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a b s t r a c t

This paper describes an approach to generalized Bernoulli polynomials in higher
dimensions by using Clifford algebras. Due to the fact that the obtained Bernoulli
polynomials are special hypercomplex holomorphic (monogenic) functions in the sense
of Clifford Analysis, they have properties very similar to those of the classical polynomials.
Hypercomplex Pascal and Bernoulli matrices are defined and studied, thereby generalizing
results recently obtained by Zhang and Wang (Z. Zhang, J. Wang, Bernoulli matrix and its
algebraic properties, Discrete Appl. Math. 154 (11) (2006) 1622–1632).
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1. Introduction

In the last decade, a surprisingly amount of papers appeared proposing new generalizations of the classical Bernoulli
polynomials Bn(x) to several real and complex variables or treating other topics related to Bernoulli polynomials (cf. [2,4,
6,7,13,17]). In general, the starting point for these works is a modification of the classical exponential generating function
given by

text

et − 1
=

∞∑
n=0

Bn(x)
tn

n!
, |t| < 2π. (1)

For instance, some of the generalized Bernoulli polynomials mentioned in [4,13] are Bαn (x), Bn,α(x), B
α
n;h,w(x), and B

[m−1]
n (x),

(m ≥ 1) ,which have been obtained by choosing as exponential generating functions

tαext

(et − 1)α
,

(iz)α e(x−1/2)z

22αΓ (α + 1) Jα (iz/2)
,

(ht)α (1+ wt)x/w[
(1+ wt)h/w − 1

]α , tmext

et −
m−1∑
h=0
(th/h!)

,

(where Jα is the Bessel function of the first kind of order α), respectively.
Particularly, if there generalizations to several variables are considered, the approach mainly takes advantage of the

use of some modification of the involved exponential function. As an example we mention the approach [4], motivated
by Gould-Hopper polynomials (also known as Hermite–Kampé de Fériet polynomials) H(j)n (x, y), j ≥ 2, whose generating
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function is ext+yt
j
. Consequently, bidimensional Bernoulli polynomials B(j)n (x, y), j ≥ 2 are therefore obtained by means of

the generating function te
xt+ytj

et−1 . Other recently obtained generalizations can be found in [14,15].
In this article we are following similar ideas combined with methods of generalized power series representations used

in the theory of hypercomplex holomorphic (monogenic) functions, which are generalized complex holomorphic functions
in the context of Clifford Analysis. As far as the authors know, this is done for the first time. The paper is organized in the
followingway. After some preliminaries on the use of Clifford algebras in higher dimensional Euclidean spaces (Section 2.1),
we introduce in Section 2.2 generalized Bernoulli polynomials of nhypercomplex variables. Theirmain properties, analogous
to the classical Bernoulli polynomials ones, are proved. The fact of being polynomials in several variables implies also new
properties with relevance in applications, which will be studied in more detail in a forthcoming paper. Finally, in Section 3,
we focus on some interesting generalizations of Pascal and Bernoulli matrices referred in [5,17]. For this purpose we restrict
our study to the 3-dimensional real Euclidean space, which corresponds to the use of two hypercomplex variables.

2. Hypercomplex generalizations of Bernoulli polynomials

2.1. Preliminaries

Let {e1, e2, . . . , en} be an orthonormal base of the Euclidean vector space Rn with a product according to the
multiplication rules

ekel + elek = −2δkl, k, l = 1, . . . , n,

where δkl is the Kronecker symbol. This non-commutative product generates the 2n-dimensional Clifford algebra Cl0,n over
R and the set {eA : A ⊆ {1, . . . , n}}with eA = eh1eh2 · · · ehr , 1 ≤ h1 ≤ · · · ≤ hn, e∅ = e0 = 1, forms a basis of Cl0,n. The real
vector space Rn+1 will be embedded in Cl0,n by identifying the element (x0, x1, . . . , xn) ∈ Rn+1 with

z = x0e0 + x1e1 + · · · + xnen ∈ A ≡ spanR {e0, . . . , en} ∼= Rn+1.

