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We characterize linear mappings which map the set of all graphs (digraphs) with n vertices 
which contain no circuit (directed circuit) of length greater than or equal to k into or onto 
itself. We apply these results to characterize linear transformations on n x n matrices which 
preserve the above properties of the graph or the diagraph of the matrix. 

1. Introduction 

The issue of characterizing the linear transformations which map certain classes 
of square matrices into or onto themselves has been the theme of several papers 
recently written, e.g. [2-4 and 6]. The "into" problem is, in general, harder than 
the "onto" one, and it has been solved only under some additional hypothesis, 
namely, nonsingularity of the transformation or a somewhat weaker condition. 

Independently, there is a growing interest in learning the properties of acyclic 
matrices, i.e., square matrices whose (nondirected) graph contains no cycle 
except maybe for loops. These matrices, which are a natural generalization of 
tridiagonal matrices, are studied for example in [5, 7, 1] and the references there. 

Motivated by these two research directions, we investigate here the linear 
transformations which map the acyclic matrices into or onto themselves. In fact, 
we consider not only acyclic matrices but the general class d ~ k [ d ~  k] of all n x n 
matrices whose graph (digraph) contains no circuit (directed circuit) of length 
greater than or equal to k, k <~ n. Clearly, the set of all n x n acyclic matrices is 
the class d/~d~. The flavor of the discussion in this paper is different from that in 
[2-4 and 6] since, not surprisingly, the "into" problem here turns to be pure 
graph theoretic. In view of Lemma 6.3 we consider the equivalent problem of 
characterizing linear mappings on graphs (digraphs), as are defined in the next 

k k section, which map the set ~ [ ~ n ]  of all graphs (digraphs) with n vertices which 
contain no circuit (directed circuit) of length greater than or equal to k into itself. 
Our results are proved under the assumption that the range of the mapping is 
wide enough to contain every possible edge (arc), except possibly for loops. This 
assumption is shown, by means of examples, to be necessary. 

We now describe our main results in more detail. 
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Most of the notations and the definitions are given in Section 2. In Section 3 we 
characterize the linear mappings L for which 

L((g~') c_ ~ .  (1.1) 

We show in Theorem 3.19 that for n i> k > 1 (1.1) holds if and only if L results 
in just renaming the vertices and possible addition or elimination of loops. The 
case n = k = 4 is shown to be exceptional and is treated in Theorem 3.20. The 
section is concluded with the discussion of the case k = 1. We show in Theorem 
3.25 that in this case L results in renaming the vertices and arbitrary mappings of 
the loops. 

Section 4 is devoted to mappings L satisfying 

L(~) ~ ~k, (I.2) 

where n > k t> 3. We prove in Theorem 4.18 that L satifises (1.2) if and only if L 
is a composition of renaming the vertice and/or adding or eliminating loops 
and/or the transformation which maps any arc (i, j) onto (j, i). This result does 
not hold for k = 1, 2. 

The case n = k is discussed in Section 5. As shown in Theorem 5.30, there 
exists an additional type of transformation for which (1.2) is satisfied. All the 
theorems of Sections 3, 4, 5 include also the characterization of the mappings L 
for which equality in (1.1) or (1.2) holds. 

The matrix problem is solved in Section 6. The results of the previous sections 
are translated into terms of matrices to obtain the first part (the "into" case) of 
Theorems 6.19, 6.21, 6.23, 6.30 and 6.34. The possible types of transformations 
which play roles in these theorems are: permutation similarity, transposition, 
Hadamard product with a certain matrix, etc. The second part of the above 
theorems corresponds to the "onto" problem for which linear algebraic argu- 
ments are needed. It is shown that "into" transformations are also "onto" 
transformations if and only if they are nonsingular. The only exception is the case 
d~3~ where we need the weaker property of nonsingularity on the subspace of all 
matrices with zero diagonal entries. 

Unlike in the papers mentioned above where the field is assumed to be R or C, 
the results of Section 6 hold for any field whose characteristic is either zero or is 
greater than n 2 - n. 

2. NotatiOns and definitions 

Notation 2.1. We denote 
(n)  = The set {1, 2 , . . . ,  n}, where n is a positive integer; 
Io~1 = The cardinality of the set t~. 

Notation 2.2. For a (nondirected) graph G we denote: 
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V(G) = The set of vertices of G; 
E(G) = The set of edges of G; 

[i, j] = An edge between i and ], i, j e V(G);  Observe that [i, j] = [j, i]; 
E'(G) = The set {[i, j] e E(G) :  i :/:j}, that is the set E(G) without loops; 

IGI=IE'(G)I. 

Definition 2.3. Let G be a graph. A sequence of edges in G which leads from i to 
j ,  [i, P l ] ,  [ e l ,  P2] ,  • • • , [Pm-1, Pm], [Pm, J], is called a path in G between i and j 
and is denoted by [i, p~, P2, . . . ,  Pm, j ] -  A path [ i ~ , . . . ,  it] in G is said to be a 
closed path if it = i~. A closed path [ i ~ , . . . ,  ik, i~] is said to be a circuit if 
i~, . . . ,  ik are distinct. A circuit is said to be of length k, or a k-circuit, if it 
consists of k edges. 

Definition 2.4. Two edges in a graph G are said to be adjacent if they have 
exactly one common vertex. Two edges are said to be separated if they have no 
common vertex. 

