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ABSTRACT

This study aims to predict the next day hourly average ozone (O3) concentrations using threshold autoregressive
(TAR) models in which the threshold value and the threshold variable are defined by genetic algorithms. The
procedure is also able to generate models with statistically significant regression parameters. The performance of
TAR models was then compared to the one obtained with autoregressive (AR) and artificial neural network (ANN)
models. Different TAR models were generated, corresponding to different threshold variables and values. For the
training period, ANN model presented better results than TAR and AR models. However, in the test period, AR and
one of the TAR models achieved better predictions of O3 concentrations than the ANN model. The distinction
between the applied models became greater when they were evaluated in the prediction of the extreme values, for
which the TAR model presented the best performance. The performance with respect to extreme values is a useful
implication for the protection of public health as this model can provide more reliable early warnings about high O3

concentration episodes.
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1. Introduction

Time series is defined as a sequence of observed points of a
variable, usually measured at equally spaced time interval.
Considering that Y1, Y2, …, Yn (with n>1) is a time series, the aim of
the time series model is to predict the next value Yn+1, based on
data already measured (Y1 to Yn) (Zou and Yang, 2004). Palit and
Popovic (2005) and Gooijer and Hyndman (2006) divided these
models into linear and nonlinear models. The linear models try to
find a linear relationship between the predicted and the
explanatory variables. The most common examples are the auto
regressive (AR), moving average, autoregressive moving average,
autoregressive moving average with exogenous inputs (ARMAX)
and autoregressive integrated moving average (ARIMA) models.
Some examples of nonlinear models are the smooth transition
autoregression, autoregressive conditional heteroskedasticity,
Markov switching, threshold autoregression (TAR) and bilinear
models.

TAR model assumes that the behavior of the series changes
for different regimes. The change from one regime to another
depends on the past values of the series. Terui and Dijk (2002)
presented a TAR model composed by two AR models, each one for
a different regime. This model is given by:
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where iˆ and i
ˆ (i=0,…,k) are the regression parameters applying

the AR model to each regime; and are the errors associated
with the regressions; the values of r and d are the threshold value
and delay parameter (the delay parameter defines which input
variable should be evaluated and compared with the threshold
value to decide the regression equation to use), respectively. In the
application of the AR model, the regression parameters were
determined by minimizing the sum of squared errors (SSE) (Pires et
al., 2008a). Additionally, only the statistically significant regression
parameters should be considered. The statistical significance of
regression parameters was evaluated through the calculation of
confidence intervals for a given significance level. Pires et al.
(2008a) assumed that a regression parameter î (standing for
either iˆ or i

ˆ ) was statistically significant if:
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where t is the Student’s t distribution, n is the number of data
points, k is the number of explanatory variables, is the
significance level, ˆ is the standard deviation given by

, and Sxxi is the sum of squares related to an

explanatory variable xi given by
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Genetic algorithms (GAs) have been used to define threshold
variable and threshold value for TAR model (Wu and Chang, 2002;
Baragona et al., 2004). In this study, besides the optimization of r
and d values, GAs were applied to define the explanatory variables
that are used in each regression, with the constraint that all
regression parameters must be statistically significant. As a case
study, the prediction of next day hourly average O3 concentrations
was analyzed due to the importance of this problem for human
health protection. Besides its negative effects on human health, O3
is harmful to vegetation, climate, materials, and atmospheric
composition (Leeuw, 2000; Bytnerowicz et al., 2007; Pires et al.,
2008b). It is a secondary pollutant, predominantly formed by
photochemical reactions involving other air pollutants, under
suitable meteorological conditions. Thus, a typical daily concen
tration profile is generally observed, showing maximum values
during the early afternoon and minimum values at night and early
morning. Therefore, the use of time series models to predict O3
concentrations seems promising. Several attempts have been
made to predict air pollutant concentrations using statistical
models (Nunnari et al., 1998; Salcedo et al., 1999; Prybutok et al.,
2000; Kao and Huang, 2000). Nunnari et al. (1998) applied neural
techniques for the prediction of concentrations of several air
pollutants. Neural network models were compared with time
series (AR and ARMAX), obtaining better results. Prybutok et al.
(2000) predicted daily maximum O3 concentrations using ANN
models, multiple linear regression and ARIMA models. The ANN
model obtained better results. Kao and Huang (2000) developed
ANN and time series models to predict SO2 and O3 concentrations.
ANN model performed slightly better than the time series model.
Salcedo et al. (1999) applied a model based on a stepwise
approach to time series analysis to predict the daily average
concentrations of strong acidity and black smoke. For all analyzed
monitoring sites, statistically significant higher frequency (2–4
days) periodic components were observed for both pollutant
indicators. As far as it is known, no study has been performed using
a TAR model in the air quality modeling field. This study aims to
predict the next day hourly average O3 concentrations through the
application of TAR model. Moreover, the performance of TAR
model was compared to the ones obtained with AR and ANN
models. In this study, the ANN models were formed by three
layers. Different numbers of hidden neurons (1 to 8) were tested
and for each one, 100 trials were done. Cross–validation was
performed to avoid the overtraining using 20% of the training
period as the validation data. The selected model corresponded to
the least error in the training period.