As natural generalization of the complex Cauchy–Riemann operator

∂

∂ z̄
=
1
2

(
∂

∂x
+ i

∂

∂y

)
is given by the operator

D =
∂

∂x0
+

∂

∂x1
e1 + · · · +

∂

∂xn
en,

and the equation

Df = 0

defines hypercomplex holomorphic (or monogenic) functions f = f (z) as Clifford algebra valued functions in the kernel
of this generalized Cauchy–Riemann operator (cf. [3]). Since the operator D can be applied both from the left and from the
right hand side of f , it is usual to refer to left monogenic function and right monogenic function, respectively. For simplicity,
from now on we only deal with left monogenic functions. The case of right monogenic functions can be treated completely
analogously.
Since Dz = 1− n it is evident that the function f (z) = z ∈ A is only monogenic if n = 1, i.e., in the case ofA = C. This

implies significant differences between the cases n = 1 and n > 1. Moreover, powers of z, i.e., f (z) = zk, k = 2, . . ., are
not monogenic which means that they cannot be considered appropriate as hypercomplex generalizations of the complex
power zk, z ∈ C. These facts are the reason for generalized power series of a special structure, which we are going to use in
the following subsection.
To overcome the mentioned situation in [8] has been considered another hypercomplex structure for Rn+1 based on an

isomorphism between Rn+1 and

Hn
=
{
Ez : Ez = (z1, . . . , zn) , zk = xk − x0ek, x0, xk ∈ R, k = 1, . . . , n

}
.

Whereas the components of the vector Ez, i.e. the hypercomplex variables zk themselves are monogenic, their ordinary
products zizk, i 6= k, are not monogenic. But a n-ary operation, namely their permutational (symmetric) product resolves
the problem (cf. [8]).

Definition 2.1. Let V+,· be a commutative or non-commutative ring, ak ∈ V (k = 1, . . . , n), then the symmetric ‘‘×’’-
product is defined by

a1 × a2 × · · · × an =
1
n!

∑
π(i1,...,in)

ai1ai2 · · · ain (2)

where the sum runs over all permutations of all (i1, . . . , in).
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Additionally, the following convention has been introduced in [8].

Convention
If the factor aj occurs σj-times in (2), we briefly write

a1 × · · · × a1︸ ︷︷ ︸
σ1

× · · · × an × · · · × an︸ ︷︷ ︸
σn

= a1σ1 × · · · × anσn = Eaσ (3)

where σ = (σ1, . . . , σn) ∈ Nn0 and set parentheses if the powers are understood in the ordinary way.
Formula (3) simply allows to work with a polynomial formula exactly in the same way as in the case of several

commutative variables. It holds (see [9,10])

(z1 + · · · + zn)k =
∑
|σ |=k

(
k
σ

)
zσ11 × · · · × z

σn
n =

∑
|σ |=k

(
k
σ

)
Ezσ , k ∈ N (4)

with polynomial coefficients defined as usual by
(
k
σ

)
=

k!
σ !
where σ ! = σ1! · · · σn!.

Moreover, all functions of the form f (z) = Ezσ , are left and right monogenic and Cl0,n- linear independent. Therefore, they
can be used as basis for generalized power series. Following [9,10] it has been shown, that the generalized power series of
the form

P
(
Ez
)
=

∞∑
k=0

(∑
|σ |=k

Ezσ cσ

)
, cσ ∈ Cl0,n

generates in the neighborhood of the origin a monogenic function f (Ez) and coincides in the interior of its domain of
convergence with the Taylor series of f (Ez), i.e., in a neighborhood of the origin we have

f (Ez) =
∞∑
k=0

1
k!