Notation 2.5. Let n and k be positive integers and let i, j e (n ) .  We denote: 
cg,, = The set of all graphs with n vertices; 
c~ = The subset of c~,, which consists of all graphs with no circuit of length 

greater than or equal to k; 
G o = The graph in c~,, whose set of edges consists of [i, j]; 
Go = The graph in ~,  with empty set of edges. 

Notation 2.6. Let G1, G2 e ~,. We denote: 
G1 U G2 = The graph in ~n whose set of edges is E(G1) U E(G2); 
(;1 n G2 = The graph in fgn whose set of edges is E(G1) n E(G2). 

Definition 2.7. A transformation L: ~n --> (g~ is said to be a linear mapping if 

L(G~ U G2) = L(G1) U L(G2), VG,, G2 ~ q3n. 

Observe that in order to define a linear mapping L it is enought to define 
L(Go) for all i, j e (n) .  

Definition 2.8. A transformation 
mapping if 

L ~ U S i j  , 
i 1 i , j=l  
i~ j  i<j 

that is every G0, i, j e ( n ) ,  i :/:j is contained in the image of some graphunder  L. 

L:q3,,.-.> u3,, is said to be a graph covering 

Definition 2.9. A linear mapping L: c~,, .__> c~n is said to be a vertex permutation if 
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there exists a permutation o on (n )  such that 

L(Gq)= Goo),oO), Vi ,]  • (n) .  

Observe that performing a vertex permutation on a graph results in just 
renaming the vertices. 

For directed graphs (or digraphs) we similarly have 

Notation 2.10. Let D be a digraph. We denote: 
V(D)  = The set of vertices of D;  
E(D) = The set of arcs of D;  

(i, j)  = An arc from i to j, i, j • V(D). Observe that (i, j)  = (], i) if and only 
if i= j ;  

E ' (D)  = The set {(i, j) • E(D)  :i =k j}, that is the set E(D) without loops; 

IDl=lE'(D)l. 

Definition 2 .H.  Let D be a digraph. A sequence of arcs in D from i to L 

(i,  p ) ,  (/71, P2) ,  • • • , ( P m - 1 ,  Pm), (Pm, ]), is c a l l e d  a directed path in D from i to j 
and is denoted by (i, pl,  P2, • • . ,  Pm, ] ) .  A directed path ( i l , . . . ,  it) in D is said to 
be a closed directed path if il = i~. A dosed directed path ( i ~ , . . . ,  ik, i~) is said to 
be a directed circuit if il, . . . ,  ik are distinct. A directed circuit is said to be of 
length k, or a directed k-circuit, if it consists of k arcs. 

Definition 2.12. Two arcs (i, j )  and (s, t) in a digraph D are said to be adjacent if 
either j = s, i :/= t or i = t, j ~ s ,  that is these arcs have one common vertex and a 
same direction. The arcs (i, j )  and (s, t) are said to be separated if {i, j} N {s, t} = 

Notation 2.13. Let n and k be positive integers and let i, j • (n) .  We denote: 
~ = The set of all digraphs with n vertices; 
~k = the subset of ~ which consists of all digraphs with no directed circuit of 

length greater than or equal to k; 
D 0 = The digraph in ~ whose set of arcs consists of (i, j) ;  
Do = The digraph in ~ ,  with empty set of arcs. 

Notation 2.14. Let Dx,/)2 • ~ , .  We denote: 
/91 U D2 = The digraph in ~ .  whose set of arcs is E(DO U E(De); 
/)1 N De = The digraph in ~ whose set of arcs is E(D1) N E(De). 

Detlnltion 2.15. A transformation L:  ~,,--> ~,, is said to be a linear mapping if 

L(D~ U D2) = L(D~) U L(D2), VDx, D2 E ~n. 

Observe that in order to define a linear mapping L it is enough to define L(Do) 
for all i, ] • (n) .  
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Definition 2.16. A t ransformation L : ~ . - - >  ~ .  is said to be a digraph covering 
mapping if 

o,,) " L _D I,_J Dq, 
i 1 i , ]=l  

i .] 

that is .every D 0, i, j E ( n ) ,  i =/= j is contained in the image of some digraph under 
L. 

Definition 2.17. A linear mapping L:  ~ , - - .  ~ .  is said to be a vertex permutation if 
there exists a permutation o on (n)  such that 

L(Di]) = Do(i),o(i), Vi, j ~ (n). 

Observe that performing a vertex permutation on a digraph results in just 
renaming the vertices. 

The following notations and definitions involve matrices. 

Notation 2 a s .  Let F be a field, let n be a positive integer and let i, j ~ (n). We 
denote: 

F "  = The set of all n x n matrices over F;  
Eij = The matrix in F '~ all of whose entries are zero except for the one in the 

ith row and j th column which is 1. 

Definition 2.19. Let A E F '~. We define the graph of A G(A) and the digraph of 
A D(A) by 

V(G(A)) = V(D(A)) = (n ) ; 
E(G(A))= {[i, j],  i, j ~ ( n ) :  aq:#O or a~i 4: 0}; 
E(D(A))= {(i, j), i, ] ~ (n): aij:#O}. 

Notation 2.20. Let n and k be positive integers. We denote: 
dl~J~= {A E F" :  G(A) E C.~.} ; 
~ k =  {A E F" :  D(A) ~ if)k}. 