The remainder of this paper is outlined as follows: in Section
2, GAs are presented and how they are applied to TAR model;
Section 3 describes the case study; in Section 4, the results of
different TAR models are discussed; and in Section 5, the
conclusions are highlighted.

2. Genetic Algorithms

GAs are search and optimization techniques introduced by
Holland (Holland, 1975; Lauret et al., 2005; Rothlauf, 2006), based
on the Darwin principles of evolution and natural genetics. Three
principles are considered important: (i) the existence of a popula
tion limited by a maximum number of individuals with different
properties and abilities; (ii) the natural creation of new individuals
with similar properties of the existing ones; and (iii) the natural
selection of fittest individuals.

GAs begin frequently with randomly generated set of
individuals (also called chromosomes) that constitute the initial
population (Rothlauf, 2006; Bandyopadhyay and Pal, 2007). Each
chromosome, a potential solution of a given problem, has genes
that represent the model parameters. To evaluate the degree of
goodness of the solution represented by each chromosome, a
fitness function must be defined. The fittest chromosomes are
then submitted to genetic operations (selection, crossover and
mutation) to create new individuals. The repetition of this
procedure generates a sequence of populations (generations),
generally containing better solutions. The termination criteria
usually applied to GAs are: (i) stop after a fixed number of
generations; or (ii) stop when a chromosome reaches a specific
fitness value. In this study, the GA procedure was stopped when
the maximum number of generations was achieved. Some
examples of GA methodology were presented previously by
Holland (1975) and Wu and Chang (2002).

The population size is the number of chromosomes in a
population. A large number of chromosomes increases the
population diversity, but also increases the computation time due
to the fitness evaluation step. Goldberg (1989) reported that the
population size selected by many GA researchers usually ranges
from 30 to 200. In this study, the population size was fixed at 100
chromosomes. Preliminary simulations showed that for this
population size the number of generations should be high to
achieve convergence. Thus, the number of generations was 500.
Figure 1 shows the codification of each chromosome. Each
chromosome, that uses bit string coding representation (with 29
bits), is divided into four sub–strings corresponding to: (i) the value
of d (3 bits); (ii) the value of r (8 bits); (iii) the explanatory variables
used in the first regression (with the data which Yt d r – 9 bits);
and (iv) the explanatory variables used in the second regression
(with the data which Yt d > r – 9 bits). The values of d and r are
determined converting the binary sub strings to decimal values.
The last two sub–strings are used to decide if a corresponding
variable is selected for regression: 1 – the variable is selected; 0 –
the variable is not selected. For the prediction of the next day
hourly average O3 concentrations, the TAR model took into
account, as the explanatory variables, the O3 concentrations at the
same hour of the previous eight days. Thus, only 3 bits in the
chromosome were needed for the delay parameter (d), which
represents integer values between 1 (correspondent binary 000)
and 8 (correspondent binary 111). The data used in this study
presented the minimum and the maximum O3 concentrations of
0 and 240 g m 3, respectively. The selection of eight bits (28 = 256)
for the value of r had as objective to obtain a good precision of the
threshold value. The selection of eight explanatory variables and
the bias needed nine bits coded in the chromosome for each
regression in TAR model.

Figure 1. Codification of chromosomes.

The selection operation determines which chromosomes are
used to generate the next population based on their fitness in the
current generation (survival of the fittest). The fitness function
measures the performance of the individual with respect to the
particular search problem. The fitness function was defined as:

1 2
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where ip is the number of statistically insignificant regression
parameters and n is the number of the training points. The indexes
1 and 2 correspond to the first and the second regressions,
respectively. Using this fitness function, the best models should
present all statistically significant regression parameters to have
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the lowest fitness value. If all regression parameters are
statistically significant, the fitness value is the root mean squared
error (RMSE) of the training data. The selection operation defines
the chromosomes that are moved to the next generation. In many
selection methods, the best solutions cannot be chosen for the
next generation. Therefore, these solutions can be lost after the
application of crossover and mutation. To avoid that in this study,
the best elements were transferred to the next generation
(elitism). However, elitism decreases the population diversity in
the next generations. For that reason, after the selection proce
dure, all chromosomes in the current generation have equal
probability of being chosen by the crossover and mutation
procedures (Pires et al., 2008c).