(∑
|σ |=k

Ezσ
(
k
σ

)
∂ |σ |f (E0)
∂Exσ

)
,

where Ex = (x1, . . . , xn).
In [9] has been shown that the partial derivatives of Ezσ with respect to xk are obtained as

∂Ezσ

∂xk
= σkEzσ−τk (5)

where τk is the multiindex with 1 at place k and zero otherwise.
It is well known, that for complex holomorphic functions f : C→ C the complex derivative f ′ = df

dz exists and coincides
with the complex partial derivative

∂ f
∂z
=
1
2

(
∂ f
∂x
− i
∂ f
∂y

)
.

The analogous situation is true in the hypercomplex case (cf. [10]). A real differentiable function f (Ez) is left (right)
hypercomplex derivable in Ω ⊂ Hn if and only if f is left (right) monogenic in Ω ⊂ Hn. In the case of its existence,
the hypercomplex derivative is given by

1
2
Df resp.

1
2
f D

with the conjugated generalized Cauchy–Riemann operator

D =
∂

∂x0
−

∂

∂x1
e1 − · · · −

∂

∂xn
en.

Furthermore, like in the complex case, where the complex derivative satisfies

f ′ =
df
dz
=
∂ f
∂x

the left (right) hypercomplex derivative of f at Ez is exactly

1
2
Df =

1
2
f D =

∂ f
∂x0

. (6)



H.R. Malonek, G. Tomaz / Discrete Applied Mathematics 157 (2009) 838–847 841

2.2. Hypercomplex Bernoulli polynomials

In the previous subsection we mentioned already that the ordinary product of two monogenic variables zk = xk −
xoek, k = 1, 2, . . . n is not again a monogenic function. The same is true, in general, for the ordinary product of two arbitrary
monogenic functions. This situation complicates to start with a direct generalization of the generating function (1) and we
preferred to use the equivalent form

etx =
∞∑
j=0

1
j!
(xt)j =

∞∑
j=0

(∑
r+n=j

1
(r + 1)!n!

Bn(x)

)
t j. (7)

Thus, following this point of view, let Et = (t1, . . . , tn) ∈ Rn, Ez = (z1, . . . , zn) ∈ Hn, and define a hypercomplex
exponential function by an everywhere convergent series of the form

Exp(Et, Ez) := exp (t1z1 + · · · + tnzn) =
∞∑
k=0

1
k!
(t1z1 + · · · + tnzn)k.

Immediately we arrive to

Definition 2.2. The hypercomplex Bernoulli polynomials Bj1,...,jn(z1, . . . , zn), jk ∈ N0, k = 1, . . . , n are defined as the
coefficients of a multiple power series ordered with respect to the degree of homogeneity by the following relation:

Exp(Et, Ez) =

(
∞∑
r=0

1
(r + 1)!

(t1 + · · · + tn)r
)(

∞∑
|j|=0

1
j!
Bj1,...,jn(z1, . . . , zn)t

j1
1 . . . t

jn
n

)
. (8)

Due to the one-dimensional case, the second series on the right hand side of (8) is convergent in the n-dimensional
parallelepiped

M = {Et : |tk| < 2π, k = 1, . . . , n}.

Applying (4), the formula (8) is equivalent to
∞∑
|σ |=0

1
σ !
zσ11 × · · · × z

σn
n t

σ1
1 . . . t

σn
n =

(
∞∑
|s|=0

1
(|s| + 1)s!

ts11 . . . t
sn
n

)(
∞∑
|j|=0

1
j!
Bj1,...,jn(z1, . . . , zn)t

j1
1 . . . t

jn
n

)
or

∞∑
|σ |=0

1
σ !
zσ11 × · · · × z

σn
n t

σ1
1 . . . t

σn
n =

∞∑
|σ |=0

[∑
s+j=σ

Bj1,...,jn(z1, . . . , zn)
(|s| + 1)s!j!

]
tσ11 . . . t

σn
n

which generalize (7) to the hypercomplex case. Comparing both sides gives the relationship of hypercomplex Bernoulli
polynomials to the generalized powers∑

s+j=σ

1
(|s| + 1)s!j!

