

Available online at www.sciencedirect.com

Topology and its Applications

Topology and its Applications 154 (2007) 3140-3144

www.elsevier.com/locate/topol

Traces on the skein algebra of the torus

Michael McLendon

Department of Mathematics and Computer Science, Washington College, 300 Washington Avenue, Chestertown, MD 21620, USA

Received 30 January 2007; accepted 15 August 2007

Abstract

For a surface *F*, the Kauffman bracket skein module of $F \times [0, 1]$, denoted K(F), admits a natural multiplication which makes it an algebra. When specialized at a complex number *t*, nonzero and not a root of unity, we have $K_t(F)$, a vector space over \mathbb{C} . In this paper, we will use the product-to-sum formula of Frohman and Gelca to show that the vector space $K_t(T^2)$ has five distinct traces. One trace, the Yang–Mills measure, is obtained by picking off the coefficient of the empty skein. The other four traces on $K_t(T^2)$ correspond to the four singular points of the moduli space of flat SU(2)-connections on the torus. © 2007 Elsevier B.V. All rights reserved.

MSC: 57M27

Keywords: Skein algebra; Trace; Torus

1. Introduction

Skein modules were introduced independently by Przytycki [8] and Turaev [10] and have been an active topic of research since their introduction. In particular, skein modules underlie quantum invariants [7,6] and are connected to the representation theory of the fundamental group of the manifold [1,2,9].

The skein module is spanned by the equivalence classes of framed links in the 3-manifold. The skein module of the cylinder over a surface has a multiplication that comes from laying one framed link on top of the other. With this multiplication, the skein module of the cylinder over a surface is an algebra.

In this paper, we will consider the skein algebra of the torus specialized at a complex number and describe the five distinct traces on this vector space. One trace, the Yang–Mills measure, has been explored in [3] and [5]. The other four traces correspond to the singular points of the moduli space of flat SU(2)-connections on the torus.

2. Preliminaries

Let *M* be an orientable 3-manifold. A framed link in *M* is the embedding of disjoint annuli into *M*. A framed link is depicted by drawing the core of each annulus. One typically uses the blackboard framing to produce the annulus from its core. We will use $M = F \times I$ for a surface *F*. In these cases, we will use the framing given by the surface to produce the annulus from its core.

E-mail address: mmclendon2@washcoll.edu.

^{0166-8641/\$ –} see front matter $\, @$ 2007 Elsevier B.V. All rights reserved. doi:10.1016/j.topol.2007.08.005

Fig. 1. The product structure on $K(F \times I)$.

Equivalence of framed links in M is up to regular isotopy. That is, using only isotopy and Reidemeister's II and III moves. A Reidemeister I move corresponds to a twist in the annulus and thus such a move does not preserve the equivalence class of a framed link.

Let $\mathcal{L}(M)$ denote the equivalence class of framed links in M, including the empty link, ϕ . Let $R = \mathbb{Z}[t, t^{-1}]$ be the ring of Laurent polynomials. Consider the free module $R\mathcal{L}(M)$ with basis $\mathcal{L}(M)$. Define S(M) to be the smallest subspace of $R\mathcal{L}(M)$ containing all expressions of the form $\langle -t \rangle - t^{-1} \rangle$ (and $\bigcirc +t^2 + t^{-2}$ where the framed links in each expression are identical outside the region pictured in the diagrams. The *Kauffman bracket skein module* K(M) is the quotient $R\mathcal{L}(M)/S(M)$.

Because K(M) is defined using local relations on framed links, two homeomorphic manifolds have isomorphic skein modules. Thus K(M) is an invariant of the 3-manifold M.

Let *F* be a compact, orientable surface and let I = [0, 1] be the unit interval. $K(F \times I)$ has an algebra structure that comes from laying one link on top of the other. Given skein elements $\alpha, \beta \in K(F \times I)$, we can represent α, β with the links $L_{\alpha}, L_{\beta} \subset F \times I$. Use isotopy to move L_{α} to $F \times (\frac{1}{2}, 1]$ and L_{β} to $F \times [0, \frac{1}{2})$. The product $\alpha * \beta$ is the skein element represented by $L_{\alpha} \cup L_{\beta}$. A schematic of this product structure is shown in Fig. 1.