Definition 2.21. Let L be a linear transformation L:F". . - .  F" .  We define a 
linear mapping on q3, as well as a linear mapping on fl~, which are associated with 
L. The linear mapping/. ,8:  qJ, ~ qd. is defined by 

Lg(Gq)= G(L(Eq)) U G(L(E#)), i, j e (n). 

The linear mapping La: ~ .  ~ ~ .  is defined by 

Ld(Oij) = D(L(Eo)), i, j ~ (n ). 

Observe that since G(A + B) ~ G(A) U G(B) where A, B e F" ,  it follows 
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from Definitions 2.7 and 2.21 that 

G ( L ( A ) )  ~_ Lg(G(A)) ,  VA  • F "~. (2.22) 

Similarly, it follows from Definitions 2.15 and 2.21 that 

D ( L ( A ) )  ~_ Ld(D(A)) ,  VA  • F ~ .  (2.23) 

Notation 2.24. Let A, B • F ~.  We denote by A o B the Hadamard product of A 
and B. That is, the matrix C = A o B is defined by 

C i j  "--  ai]b#, Vi, j • (n ) .  

3. Nondirected graphs 

In this section we discuss graph coveting linear mappings L: ~,---> ~gn. In all our 
Propositions we assume that k is a positive integer less than or equal to n and that 

L((~'~) ___ ~ .  (3.1) 

We shall show (Example 3.24) that our results are not valid when noncovering 
mappings are considered. We will also characterize those L for which L(C~ k) = 

Proposition 3.2. I f  k > 1, then E ' (L(Ga))  = O, 1 <~ i <~ n. 

Proof. Assume that for some i • ( n )  we have IL(G.)[ >- I, and let [ u , v ] •  
E'(L(Gii)).  If k>~3 then we can find h , . . . , t k - 2 •  (n )  such that a~= 
[u, v, h , . . . ,  tk-2, U] is a k-circuit. Since L is a covering mapping there exist 

i l ,  i2,  . . . .  i k - 1 ,  J l ,  j 2 ,  . " " , j k - 1  • ( n )  such that 

and 
[v, h] • E(L(G,a,)),  [tm-,, tm] • E(L(G,,d,)) ,  m = 2 , . . . ,  k - 2, 

[tk-2, U] e E(L(Gi,_a,_,)). 

The graph G = Gii U ([-flm--~ Gi~dm) is in ~ since IGI ~ < k - 1 ,  but L ( G )  contains 
the k-circuit aG in contradiction to (3.1). Hence [L(Gii)[ = O, 1 <~ i <<- n. The case 
k = 2 is treated as the case k = 3 since ~ = cg3. [] 

Proposition 3.2 does not hold in general for noncovering mappings as 
demonstrated by 

Example 3.3. Let L be defined by 

L(G)  = G12, VG e ¢~,. (3.4) 

Clearly, (3.4) yields that L(Ca~ ~_ ~3~ for all k e (n) ,  while IL(Ga)I = 1, 1 <~i ~<n. 
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Proposition 3.5. / f  

L ~ ~.J Gq, (3.6) 
i 1 i , j=l  
i<j i<j 

then ]L(G#)]=I and E' (L(Gq))NE'(L(G,~))=fJ  
{i, j)  :/: {l, w}. 

whenever i =/= j, I :/: w and 

Proof.  Assume first that for some i, j e (n) ,  i ~ j  we have IL(Go) ] > 1. So let 
[u, v], [s, t] e E(L(Go) ) where u =/= v, s ~ t and {u, v} =/= {s, t}. If k > 3 or if k = 3 
and [u, v] and [s, t] are adjacent then we can complete [u, v] and [s, t] to a 
k-circuit by adjoining k -  2 edges a l , . . . ,  ak-2. By (3.6) we can find ira, jm e 
(n) ,  im ~=]m, m = 1 , . . . ,  k - 2 such that am e E(L(Gi, ,J) ,  m = 1, . . . ,  k - 2. 
The graph G = Gij 13 ([..ff,,~21Gi.dm) is in qd~ since IGI <~ k - 1, but L(G) contains a 
k-circuit, in contradiction to (3.1). If k = 3 and [u, v] and [s, t] are separated then 
let 

u = ([ , ,  s], [u, t], Iv, s], Iv, t]}. 

If for some p, q e ( n ) ,  p :/: q, we have ]E(L(Gpq)) f3 U[ ~> 2, then G = Gii 13 G~,a 
contains no circuit at all while L(G) contains a 3-circuit, in contradiction to (3.1). 
Hence we may assume that 

IE(L(G,q))nUI<-I, Vp, q e < n ) ,  pg:q.  (3.7) 

By (3.6) let i~, j l  e ( n ) ,  i~ #:jl  be such that [u, s] • E(L(Gigl)). If 

{i, j} tq (i~, Jl} =(J, (3.8) 

then let i2, J2 • (n) ,  i2~j2 be such that  [u, t] • E(L(Gi,22)). The graph G = G 0 13 
G~,13 G~/2 contains no circuit by (3.8) while L(G) contains the 3-circuit 
[u, s, t, u], in contradiction to (3.1).  So, assume that 

{i, j} tq {il, jl} #:~. (3.9) 

If {i, j} = {il, j l},  then L(Gq) contains the two adjacent edges [u, v] and [u, s] 
and such a case has already been taken care of. If {i, j} #: {i~, Jl}, then by (3.9) 
there exists exactly one edge [i3, j3] such that [i, j], [il, jl] and [i3, j3] form a 
3-circuit. By (3.6) and (3.7) we can find i2,J2e (n),  i2~j2 such that {i2,j2} ~ 
{i3, j3} and such that  

E(L(G,~2) ) N (U\  {[u, s]}) S 0 .  (3.10) 

The graph G=GoUG~a  1 U G ~  2 contains no circuit while, by (3.10), L(G) 
contains a 3-circuit, in contradiction to (3.1). 