Bj1,...,jn(z1, . . . , zn) =
1
σ !
zσ11 × · · · × z

σn
n , (9)

for σk = 0, 1, . . . , k = 1, . . . , n.
Obviously, the set of the hypercomplex Bernoulli polynomials contains n copies of the classical Bernoulli polynomials

that are obtained when all the indices jk, k = 1, . . . , n in (9) are equal to zero or only one of them is different from zero.
For example, some hypercomplex Bernoulli polynomials given by (9), with r, s ∈ N and r, s ≤ n, are:

B0,...,0(z1, . . . , zn) = 1

B0,..., 1︸︷︷︸
r

,...,0(z1, . . . , zn) = zr −
1
2

B0,..., 1︸︷︷︸
r

,..., 1︸︷︷︸
s

,...,0(z1, . . . , zn) = zr × zs −
1
2
(zr + zs)+

1
6

B0,..., 2︸︷︷︸
r

,...,0(z1, . . . , zn) = z
2
r − zr +

1
6

B0,..., 2︸︷︷︸
r

,..., 1︸︷︷︸
s

,...,0(z1, . . . , zn) = z
2
r × zs −

1
2
z2r − zr × zs +

1
3
zr +

1
6
zs
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B0,..., 3︸︷︷︸
r

,...,0(z1, . . . , zn) = z
3
r −

3
2
z2r +

1
2
zr

B0,..., 2︸︷︷︸
r

,..., 2︸︷︷︸
s

,...,0(z1, . . . , zn) = z
2
r × z

2
s − z

2
r × zs − zr × z

2
s +

2
3
zr × zs +

1
6

(
z2r + z

2
s

)
−
1
30

....

The values of Bn(x) for x = 0 easily can be recognized as the ordinary Bernoulli numbers and simply designated by Bn.
Similarly, using the notation

Bσ1,...,σn := Bσ1,...,σn(0, . . . , 0),

for the values of the generalized Bernoulli polynomials in the origin, we can see that all Bσ1,...,σn with the same norm of the
multiindex |σ | = k coincide and are equal to an ordinary Bernoulli number, for example:

Bσ1,...,σn = 1, |σ | = 0

Bσ1,...,σn = −
1
2
, |σ | = 1

Bσ1,...,σn =
1
6
, |σ | = 2

Bσ1,...,σn = 0, |σ | = 2k+ 1, k = 1, . . .

Bσ1,...,σn = −
1
30
, |σ | = 4

....

In general, this means

Bσ1,...,σn (0, . . . , 0) |σ1+···+σn=k = Bk, k = 0, 1, . . . . (10)

Before concluding this section, we emphasize some of the most interesting relations and properties of hypercomplex
Bernoulli polynomials and Bernoulli numbers. Some of them are analogous to the ones in the classical case (cf. [1,12]).

Proposition 2.1.

Bσ1,...,σn(1, . . . , 1) = (−1)
|σ |Bσ1,...,σn . (11)

Proof. Making use of the definition of hypercomplex Bernoulli polynomials,

F
(
Et, Ez
)
=

∞∑
|σ |=0

1
σ !
Bσ1,...,σn (z1, . . . , zn) t

σ1
1 . . . t

σn
n ,

where

F
(
Et, Ez
)
=
(t1 + · · · + tn) exp (t1z1, . . . , tnzn)

exp (t1, . . . , tn)− 1
,

and taking (z1, . . . , zn) = (0, . . . , 0) and (z1, . . . , zn) = (1, . . . , 1)we get,

F
(
Et, E0

)
=

∞∑
|σ |=0

1
σ !
Bσ1,...,σn t

σ1
1 . . . t

σn
n

and

F
(
Et, E1

)
=

∞∑
|σ |=0

1
σ !
Bσ1,...,σn (1, . . . , 1) t

σ1
1 . . . t

σn
n ,

respectively.
Moreover F

(
Et, E1

)
= F

(
−Et, E0

)
, that is,

∞∑
|σ |=0

1
σ !
Bσ1,...,σn (1, . . . , 1) t

σ1
1 . . . t

σn
n =

∞∑
|σ |=0

1
σ !
Bσ1,...,σn (−t1)

σ1 . . . (−tn)σn

=

∞∑
|σ |=0

1
σ !
Bσ1,...,σn (−1)

|σ | tσ11 . . . t
σn
n .
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Hence,

Bσ1,...,σn (1, . . . , 1) = (−1)
|σ | Bσ1,...,σn . �

The equality (11) generalizes the property Bn(1) = (−1)nBn, n ∈ N0, already known in the classical case.