To simplify notation, and to emphasize that the algebra structure is determined by *F* rather than by $F \times I$, we will use K(F) to denote the skein module $K(F \times I)$ with the algebra structure described above. We will refer to K(F) as the *skein algebra* of the surface *F*.

With the relations used to define S(M), we can represent any skein element as the linear combination of *simple* diagrams, these are diagrams with no crossings and no trivial components. The skein elements induced by such diagrams form a basis for K(F) [8,10].

In this paper we will make a number of simplifying assumptions. Namely, F is the standard 2-torus T^2 and t is a complex number that is nonzero and not a root of unity. Thus the polynomials in $R = \mathbb{Z}[t, t^{-1}]$ are evaluated at the complex number t and the skein algebra K(F) is *specialized* at t to form $K_t(F)$, a vector space over \mathbb{C} . Throughout this paper, we will divide by expressions of the form $(t^n - t^{-n})$. Choosing t to be a complex number that is not a root of unity allows this type of division without requiring the use of rational functions.

Let $C_t(F) = [K_t(F), K_t(F)]$ be the vector space over \mathbb{C} with basis consisting of the commutators on $K_t(F)$. A *trace* on the algebra $K_t(F)$ is a linear functional $\varphi: K_t(F) \to \mathbb{C}$ satisfying $\varphi(\alpha * \beta) = \varphi(\beta * \alpha)$ for all $\alpha, \beta \in K_t(F)$. Since a trace is linear, this condition can also be written $\varphi(\alpha * \beta - \beta * \alpha) = 0$. Then a trace φ on $K_t(F)$ has $C_t(F) \subset \ker(\varphi)$. So φ descends to be a linear functional on the quotient $K_t(F)/C_t(F)$.

3. Examples of skein algebras

Before we explore the traces on $K_t(T^2)$ in detail, let's look a few examples of skein algebras.

Let *F* be the 2-dimensional disk D^2 . Since every diagram in D^2 that has no crossings is trivial, the only simple diagram in D^2 is the empty skein ϕ . Thus the skein algebra $K(D^2)$ is one-dimensional with basis $\{\phi\}$.

Let *F* be the annulus $A = S^1 \times [0, 1]$. The simple diagrams of *A* consist of the empty skein along with any number of parallel copies of the core of the annulus. Denote *n* parallel copies of the core of the annulus by z^n with $z^0 = \phi$. Then a basis for K(A) is $\{z^0, z^1, z^2, \ldots\}$ and hence K(A) is isomorphic to the algebra of polynomials in *z* with coefficients from $R = \mathbb{Z}[t, t^{-1}]$.

Now let *F* be the torus T^2 . The collection of simple diagrams has a more intricate structure. We can have any (p,q)-curve with *p* and *q* relatively prime and also any number of parallel copies of a given (p,q)-curve. Thus a basis for $K(T^2)$ is $\{\phi, (p,q)^n | \gcd(p,q) = 1, n \in \mathbb{N}\}$, and we use the convention that $(p,q)^0 = \phi$.

Properties of the algebra $K(T^2)$ are explored by Frohman and Gelca in [4]. In particular, they give a basis for $K(T^2)$ that behaves nicely under multiplication. Let $(p,q)_T$ be the (p,q)-curve when gcd(p,q) = 1 and let

$$(p,q)_T = T_{\text{gcd}(p,q)}\left(\left(\frac{p}{\text{gcd}(p,q)}, \frac{q}{\text{gcd}(p,q)}\right)\right)$$

when $gcd(p,q) \neq 1$. Here $T_n(x)$ is the *n*th Chebyshev polynomial defined recursively by $T_0(x) = 2$, $T_1(x) = x$, and $T_{n+1}(x) = T_n(x)T_1(x) - T_{n-1}(x)$. Using this basis for $K(T^2)$, we have the following product-to-sum formula.