The discussion of the case k = 1 is essentially the same as of the case k = 3, 
observing that no loops are involved along the proof. 

As a conclusion, our assumption that [L(G0) l>  1 turns to be false, so, 
IL(GDI< I for all i, j e ( n ) ,  i#:j. By (3 .6 ) i t  now follows that ]LfG,j)] = 1 and  
E'(L(Go) ) N E'(L(Gtw)) = ~ whenever  i ~ j ,  l ~ w and {i, j} ~ {1, w}. [] 
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We remark that in the case k > 1, since L is a covering mapping it follows from 
Proposition 3.2 that (3.6) holds. Hence, condition (3.6) is needed to be stated 
explicitly only for the case k = 1. This remark holds also for the following 
propositions. 

Proposition 3.5 does not hold in general for concovering mappings as shown in 
the following example. 

Example 3.10. Consider the case n = 4, k = 3 and let L be the linear mapping 
defined by L(G12) = GI2 U G34, L(GI3) = G~3, L(G23) = G23, L(G34) = G34 and 
L(Go) = Gn for [i, j] ~ {[1, 2], [1, 3], [2, 3], [3, 4]}. Let G e ~4. The only possible 
3-circuit in L(G) is [1, 2, 3, 1] which occurs only if G contains the same circuit. 
Hence L(~4) ~ ~43, but [L(G12)[ = 2. 

Lemma 3.11. Let k > 1, let L satisfy (3.6) and let G e ~,,. f f  G contains a k-circuit 
then L(G) contains a k-circuit. 

Proof. Let S be the set of all graphs in ~. without loops. By Proposition 3.5 we 
may define a one-to-one linear mapping L:S--> S by 

[-,(Go)=G.. where[i, j leE(L(G, t ) ) ,  i:/:j, sq:t. 

Observe that 

and 
I£(G)I = IGI, VG s, 

L(f_.(G))z_G, VG eS. 

(3.12) 

(3.13) 

Let G e ~. contain a k-circuit. To show that L(G) contains a k-circuit it is 
enough to assume that G consists of one k-circuit. Since by (3.13) L([_,(G)) ~ ~dk 
it follows that L(G) consists of one k-circuit. Since the number of graphs in S 
which consist of one k-circuit (as well as the cardinality of S) is finite, and since/,  
is a one-to-one mapping it follows that G e S consists of one k-circuit if and only 
if/_,(G) does. Hence, since G consists of one k-circuit, also/~,-I(G) consists of 
one k-circuit and by (3.13) L(G) = L(L-I(G)))  ~_ [,-I(G), which yields that L(G) 
contains a k-circuit. [] 

Proposition 3.14. Let n > 3, let L satisfy (3.6) and let [i, j] and ii, l] be two 
adjacent edges. Then E ' (L(G 0 U Gu)) consists of two adjacent edges. 

Proof. By Proposition 3.5 E(L(Go) U L(Ga)) consists of two different edges, say 
[s, t] and [u, v]. We assume that these edges are separated and we shall show a 
contradiction to (3.1). 

Using elementary combinatorial calculations one can obtain that the number of 
all possible k-circuits through two fixed adjacent edges, provided that k >I 3, is 
( ~ : 3 ) ( k - 3 ) !  = ( n -  3 ) ! / ( n - k ) ! ,  and that the number of all possible k-circuits 
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through two fixed separated edges is ( ~ - 4 ) ( k -  3)[2 = 2 ( k -  3)(n - 4)[/(n - k)! 
when k > 3 and 0 when k = 3. 

We now distinguish between 4 cases: 

Case 1. k > ½ ( n + 3 )  
In this case k > 3  and the number of k-circuits through Is, t] and [u, v] is 

greater than the number of k-circuits through [i, j] and [i, l]. Hence, in view of 
Proposition 3.5 we can find il, . . . ,  ik-2, j l ,  . . .  , jk-2 • (n ) such that the graph 
G = Gij [-J Gil U ([._.Jkm-_-21 Gin]. ) is i n  ~ n  k but L(G)  contains a k-circuit. 

Case 2. 
Since 

number 

k = ½(n + 3) 
n > 3 we have 3 < k < n and hence we can consider (k + 1)-circuits. The 
of such circuits through [s, t] and [u, v] is, in this case, greater than the 

number of those through [i, j] and [i, l]. As in case 1 we can find il, . . . ,  ik-1, 
j l , . . . , j k - l • ( n )  such that the graph G=GqUG~U(t . . f lm~IGi ,~)  is in ~3 k+l 
while L(G)  contains a (k + 1)-circuit. Since IL(G)[ = k + 1 it follows that L(G)  
contains no k-circuit. Since L( ,~ )  ~_ ~ it follows that G must contain a k-circuit 
and so does L(G)  by Lemma 3.11, which is a contradiction. 