Proposition 2.2.

Bσ1,...,σn(z1, . . . , zn) =
σ1∑
j1=0

. . .

σn∑
jn=0

(
σ1

j1

)
. . .

(
σn

jn

)
Bj1,...,jnz

σ1−j1
1 × · · · × zσn−jnn . (12)

Proof. Using the definitions of hypercomplex Bernoulli polynomials and the Bernoulli numbers, we can write
∞∑
|σ |=0

( ∑
j+k=σ

Bj1,...,jn
zk11 × · · · × z

kn
n

j1! . . . jn!k1! . . . kn!

)
tσ11 . . . t

σn
n =

∞∑
|σ |=0

Bσ1,...,σn (z1, . . . , zn)
σ1! . . . σn!

tσ11 . . . t
σn
n

which yields

Bσ1,...,σn (z1, . . . , zn) =
σ1∑
j1=0

. . .

σn∑
jn=0

Bj1,...,jn
σ1! . . . σn!z

σ1−j1
1 × · · · × zσn−jnn

j1! . . . jn!(σ1 − j1)! . . . (σn − jn)!

that is,

Bσ1,...,σn (z1, . . . , zn) =
σ1∑
j1=0

. . .

σn∑
jn=0

(
σ1

j1

)
. . .

(
σn

jn

)
Bj1,...,jnz

σ1−j1
1 × · · · × zσn−jnn . �

With (12) we found a generalization for another property of the classical Bernoulli polynomials Bn(x):

Bn(x) =
n∑
k=0

(n
k

)
Bkxn−k, n ∈ N0.

Moreover, due to formula (10) the relation (12) is nothing else than the explicit expression of the generalized Bernoulli
polynomials with ordinary Bernoulli numbers as coefficients.
Proposition 2.2 still allows to introduce a new type of Bernoulli numbers, where one of the arguments is equal to one and

the others are equal to zero, which is a situation different from that one in Proposition 2.1, which describes the symmetry
relation between Bσ1,...,σn(1, . . . , 1) and Bσ1,...,σn .

Proposition 2.3. Let us call k- Bernoulli numbers, Bkσ1,...,σn , those that are obtained by calculating the hypercomplex Bernoulli
polynomials in (0, . . . , 1︸︷︷︸

k

, . . . , 0), k = 1, . . . , n, i.e.,

Bkσ1,...,σn = Bσ1,...,σn(0, . . . , 1︸︷︷︸
k

, . . . , 0).

Then these k- Bernoulli numbers can be represented as a linear combination of the ordinary Bernoulli numbers,

Bkσ1,...,σn =
σk∑
jk=0

(
σk

jk

)
Bσ1,...,jk,...,σn .

Proof. The proof follows immediately from (12) by taking zk = 1 e zi = 0, i = 1, . . . , n, i 6= k. �

Example.
B12,1 ≡ B2,1(1, 0) = 1B0,1 + 2B1,1 + 1B2,1
B13,2 ≡ B3,2(1, 0) = 1B0,2 + 3B1,2 + 3B2,2 + 1B3,2
B14,3 ≡ B4,3(1, 0) = 1B0,3 + 4B1,3 + 6B2,3 + 4B3,3 + 1B4,3
...

B21,1 ≡ B1,1(0, 1) = 1B1,0 + 1B1,1
B21,2 ≡ B1,2(0, 1) = 1B1,0 + 2B1,1 + 1B1,2
B22,3 ≡ B2,3(0, 1) = 1B2,0 + 3B2,1 + 3B2,2 + 1B2,3
....
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Proposition 2.4.