The crossover operation consists in exchanging genetic
material (binary substrings) between two parents (two chromo
somes of the current generation), creating two new individuals.
Siriwardene and Perera (2006) reported that high crossover rates
increase the population diversity, promoting the mixing of
chromosomes. In this study, the selected crossover rate was 0.7.

The mutation operation consists in modifying the chromo
somes randomly. In bit string representation, the mutation is done
by changing 0 to 1 and vice versa in one or more bits. Siriwardene
and Perera (2006) reported that high mutation rates increase the
probability of destruction of the best chromosomes. In this study,
the selected mutation rate was 0.1.

The GAs procedure applied to TAR models is described by the
following steps:

(1) Randomization of the initial population
(2) Calculation of r and d (threshold and delay parameters of

TAR models)
(3) Division of the data into two parts (one which Yt d r and

another with Yt d > r)
(4) Application of AR to the two parts of data and

determination of the regression parameters and their statistical
significance

(5) Calculation of the fitness values
(6) If the stopping criterion is satisfied (maximum number of

generations achieved), the optimal parameters, d and r values are
determined; if not it is necessary to apply the selection, crossover
and mutation procedures to obtain new chromosomes. In this
case, return to Step 2.

TAR and AR models were estimated using subroutines
developed in Microsoft Visual Basic for Applications (MS Excel)
created by the authors. ANN models were determined with the
Neural Networks Toolbox of Matlab application.

3. Data

The O3 data was collected in an urban site (Antas) with traffic
influences situated in Oporto, Northern Portugal. Pires et al.
(2008b) presented a description of this urban site showing the O3
daily profile and high levels of NOX at this site. This site belongs to
the air quality monitoring network of the Oporto Metropolitan
Area and is managed by the Regional Commission of Coordination
and Development of Northern Portugal (Comissão de Coordenação
e Desenvolvimento Regional do Norte), under the responsibility of
the Ministry of the Environment. The most important air pollution
sources in Oporto Metropolitan Area are vehicle traffic, an oil
refinery, a petrochemical complex, a natural gas–fired thermal
power plant, an incineration unit and an international shipping
port (Pereira et al., 2007).

The O3 measurements were performed through UV–
absorption photometry using the 41 M UV Photometric Ozone
Analyser from Environment S.A. (Pires et al., 2008b). This equip
ment was submitted to a rigid maintenance programme, being
calibrated for every four weeks. Measurements were continuously
made and hourly average concentrations (in g m 3) were
recorded.

The data was organized in such a way that the predicted
hourly average O3 concentration was the function of the O3
concentrations at the same hour of the eight days before. The
analysed period was from May to August 2006. Table 1 presents
some important statistics of the used dataset. It was divided in the
training (May, June and July, corresponding to 2 199 data points)
and test (August, corresponding to 733 data points) periods. The
explanatory variables were Z standardized to zero mean and unit
standard deviation.

Table 1. Statistics of the used dataset

Average
Percentile

0 25 50 75 100

49 0 22 47 70 200

4. Results and Discussion

Different TAR models were obtained, having different
threshold variables and values. These models were compared with
AR and feed–forward ANN models. The statistical significance of
the regression parameters in TAR and AR models was evaluated by
a t–test with a significance level of 0.05. Table 2 shows the

Table 2. Statistically significant regression parameters of threshold autoregressive models (M1 to M6) and autoregressive model (AR) models and the root
squared mean error (RMSE) value of the training data for all models (including artificial neural network – ANN model)