Case 3. 3 < k < 1 3 ( n  +3)  
In this case the number of k-circuits through [i, j] and [i, l] is greater than the 

number  of those through [s, t] and [u, v]. Considering all graphs which consist of 
one k-circuit through [i, j] and [i, l] we obtain a contradiction to Lemma 3.11. 

Case4. k <<- 3 
Using counting arguments, it follows from Proposition 3.5 that we can find a 

graph G such that E(G)  consists of two separated edges, say [il, jl] and [i2,12], 
while E' (L(G) )  consists of two adjacent edges, say [s, tl] and [s, t2]. By (3.6) let 

, - -  Urn----1 Gi~, i3, j 3 • ( n )  i3=/=j3 be such that [tl, t2]•E(L(Gid3)).  The graph G 3 
contains no circuit while L(G)  contains the 3-circuit Is, h,  t2, s], in contradiction 
to (3.1). 

The contradiction yields that our assumption that two adjacent edges are 
carded by L onto two separated edges is false and our proposition follows. [] 

As a consequence of Proposition 3.14 we obtain 

Proposition 3.15. Let n > 4 or n = 4 and k <~ 3 and let L satisfy (3.6). 
every i • ( n ) there exists i' • ( n ) such that 

E'(L(jU=IGq))=iU=I{[i',J]}" 
j~i j~i" 

Then for  

(3.16) 

Proof.  Without loss of  generality assume that i = 1. By Proposition 3.14 there 
exist i', p, q e (n)  such that E'(L(G12)) = {[i', p]} and E'(L(Gx3)) = {[i', q]}. 
Assume that for some j e ( n ) ,  j ¢ (3),  we have E'(L(Glj))  = {Is, t]} where 
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i' ~e {s, t}. Then by Proposition 3.1 we necessarily have 

{s, t} = {/9, q}. 

We now distinguish between two cases. 

Case l. n > 4  
In this case we can find l • ( n ) ,  l ~ {1, 2, 3, j}. Let E'(L(Gu))  = {[u, v]}. If 

i' ~ {u, v} then by Proposition 3.14 {u, v} = {s, t} and together with (3.17) we 
have a contradiction to Proposition 3.5. If i ' e  {u, v}, then by Proposition 3.5 
{u, v} N {p, q} = ~ and we have two adjacent edges [i, ]] and [i, l] whose images 
under L are two separated edges [s, t] and [u, v], in contradiction to Proposition 
3.14. 

(3.17) 

Case 2. n = 4  and k~<3 
Observe that the graph G = G12U 613 U Glj contains no circuit while L(G) 

contains the 3-circuit [i', p, q, i'], in contradiction to (3.1). 

Therefore,  our assumption that i '  q {s, t} is false and (3.16) follows. [] 

Proposition 3.15 does not hold in the case n = k = 4 as demonstrated by 

Example 3.18. Let L be defined by L ( G n ) =  GH, L(G22)= G22, L(G33) = G33, 
L(G12) = (712, L(GI3) = G~3, L(G14) = G23, L(G23) = G,4, L(G24) = (724, L(G34) = 
G~. It is easy to verify that L(G)  contains any 4-circuit if and only if G contains 
the same circuit. Thus L(~r~4) ~_ ~44, but E'(L(G~2 U G~3 O (714)) = {[1, 2], [1, 3], 
[2, 3]}. 

We can now state the main theorems of this section. 

Theorem 3.19. Let n >I k > 1, except for n = k = 4, and let L: ~,---> ~, be a graph 
covering linear mapping. Then L(  f~) c_ ~k if and only if L is a composition of  one 
or more of  the following types o f  transformations: 

(1) Vertex permutation ; 
(2) A linear mapping T satisfying E ' (T(G))  = E' (G)  for all G • ~3,, that is the 

transformation T results in possible addition or elimination of  loops. 
Furthermore, the following are equivalent: 
(i) L ( ~ ) =  ~3k; 

(ii) L(wk)___ ce~,, 

E'(L(Go))=E(L(Go) ), Vi, jE(n~, i~j, 

and there exists a permutation o on (n ) sue;: ,:~,~ 

L(Gi~) = Go(o,o(o, i = I,..., n. 

Proof. The "if" part  in the first part of the theorem is obvious observing that 
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addition of loops creates no new circuits but 1-circuits (loops). Conversely, by 
Proposition 3.14 for every i ~ (n )  there exists i '  e (n )  such that (3.15) holds. By 
Propositions 3.5 and 3.14 we have E' (L(Gi j ) )=  {[i', j ']}. Hence, by Proposition 
3.2 the mapping L results in renaming the vertices (i--> i ')  and possibly adding or 
eliminating loops. 

To prove the second part of the theorem observe that since k > 1 we have 

Giie,~,, Vi, je (n) .  