∂

∂xk
Bσ1,...,σn(z1, . . . , zn) =

{
σkBσ1,...,σk−1,...,σn(z1, . . . , zn) , σk 6= 0
0 , σk = 0,

k = 1, . . . , n.

Proof. The proof follows directly by partial differentiation with respect to xk of both sides of (12) together with (5). �

This proposition generalizes for the hypercomplex case the relations B′n(x) = nBn−1(x), n ∈ N, used for the differentiation
of classical Bernoulli polynomials.

Proposition 2.5.

1
2
DBσ1,...,σn(z1, . . . , zn) = −

n∑
k=1

σkBσ1,...,σk−1,...,σn(z1, . . . , zn)ek,

where 12DBσ1,...,σn(z1, . . . , zn) is the hypercomplex derivative of Bσ1,...,σn(z1, . . . , zn).

Proof. Considering that the hypercomplex Bernoulli polynomials are monogenic, i.e.,

DBσ1,...,σn (z1, . . . , zn) = 0,

we can write

∂

∂x0
Bσ1,...,σn (z1, . . . , zn) = −

n∑
k=1

∂

∂xk
Bσ1,...,σn(z1, . . . , zn)ek,

that is

1
2
DBσ1,...,σn (z1, . . . , zn) = −

n∑
k=1

σkBσ1,...,σk−1,...,σn(z1, . . . , zn)ek. �

Proposition 2.6. Let

∆Bσ1,...,σn(z1, . . . , zn) = Bσ1,...,σn(z1 + 1, . . . , zn + 1)− Bσ1,...,σn(z1, . . . , zn)

be the (total) difference operator. Then

∆Bσ1,...,σn(z1, . . . , zn) =
n∑
k=1

σkz
σ1
1 × · · · × z

σk−1
k × · · · × zσnn , σk ≥ 1, k = 1, . . . , n.

Proof. By the definition of hypercomplex Bernoulli polynomials, we have
∞∑
|σ |=0

Bσ1,...,σn(z1 + 1, . . . , zn + 1)− Bσ1,...,σn(z1, . . . , zn)
σ1! . . . σn!

tσ11 . . . t
σn
n

=
(t1 + · · · + tn) [exp (t1 (z1 + 1) , . . . , tn (zn + 1))− exp (t1z1, . . . , tnzn)]

exp (t1, . . . , tn)− 1
= (t1 + · · · + tn) exp (t1z1, . . . , tnzn)

=

n∑
k=1

(
∞∑
|σ |=0

zσ11 × · · · × z
σn
n

σ1! . . . σn!
tσ11 . . . t

σk+1
k · · · tσnn

)

=

n∑
k=1

(
∞∑

|σ |=1,σk=1

zσ11 × · · · × z
σk−1
k × · · · × zσnn

σ1! · · · (σk − 1)! · · · σn!
tσ11 · · · t

σk
k · · · t

σn
n

)
.

Therefore, comparing the coefficients of tσ11 · · · t
σn
n , we obtain

∞∑
σ1=1,...,σk=1,...,σn=1

Bσ1,...,σn(z1 + 1, . . . , zn + 1)− Bσ1,...,σn(z1, . . . , zn)
σ1! . . . σn!

tσ11 . . . t
σn
n

=

∞∑
σ1=1,...,σk=1,...,σn=1

(
n∑
k=1

zσ11 × · · · × z
σk−1
k × · · · × zσnn

σ1! · · · (σk − 1)! · · · σn!

)
tσ11 · · · t

σn
n
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and,

Bσ1,...,σn(z1 + 1, . . . , zn + 1)− Bσ1,...,σn(z1, . . . , zn) =
n∑
k=1

σkz
σ1
1 × · · · × z

σk−1
k × · · · × zσnn . �

The last result generalizes the well-known property of the classical Bernoulli polynomials,

Bn(x+ 1)− Bn(x) = nxn−1, n ≥ 1.