Model 0ˆ 1ˆ 2ˆ 3ˆ 4ˆ 5ˆ 6ˆ 7ˆ 8ˆ RMSE

M1
48.2 13.7 2.7 2.7 3.0 2.0 2.4 2.1 If Yt 1 88.4

23.17
45.4 20.5 17.8 12.4 22.8 26.3 If Yt 1>88.4

M2
48.5 13.6 3.2 2.9 3.5 1.7 2.9 2.2 If Yt 2 125.1

23.17
134.7 16.7 19.2 13.9 41.9 31.1 If Yt 2>125.1

M3
48.6 14.2 3.4 3.0 3.4 1.4 2.9 2.1 If Yt 2 159.6

23.21
94.3 14.5 79.4 21.9 24.8 102.9 54.3 If Yt 2>159.6

M4
48.5 13.6 3.3 2.9 3.5 1.7 3.0 2.2 If Yt 2 118.7

23.25
84.5 14.5 33.3 42.5 If Yt 2>118.7

M5
49.2 14.3 3.6 3.0 4.1 2.5 2.7 1.9 If Yt 6 96.1

23.26
48.8 11.5 4.7 5.3 If Yt 6>96.1

M6
48.8 14.2 3.1 2.8 4.0 2.9 If Yt 7 116.6

23.44
24.2 10.2 13.1 If Yt 7>116.6

AR 48.3 14.4 2.5 3.1 3.7 2.7 1.5 23.84
ANN 22.11
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regression parameters of the six TAR models (M1 to M6)
determined with fitness value higher than that obtained with AR
model and the RMSE of the training data for all models (including
the ANN model). Concerning the training period, the ANN model
(which presented 8 hidden neurons) overcame the TAR and AR
models. For the TAR and AR models, all regression parameters
were considered statistically significant. Therefore, the fitness
value corresponded to the RMSE of the training data. Additionally,
it was also observed that the two regimes in TAR models did not
have an equal number of data. The first regime (with rY dt ) had
always more data compared to the second regime, due to high
threshold values achieved.

In the test period, the O3 concentrations given by TAR, AR and
ANN models were determined by the application of the regression
equations obtained in the training period. The models were
compared through the calculation of the following statistical
parameters: mean bias error (MBE), mean absolute error (MAE),
RMSE, Pearson correlation coefficient (R) and index of agreement
of the second order (d2) (Gardner and Dorling, 2000; Chaloulakou
et al., 2003). Table 3 presents the performance indexes presented
by the TAR, AR and ANN models.

Table 3. Performance indexes of the threshold autoregressive models (M1
to M6), autoregressive model (AR) and artificial neural network (ANN)
models for the test period

M1 M2 M3 M4 M5 M6 AR ANN

MBE 1.42 1.84 1.66 1.85 3.25 3.87 1.50 1.76

MAE 18.99 19.99 19.86 20.29 19.33 20.04 18.94 21.97

RMSE 25.26 27.76 27.47 28.39 26.36 27.96 25.19 28.44

R 0.78 0.73 0.73 0.71 0.76 0.72 0.78 0.72

d2 0.86 0.83 0.84 0.82 0.83 0.81 0.85 0.79

MBE was negative in all models, meaning that, on average, the
predicted O3 concentrations were underestimated. MAE and RMSE
measure residual errors, which give a global idea of the difference
between the observed and modelled values. Thus, M1 and AR
were the models that presented the best performance indexes.
Table 4 shows the performance indexes of M1, AR and ANN
models in the test period when hourly average O3 concentrations
above 88.4 g m 3 (threshold value of M1 model) were recorded.

Table 4. Performance indexes of the best threshold autoregressive model
(M1), autoregressive model (AR) and artificial neural network model (ANN)
obtained for the test period when hourly average O3 concentrations above
88.4 g m 3 (threshold value of M1 model) were recorded

M1 AR ANN

MBE 33.67 36.83 47.87

MAE 38.47 39.77 48.24

RMSE 45.42 46.16 54.41

R 0.53 0.53 0.47

d2 0.59 0.57 0.49

In test set, 96 data points with O3 concentrations (percentile
90 of the all dataset; percentile 87 of the test set) above this value
were recorded. The prediction of high O3 concentrations is an
important issue due to the negative effects that this air pollutant
causes at these levels. In this range of O3 concentrations, the
difference between these models was more significant, with M1
being the model that presents the best performance. On the other
hand, ANN model presented the worst predictions. Figure 2 (a and
b) show, as an example, the predictions with M1 and AR models in
August 6, 7, 20 and 21, 2006. It was shown that the M1 model led
to better predictions for high O3 concentrations.

Figure 2. Prediction of hourly average O3 concentrations using M1, AR and
ANN models: (a) August 6 and 7, 2006; and (b) August 20 and 21, 2006.

5. Conclusions

GAs were applied to define TAR models for prediction of the
next day hourly average O3 concentrations. Different models were
obtained with different threshold variables and values. For the
training period, the ANN model presented better results than TAR
and AR models. However, in the test period, AR and one of the TAR
models showed the best predictions of O3 concentrations (better
predictions than that obtained with the ANN model). The
distinction between the applied models became greater when they
were evaluated on their ability to predict extreme values (> 88.4
g m 3). TAR model allowed more efficient predictions of extreme

O3 concentrations, which are very important to develop efforts to
reduce the negative effects of O3.

Future work should extend the proposed method for TAR
models with more than two regressions. Genetic algorithms could
also be conjugated with ANN models to: (i) determine the best
combination of the input variables; and (ii) define threshold
regressions using these models.
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