Thus, in view of the first part of the theorem we have (i) if and only if 
L ( ~ )  ~_ ~3 k, for all i, j e ( n ) ,  i :/: j there exist s, t e ( n ) ,  s :/: t such that L(G#)  = 

Gst, and for all i e (n)  there exists s e (n)  such that L(Gss) = Gii. By the first part 
of the theorem, the last three conditions are exactly (ii). [] 

Theorem 3.20. For n = k = 4 Theorem 
transformation is added to the list: 

(3) The linear mapping T defined by 

T(G11) = GII, 

T(G12) -" GI2, 

T(G23) = G14, 

T ( G22) = G22, 

T(G13) = G13, 

T(G24 ) = 624 , 

3.18. remains valid 

T(G33)= G33, 

T(GI4) - G23, 

T ( G34) = G34. 

i f  the following 

(3.21) 

Proof. To prove the "if" part in the first part of the theorem observe that as 
shown in Example 3.18, the linear mapping T defined by (3.21) satisfies 
L(~d~4) ~_ ~3~4. Conversely assume that L (~)_~  ~d~4. By Proposition 3.14 we can 
assume that after an appropriate renaming of the vertices we have E'(L(G12)) = 
{[1, 2]} and E'(L(G13))= {[1, 3]}. By Proposition 3.14 we have either 

or 
E'(L(G14)) "- {[1, 41} 

E'(L(G14)) = {[2, 31}. 

(3.22) 

(3.23) 

It is easy to verify, using Proposition 3.14, that if (3.22) holds then 
E'(L(G23)) = {[2, 3]}, E'(L(G~))= {[2, 4]}, E'(L(G34)) = {[3, 4]}, and  so L is of  
type 2. Similarly, if (3.23) holds then 

E'(L(G23)) = {[1, 41}, E'(L(G24)) = {[2, 41}, E ' ( L ( G 3 4 ) )  = {[3, 41} 

and L is a composition of transformations of types 2 and 3. 
The proof of the second part of the theorem is identical to the proof of the 

corresponding part in Theorem 3.19. [] 

Theorems 3.19 and 3.20 do not hold for noncovering mappings as demon- 
s t ra ted  by the following example. 
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Example 3.24. Let T be any linear mapping on ~3. and let H be any element of 
~ .  We define a linear mapping L: ~3. ~ qdn by 

L(G) = T(G) fl H, VG • ~ .  

Observe that since L ( G ) ~ H  for all G e ~dn it follows that L(~d~_~ ~3 k, 
although L is not a composition of the types of transformations specified in 
Theorems 3.19 and 3.20. 

We conclude this section with treatment of the case k = 1. 

"l'neorem 3.25. Let L: ~,,--, ~,, be a graph covering linear mapping such that 

L 
i 1 i,]=1 
i<] i<] 

Then L(¢$~) ~_ ~ if and only if L is a composition of one or more of the following 
types of transformations: 

(1) Vertex permutation ; 
(2) A linear mapping T satisfying T (G)= G for all loopless graphs G • ~n. 

(That is, loops may affect edges under T. ) 
In this case we have L(¢$~)= ~ .  

Proof. To prove the "if" part observe that it is enough to check the operation of 
L on loopless graphs, since a graph which has loops is not in ~3~. Hence it is clear 
that a composition of the transformations specified in the statment of the theorem 
preserve the class ~d 1. Conversely, assume that L(~d~)~_ qd~ and let s, t • (n ) ,  
s ~ t .  By Proposition 3.14, for every i • (n)  there exists i' • (n)  such that (3.15) 
holds. By Propositions 3.5 and 3.14 we have E'(L(GI,,))= {[l', w']}. Since 
Gtw • c~ln and since L(~d~) ~_ ~3~ x it follows that L(Gtw) contains no loop and hence 
L(Gtw) = Gt,w,. Thus, after performing the permutation i---> i' on the vertices we 
have L(G) = G for loopless graphs G. 

Observe that since all the graphs in ~3~ are loopless it follows from the first part 
of the theorem that L(~d 1) = ~3~. [] 

Theorem 3.25 does not hold when condition (3.6) (which appears in the 
theorem) is omitted, as demonstrated by the following example. 

Example 3.26. Let n = 3 and let L be defined by 

L(Gij) _ f GII U G12 U GI3 U G23, [ i , ] ] - ' [ I , I ] ,  
[ G12, otherwise. 

Clearly, for every graph G • ~ such that E(G) :k fJ we have L(G) = G~2. Hence, 
L(~3~) ___ ~331 although L is not a composition of the types of transformations listed 
in Theorem 3.25. 
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4. Digraphs---the case k < n 

In this section we discuss digraph covering linear mappings L : ~  ~ ~. .  In all 
our propositions we assume that k satisfies 3 ~< k ~< n and that 

L ( ~ )  _~ ~ .  (4.1) 

The case where L ( ~ )  = ~ will be treated as well. 
From Proposition 4.10 and on we assume that k < n. 
The section will be concluded by showing, using examples, that the main 

theorem of this section (Theorem 4.18) does not hold in the cases k = 1 and 
k = 2. We shall also. show that Theorem 4.18 does not hold for noncovering 
mappings. 

Proposition 4.2. We have E '  (L(Da))  = O. 1 <<- i <<- n. 

Proof. The proof is essentially the same as the proof of Proposition 3.2 using 
directed graphs and arcs. [] 

An example similar to Example 3.4 but using digraphs demonstrates that 
Proposition 4.2 does not hold in general for noncovering mappings. 

Proposition 4.3. L e t  i, j ,  l, w e ( n )  such  that  (i, ]) =/= (1, w ) .  Then E ' ( L ( D # ) )  N 

E'(L(Dtw))  =0.  