3. Hypercomplex Pascal and Bernoulli matrices

Apart from the fact that a Pascal matrix is one of the oldest in the history of Mathematics, the study of its properties is
still recent [7]. However, it has been used in a wide scale in different areas of pure and applied mathematics, for instance, in
relation to the resolution of differential and difference equations, in the study of special polynomials such as the Bernstein’s
or the Bernoulli’s, in probability problems, in combinatorics, etc.
In various books and papers are defined the Pascal matrix P (see,for instance [2,5,7,17]), the symmetric Pascal matrix

PPT [2], where PT means the transpose of P and the inverse of Pascal matrix P−1 [5]. Also, they already appeared some
generalizations of the Pascal matrix like that found in [17], which Zhang and Wang called generalized Pascal matrix P[x].
Among themany relations concerning the Pascal matrix wewill give emphasis to the one found in [17] and that links this

matrix with the Bernoulli polynomials. In that paper the authors defined the polynomial Bernoulli matrix B(x) =
[
Bij(x)

]
by

Bij(x) =


(
i
j

)
Bi−j(x), i ≥ j

0, otherwise, i, j = 0, . . . , n

and calledB(0) = B the Bernoulli matrix. Afterwards, they established the following relation betweenB(x) and P[x]:

B(x) = P[x]B.

The goal of this section is to obtain some generalizations, for the hypercomplex case, of the results above referred. In
order to achieve this, we start by defining the block Pascal matrix, the hypercomplex Pascal matrix and we allude to some
of its properties. Then, we define the hypercomplex polynomial Bernoulli matrix, the hypercomplex Bernoulli matrix and
finally we establish a relation between these matrices and the hypercomplex Pascal one.

Definition 3.1. The block Pascal matrix is the (n+ 1)× (n+ 1)-block matrix, P = [P srij ], where

P srij =


(
i
j

)( s
r

)
, i ≥ j ∧ s ≥ r

0, otherwise, i, j, s, r = 0, . . . , n.

Each block of this matrix is also a (n+ 1)× (n+ 1)matrix.
Now, we can define the symmetric block Pascal matrix PP T through

(PP T)srij =

(
i+ j
j

)(
s+ r
r

)
, i, j, s, r = 0, . . . , n.

Following the idea suggested by [5] about the inverse of the matrix P , we obtain for P−1 the generalization:

Theorem 3.1. Let the (n+ 1)× (n+ 1)-block matrix,Q = [Qsrij ], such that

Qsrij =


(
i
j

)( s
r

)
(−1)i−j(−1)s−r , i ≥ j ∧ s ≥ r

0, otherwise, i, j, s, r = 0, . . . , n.

ThenQ = P−1.

Proof. It is easy to verify that

(PQ)srij =

{
0, i < j ∨ s < r
1, i = j ∧ s = r.



846 H.R. Malonek, G. Tomaz / Discrete Applied Mathematics 157 (2009) 838–847

Now, wemust show that (PQ)srij = 0 for the cases i > j∧ s > r , i > j∧ s = r and i = j∧ s > r . Supposing that i > j∧ s > r .
Then, we can write i = j+ l and s = r +mwith l,m > 0. Hence,

(PQ)srij =
l∑

k1=0

m∑
k2=0

P
r+m,r+k2
j+l,j+k1

Q
r+k2,r
j+k1,j

=

l∑
k1=0

m∑
k2=0

(
j+ l
j+ k1

)(
r +m
r + k2

)(
j+ k1
j

)(
r + k2
r

)
(−1)k1(−1)k2

=
(j+ l)!
j!l!

(r +m)!
m!r!

l∑
k1=0

m∑
k2=0

l!
(l− k1)!k1!

m!
(m− k2)!k2!

(−1)k1(−1)k2

=

(
j+ l
j

)(
r +m
r

)( l∑
k1=0

(
l
k1

)
(−1)k1

)(
m∑
k2=0

(
m
k2

)
(−1)k2

)

=

(
i
j

)( s
r

)
(1− 1)l (1− 1)m

= 0.

