universe. But for z > 1, it can happen
even in a non-inflationary universe. Since the scalar field with the
dynamical critical exponent z has dimension d−z

2 , the perturbation
of such a scalar mode with z = d is expected to be scale-invariant
even in a non-inflationary universe. That is why ones claim that
the inflation is not necessarily required when the field theory at a
Lifshitz point with z = 3 is called for in our (3 + 1)-dimensional
universe. However, even though the horizon problem in hot big
bang model might be released due to the super-luminosity in the
UV region, the flatness problem can be solved only in an inflation-
ary universe. It is premature to claim that the Lifshitz field/gravity
provides an alternative model to inflation.
7. Discussions

In this Letter we constructed the most general power-counting
renormalizable actions for the scalar field and the gauge field with-
out considering the detailed balance condition. These field theo-
ries at long distance reduce to the field theories with the Lorentz
invariance intact, but the symmetry between space and time is
broken down at short distance for z � 2. Since only the kinetic
terms which is quadratic in the first time derivatives are included,
the field theories are still unitary. In this Letter we assumed that
the space is isotropic. One can generalize them to the cases with
anisotropic space. Here we only proposed that the spatial deriva-
tive operators like �n appearing in the action, where n is an in-
teger. Maybe some terms with fractional power of the differential
operator � could be included as well [6]. But the physical meaning
of these terms is not well-understood.

In the original Lifshitz scalar field theory and its generalization
to non-Abelian gauge field and gravity [14,12,1], one may impose
the detailed balance condition to fix the potential. In these cases,
the ground state wavefunction of the theory reproduce the parti-
tion function of a relativistic theory in lower dimension. This fact
may suggest that the theories with the detailed balance condition
have quantum critical points. In this Letter, for generality, we did
not impose any kind of the detailed balance condition. As a result,
even if we only consider the interaction terms with the marginal
dimension, the theory is just classically scale-invariant and may
not be scale-invariant quantum-mechanically. Obviously, a careful
investigation of RG flow and quantum criticality would be a very
interesting issue.

In [24], the gravity duals of the anisotropic scale-invariant field
theory have been constructed. It would be interesting to investi-
gate the gravity duals of the theories presented in this Letter.
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