Proof. Assume that there exists s, t ~ (n)  such that 

(s, t) e E ' ( L ( D q ) )  CI E ' (L(Dlw)) .  

Choose ul ,  . . . , Uk-2 ~ ( n  ) such that 

oc = (S, t, Ul, . . . , Uk-2, S) 

is a directed k-circuit, and let i l ,  . . . ,  ik-1, j l , . . .  , l k -1  ~ ( n )  be such that 

and 

(4.4) 

(t, u 0 ~ E(L(Dia , ) ) ,  (Urn_l, Urn) E E ( L ( D i ~ . ) ) ,  m = 2 , . . . ,  k - 2, 

(Uk-2, s) ~ E(L(Di~_a~_,)). 

Let D be the diagraph Di] U (l~m~l Di.j=). Since L ( D )  contains the directed 
k-circuit c~, it follows from (4.1) that D must consist of a directed k-circuit. But 
then, since (i,j)=/=(l, w) ,  the digraph D'  =DlwU([. .~m-~Di,  j=) contains no 
directed k-circuit, and since [D'[ <~ k it follows that D '  e ~ ,  while by (4.4) L ( D ' )  
contains the directed k-circuit c~. This is a contradiction to (4.1) and hence the 
assumption that there exist s and t such that (4.4) holds is false. I~ 

In view of Propositions 4.2 and 4.3 and since L is a covering mapping, we may 
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define a linear mapping /_,:~,---> ~ ,  by /S,(D0) =D,,, where (i, j )eE'(L(Dst)) ,  
i q=], and L(Di,)= Do, i =  1 , . . . ,  n. 

Observe that 

and 
L([_,(D)) ~_ D, VD • ~, ,  

I£(D)I IDI, VD e ~ . .  

Since (4.1) holds it follows from (4.5) that 

D ¢ ~ = > / ~ ( D )  ¢ ~ .  

(4.5) 

(4.6) 

Proposition 4.7. Let i , ] e  (n) ,  i d=j. Then E'(L(Do) ) does not contain two 
adjacent arcs. 

Proof. Assume that (s, t) and (u, v) are two adjacent arcs in E'(L(Do) ) (namely, 
either t = u or s = v). Let D be a digraph which consists of a directed k-circuit 
through (s, t) and (u, v). Since /S,(D,,)= L ( O , ) =  D 0 it follows that I/_,(O)[~< 
k -  1 and hence L(D)e ~. Since D ¢ ~ we have a contradiction to (4.6). 
Therefore, E'(L(Do) ) does not contain two adjacent arcs. [] 

Proposition 4.8. Let i, j e  (n) ,  i=/=j. Then E'(L(Do) ) does not contain two 
separated arcs. 

Proof. Assume that (s, t) and (u, v) are two separated arcs in E'(L(Di/)). We 
distinguish between two cases: 

Case 1. k > 3  
In this case we can find a directed k-circuit a~ which contains the arcs (s, t) and 

(u, v). Let D be the directed graph which consists of the circuit e. Since 
L(Ds t )  = L(D~,)= D o it follows that IL(D)I-<k- 1 and hence L(D) e ~ .  Since 
D ¢ ~ we have a contradiction to (4.6). 

Case2. k = 3  
Let D be the directed graph which consists of the directed 4-circuit 

(s, t, u, v,s).  Since L(D,t) = L ( D ~ ) =  D 0 it follows from (4.6) that i~(D) must 
consist of a directed 3-circuit through (i, j). Without loss of generality we may 
assume that 

L(Dv,) = Djl and /~(D,,)= Dz~ 

for some I e (n) ,  l q: i, j. Considering the digraph which consists of the directed 
3-circuit (s, t, u, s), we obtain by (4.6) that/~(Dffi) - Djt. 

Similarly, considering the directed 3-circuits (u, v, s, u), (t, u, v, t) and 
(v, s, t, v)  we show that 

L(D,, ,)  = L(Dv,) = Dj,, and L(D, , )  = 
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Consider now the digraph which consists of the directed 4-circuit (u, s, v, t, u). 
By (4.6) we now obtain that 

L(D~) = D#. 

Considering (u, s, v, u) it follows that £(Do,) = Dt~. 
We have shown that E' (L(Dl i ) )  contains the two adjacent arcs (t, v) and (v, u), 

in contradiction to Proposition 4.7. 
Therefore, out assumption that there are two separated edges contained in 

E' (L (D#) )  is false, so our claim is proved. [] 

Lemma 4.9. Let  i, j, 1, m • ( n ) ,  i:/:j,  l : / :m,  be such that the arcs (i, j )  and (1, m)  
are neither separated nor  adjacent. Then the set S = E ' (L(Di j ) )  tO E ' ( L ( D ~ ) )  does 
not  contain adjacent arcs. If,  furthermore,  k > 3, then S does not  contain also 
separated arcs. 