The proof is similar for the cases i > j ∧ s = r and i = j ∧ s > r . �

Definition 3.2. The hypercomplex Pascal matrix is the (n+ 1)× (n+ 1)-block matrix, P (z1, z2) = [P srij (z1, z2)], such that

P srij (z1, z2) =


(
i
j

)( s
r

)
z i−j1 × z

s−r
2 , i ≥ j ∧ s ≥ r

0, otherwise, i, j, s, r = 0, . . . , n.

This matrix extends P[x] to the hypercomplex case.
As it happens to the matrix P[x] (see [5]), also in this case P (0, 0) = I , P (1, 1) = P and P (−1,−1) = P−1.

Definition 3.3. The hypercomplex polynomial Bernoulli matrix is the (n+1)×(n+1)-blockmatrix,B(z1, z2) = [Bsrij (z1, z2)],
such that

Bsrij (z1, z2) =


(
i
j

)( s
r

)
Bi−j,s−r(z1, z2), i ≥ j ∧ s ≥ r

0, otherwise, i, j, s, r = 0, . . . , n

where Bi−j,s−r(z1, z2) are hypercomplex Bernoulli polynomials.
The matrixB = B(0, 0)will be called hypercomplex Bernoulli matrix.

In a similar way as presented in [17] to the classical Bernoulli matrix and to the generalized Pascal matrix, we can also
establish a connection between the hypercomplex matrices that we have just defined.

Theorem 3.2. Let z1, z2 elements of Hn.
Then

B(z1, z2) = P (z1, z2)B.

Proof. It is clear that

Bsrij (z1, z2) = (P (z1, z2)B)
sr
ij = 0,

if i < j ∨ s < r .
Now, supposing i ≥ j ∧ s ≥ r and writing i = j+ l and s = r +m, l,m ≥ 0,

(P (z1, z2)B)srij =
l∑

k1=0

m∑
k2=0

P
r+m,r+k2
j+l,j+k1

(z1, z2)B
r+k2,r
j+k1,j

=

(
j+ l
j

)(
r +m
r

) l∑
k1=0

m∑
k2=0

(
l
k1

)(
m
k2

)
z l−k11 × zm−k22 Bk1,k2

=

(
i
j

)( s
r

) i−j∑
k1=0

s−r∑
k2=0

(
i− j
k1

)(
s− r
k2

)
Bk1,k2z

i−j−k1
1 × zs−r−k22 .
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Applying (12) leads to

(P (z1, z2)B)srij =
(
i
j

)( s
r

)
Bi−j,s−r(z1, z2)

= Bsrij (z1, z2). �

Taking i, j, r, s = 0, 1, 2, the matrices P (z1, z2) andB are

P (z1, z2) =



1 0 0
z1 1 0
z21 2z1 1

z2 0 0
z1 × z2 z2 0
z21 × z2 2z1 × z2 z2
z22 0 0

z1 × z22 z22 0
z21 × z

2
2 2z1 × z22 z22

0 0 0
0 0 0
0 0 0

1 0 0
z1 1 0
z21 2z1 1

2z2 0 0
2z1 × z2 2z2 0
2z21 × z2 4z1 × z2 2z2

0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0

1 0 0
z1 1 0
z21 2z1 1


,

and

B =



1 0 0
−1/2 1 0
1/6 −1 1

−1/2 0 0
1/6 −1/2 0
0 1/3 −1/2

1/6 0 0
0 1/6 0

−1/30 0 1/6

0 0 0
0 0 0
0 0 0

1 0 0
−1/2 1 0
1/6 −1 1

−1 0 0
1/3 −1 0
0 2/3 −1

0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0

1 0 0
−1/2 1 0
1/6 −1 1


,

respectively, which illustrates the last result.
In this paper we have considered generalized Bernoulli polynomials in the context of Clifford Analysis. Using a similar

approach we discussed in [11] corresponding generalized Euler polynomials. Following the ideas expressed in [16] for the
classical Bernoulli and Euler polynomials, we also achieved relationships between the two types of generalized polynomials
as well.
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