Theorem 1 (Frohman–Gelca).

 $(p,q)_T * (r,s)_T = t^{|_{rs}^{pq}|} (p+r,q+s)_T + t^{-|_{rs}^{pq}|} (p-r,q-s)_T,$

where $|_{r,s}^{p,q}|$ is the determinant.

4. Traces on $K_t(T^2)$

Let t be a fixed complex number, nonzero and not a root of unity. Let $A = K_t(T^2)$ and let $\delta: A \otimes A \to A$ be defined by $\delta(a \otimes b) = ab - ba$. The image of δ in A is the subalgebra of A generated by these commutators. Denote this subalgebra by C(A). To understand the nature of the traces on A, we will focus our attention on the commutator quotient A/C(A) because the space of traces is dual to this quotient.

As a vector space A/C(A) is spanned by the cosets of all $(p,q)_T \in A$. To narrow this spanning set to a basis, we use the product-to-sum formula.

As cosets, $(x, y)_T + C(A) = (z, w)_T + C(A)$ if and only if $(x, y)_T - (z, w)_T \in C(A)$. $(x, y)_T - (z, w)_T \in C(A)$ if and only if $(x, y)_T - (z, w)_T$ is equal to some linear combination of commutators. The simplest case would be if

 $(x, y)_T - (z, w)_T = \lambda ((p, q)_T * (r, s)_T - (r, s)_T * (p, q)_T), \quad \lambda \in \mathbb{C}.$

We can use the product-to-sum formula to find the integers p, q, r, s when we are given x, y, z, w.

Lemma 1. Pick a complex number t that is nonzero and not a root of unity and let $A = K_t(T^2)$ with basis $\{(p,q)_T\}$ as described above. Then $(x, y)_T + C(A) = (z, w)_T + C(A)$ if x + z is even, y + w is even, and $\begin{vmatrix} x & y \\ z & w \end{vmatrix} \neq 0$.

Proof. Suppose we have integers x, y, z, w such that x + z is even, y + w is even and $\begin{vmatrix} x & y \\ z & w \end{vmatrix} \neq 0$. Let $p = \frac{x+z}{2}$, $q = \frac{y+w}{2}$, $r = \frac{x-z}{2}$, and $s = \frac{y-w}{2}$. Since $|z_w^x| \neq 0$, elementary matrix operations lead to $|r_s^p| \neq 0$. Let $\alpha = |r_s^p| \neq 0$.

$$(p,q)_T * (r,s)_T = t^{\alpha}(x,y)_T + t^{-\alpha}(z,w)_T,$$

(r,s)_T * (p,q)_T = t^{-\alpha}(x,y)_T + t^{\alpha}(-z,-w)_T,

$$(r,s)_T * (p,q)_T = t^{-\alpha}(x,y)_T + t^{\alpha}(-z,-w)_T.$$

Since orientation does not matter in A, $(-z, -w)_T = (z, w)_T$ and therefore

$$(p,q)_T * (r,s)_T - (r,s)_T * (p,q)_T = (t^{\alpha} - t^{-\alpha}) \big((x,y)_T - (z,w)_T \big).$$

Since $\alpha \neq 0$ and t is not a root of unity, we can divide by $(t^{\alpha} - t^{-\alpha})$ to get

$$(x, y)_T - (z, w)_T = \frac{1}{t^{\alpha} - t^{-\alpha}} \left((p, q)_T * (r, s)_T - (r, s)_T * (p, q)_T \right) \in C(A).$$

Thus $(x, y)_T + C(A) = (z, w)_T + C(A)$ as cosets in A/C(A). \Box

In other words, if x and z have the same parity, y and w have the same parity, and (x, y) and (z, w) are linearly independent, then $(x, y)_T$ is equivalent to $(z, w)_T$ in A/C(A). This fact allows us to reduce our basis for A/C(A)somewhat, and it suggests that the parity of (p, q) will determine the class of $(p, q)_T$ in A/C(A).

Theorem 2. Pick a fixed complex number t, nonzero and not a root of unity. Let $A = K_t(T^2)$ and let C(A) be the subalgebra of A generated by commutators. Then A/C(A) is a five-dimensional vector space over \mathbb{C} .

Proof. Motivated by Lemma 1, we define a map

$$\varphi: A \to \mathbb{C}\{\phi, ee, eo, oe, oo\}$$

by

$$(p,q)_T \mapsto \begin{cases} \phi & \text{if } p = 0, \ q = 0, \\ ee & \text{if } p \text{ even, } q \text{ even,} \\ eo & \text{if } p \text{ even, } q \text{ odd,} \\ oe & \text{if } p \text{ odd, } q \text{ even,} \\ oo & \text{if } p \text{ odd, } q \text{ odd,} \end{cases}$$

then extend linearly.

We need to show that $\ker(\varphi) = C(A)$. Recall that C(A) is the vector space generated by $(p, q)_T * (r, s)_T - (r, s)_T * (p, q)_T$ for $(p, q)_T, (r, s)_T \in A$.

Choose $(p,q)_T$, $(r,s)_T \in A$. To show that $C(A) \subset \ker(\varphi)$, it suffices to show that $c = (p,q)_T * (r,s)_T - (r,s)_T * (p,q)_T \in \ker(\varphi)$.

$$c = (p,q)_T * (r,s)_T - (r,s)_T * (p,q)_T$$

= $\left(t^{|p|g|}_{r|s|} - t^{-|p|g|}_{r|s|}\right) \left((p+r,q+s)_T - (p-r,q-s)_T\right)$

If $(p + r, q + s)_T = (0, 0)_T$, then (p, q) = -(r, s). Hence $(p, q)_T = (r, s)_T$. Thus $c = 0 \in \ker(\varphi)$. If $(p - r, q - s)_T = (0, 0)_T$, then (p, q) = (r, s). Hence $(p, q)_T = (r, s)_T$. Thus $c = 0 \in \ker(\varphi)$.

If neither $(p+r, q+s)_T$ nor $(p-r, q-s)_T$ is $(0, 0)_T$, then since p+r and p-r have the same parity and q+s and q-s have the same parity, we have $\varphi((p+r, q+s)_T) = \varphi((p-r, q-s)_T)$ which implies that $c \in \ker(\varphi)$. Hence $C(A) \subset \ker(\varphi)$.

Now we show that $\ker(\varphi) \subset C(A)$. Take $k \in \ker(\varphi)$. So $k \in A$ and $\varphi(k) = 0$. Then

$$k = \sum_{\text{finite}} \lambda_{(p,q)}(p,q)_T$$

= $\lambda_{(0,0)}(0,0)_T + \sum_{ee} \lambda_{(p,q)}(p,q)_T + \dots + \sum_{oo} \lambda_{(p,q)}(p,q)_T.$ (1)

Here we are breaking the sum into five parts, according to the parity of (p, q). In each of these five parts, the coefficients must sum to zero since $k \in \text{ker}(\varphi)$. As a model for the other cases, we work the case where

$$k = \sum_{ee} \lambda_{(p,q)}(p,q)_T$$

and so

$$\sum_{ee} \lambda_{(p,q)} = 0.$$

Now,

$$\sum_{ee} \lambda_{(p,q)}(p,q)_T$$

is a finite sum and $(p, q)_T$ are all of even–even parity, and $(p, q) \neq (0, 0)$. Choose integers r and s such that $(r, s)_T$ is of even–even parity and (r, s) is linearly independent to each of the (p, q) in the sum for k. That is, s/r is a rational slope that is different from the finite number of rational slopes q/p. Now, using Lemma 1, each $(p, q)_T = (r, s)_T$ in the quotient A/C(A). Hence

$$k = \sum_{ee} \lambda_{(p,q)}(p,q)_T = \left(\sum_{ee} \lambda_{(p,q)}(r,s)_T\right) + \text{commutators}$$
$$= \left(\sum_{ee} \lambda_{(p,q)}\right)(r,s)_T + \text{commutators} = \text{commutators}, \text{ since } \sum_{ee} \lambda_{(p,q)} = 0.$$

Thus $k \in C(A)$.

We could repeat this process for each of the *eo*, *oe*, and *oo* sums given in Eq. (1). Thus for a general $k \in \ker(\varphi)$, we have $k \in C(A)$. Hence $\ker(\varphi) \subset C(A)$. Now $\ker(\varphi) = C(A)$ and we have

 $A/C(A) \cong \mathbb{C}\{\phi, ee, eo, oe, oo\}.$

Thus A/C(A) is a five dimensional vector space over \mathbb{C} . \Box

Recall that a trace is a linear functional defined on A that is zero on C(A). The space of traces is dual to the quotient A/C(A). Thus Theorem 2 implies that there are five traces on $A = K_t(T^2)$. There is a trace for each \mathbb{Z}_2 homology class of T^2 , with one more trace for the empty skein. Each trace picks off the coefficients of the basis elements in its corresponding class. We could denote these traces by φ_{ϕ} , φ_{ee} , φ_{eo} , φ_{oo} . The trace φ_{ϕ} is what Bullock, Frohman, and Kania-Bartoszyńska call the *Yang–Mills measure* in [3] and has been further explored by Frohman and Kania-Bartoszyńska in [5].

5. Further investigation

The moduli space of flat SU(2)-connections on the torus is a sphere with four singular points, sometimes called the "pillowcase". The four additional traces on $K_t(T^2)$ correspond to the four singular points on the pillowcase. Though our calculations have been for the torus, it is likely that a similar result will hold for any closed surface F. Namely, that in addition to the Yang–Mills measure there is a trace on $K_t(F)$ corresponding to each singular point on the moduli space of flat SU(2)-connections on F.

In [5], Frohman and Kania-Bartoszyńska give a state-sum formula for computing the Yang-Mills measure on $K_t(F)$. It is natural to ask if the traces on $K_t(F)$ corresponding to singular points can be computed similarly.

References

- [1] D. Bullock, Rings of $SL_2(\mathbb{C})$ -characters and the Kaufmann bracket skein module, Commentarii Mathematici Helvetici 72 (1997) 521–542.
- [2] D. Bullock, C. Frohman, J. Kania-Bartoszyńska, Understanding the Kauffman bracket skein module, Journal of Knot Theory and Its Ramifications 8 (3) (1999) 265–277.
- [3] D. Bullock, C. Frohman, J. Kania-Bartoszyńska, The Yang–Mills measure in the Kauffman bracket skein module, Commentarii Mathematici Helvetici 78 (2003) 1–17.
- [4] C. Frohman, R. Gelca, Skein modules and the noncommutative torus, Transactions of the American Mathematical Society 352 (10) (2000) 4877–4888.
- [5] C. Frohman, J. Kania-Bartoszyńska, Shadow world evaluation of the Yang-Mills measure, Algebraic and Geometric Topology 4 (2004) 311–332.
- [6] L.H. Kauffman, S.L. Lins, Temperley-Lieb Recoupling Theory and Invariants of 3-Manifolds, Princeton University Press, 1994.
- [7] W.B.R. Lickorish, The skein method for 3-manifold invariants, Journal of Knot Theory and Its Ramifications 2 (2) (1993) 171-194.
- [8] J.H. Przytycki, Skein modules of 3-manifolds, Bulletin of the Polish Academy of Sciences 39 (1-2) (1991) 91-100.
- [9] J.H. Przytycki, A. Sikora, On skein algebras and $Sl_2(\mathbb{C})$ -character varieties, Topology 39 (2000) 115–148.
- [10] V.G. Turaev, The Conway and Kauffman modules of the solid torus, Zapiski Nauchnykh Seminarov (LOMI) 167 (1988) 79–89; English translation: Journal of Soviet Mathematics 52 (1) (1990) 2799–2805.