Proof. Assume that S contains two arcs which are either adjacent or (only in the 
case that k > 3) separated. Observe that we can find a directed k-circuit cr 
through these two arcs. Let D be the graph which consists of the circuit or. We 
have If~(D)l ~< k, but since E ' ( L ( D ) )  contains the arcs (i, j) and (l, m) which are 
nonseparated as well as nonadjacent, it follows that L(D) contains no directed 
k-circuit. Hence, f_,(D)• ~k, and since D ¢ ~k we have a contradiction to 
(4.6). [] 

For i, j • ( n )  we define the set 

So= I,_J {l, w) .  
(l, w)~E'(L(Dti)) 

Proposition 4.10. I f  k < n, then ISij[ <- 2 for  all i, j • ( n ) , i d= j. 

Proof. Assume that ISijl > 2 for some i, j • (n ) ,  i :/:j. By Propositions 4.7 and 4.8 
it follows that E ' ( L ( D o )  ) contains two arcs which have one common vertex and 
opposite directions. Without loss of generality we may assume that (s, u), 
(s, v ) •  E ' (L(Di j ) )  (the case of (u , s ) ,  (v, s ) •  E ' (L(Di j ) )  is treated in the same 
way). Since k < n we can choose tl, • • • ,  tk-2 • (n  ) such that s, u, v, tl,  • . . ,  tk-2 
are distinct. 

We now distinguish between two cases. 

Case 1. k > 3 
Let D be the digraph which consists of the directed k-circuit ac= 

(s, u, h , .  • • ,  tk-2, S). By (4.6), the digraph L(D) consists of a directed k-circuit 
fl = (i, j, Pl ,  . . . ,  Pk-2, i). T h e  arc (v, u) is either separated or adjacent to each 
arc of cr except for (s, u). Let f_,(D~,.) = D~.  By Lemma 4.9 it follows that (l, m) 
is either separated or adjacent to each arc of fl except maybe for (i, j). Since 
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(v, u) is adjacent to (s, v) and since/_,(D~,) = Dij it follows by Lemma 4.9 that 
(/, m) and (i, j)  are also either separated or adjacent. Hence, (1, m) is either 
separated or adjacent to each arc of ft. In this case (/, m) cannot be adjacent to 
any of these arcs, since if, for example, we had 1 = j ,  then the arcs (j, Pl) and 
(/, m) would be nonadjacent as well as nonseparated. Therefore, (/, m) is 
separated from all arcs of ft. Let D '  be the digraph which consists of the directed 
k-circuit (v, u, t l , . . . ,  tk-2, V). Observe that (/, m), which is an arc in/~(D') ,  is 
separated from at least k -  2 other arcs of L(D')  (those which are also arcs of 
L(D)). Since [L(D')I ~<k, it means that L(D')  does not consist of a directed 
k-circuit and thus L(D ' )  e ~k. Recall that D '  ~ ~k, SO we have a contradiction to 
(4.6). 

Case 2. k - 3 
Let D be the digraph which consists of the directed 3-circuit (s, u, tl, s). By 

(4.6), £ (D)  consists of a directed 3-circuit through (i, j), say (i, j, 1, i). Without 
loss of generality assume that /S,(D,,tl)= Djl and L(D, ls ) = Dli. Considering the 
directed 3-circuit (s, v, tl, s) we obtain, using similar arguments, that 

= Oj,. 
Let L(Dou) = Dpq. Considering the directed graph which consists of (v, u, tl, v) 

we show, using (4.6), that (p, q) and (j, l) are adjacent arcs as they are two arcs 
in a directed 3-circuit. Considering (v, u, s, v) we similarly show that (p, q) and 
(i, j) are also adjacent. Hence necessarily (p, q ) =  (l, i). It now follows that 
E'(L(Dli)) contains the t w o  separated arcs (tx, s) and (v, u), which is a 
contradiction to Proposition 4.8. 

As a conclusion, the contradictions we got yield that our assumption that 
ISijl > 2 was false, so Is, jl -< 2. [] 

The meaning of Proposition 4.10 is that if (s, t) e E'(L(Dij)) for some i, j e (n) ,  
i #:j, then the only other possible arc in E'(L(D#)) is (t, s). Therefore, the 
following is an immediate consequence of Proposition 4.10. 

Corollary 4.11. Let k <n.  I f  D e ~ n  consists of  one directed k-circuit 
(il, i 2 , . . . ,  ik, iO, then the only other possible directed k-circuit in L(L(D)),  if 
any, is (ik, ik_l, . . . , il, ik). 

Proposition 4.12. Let k < n and let D e ~n. I f  E'(D) consists of  two adjacent arcs, 
then E' (L(D)) consists o f  two adjacent arcs. 

Proof. Let E ' (D)  = {(u, v), (v, w)}. If k = 3 then let D '  be the digraph which 
consists of the directed 3-circuit (u, v, w, u). By (4.6) L(D' )  consists of a directed 
3-circuit. Therefore, the two arcs in E'(L(D))  are part of a directed 3-circuit and 
as such they are adjacent. If k > 3, then by Lemma 4.9, E'(f_,(D)) consists of 
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either separated arcs or adjacent arcs. Assume that E'(L(D)) consists of the two 
separated arcs (i, j) and (s, t). By combinatorial calculations the cardinality of the 
set $1 of all possible directed k-circuits through (u, v) and (v, w) is nl = 
(~_-])(k - 3 ) ! ,  while the cardinality of the set $2 of all possible directed k-circuits 
through (i, j) and (s, t) is n2 = ( ~ - 4 ) ( k -  3)! Since k < n  we have 

nz > n2. (4.13) 

For all a~ e S~ define D,, to be the digraph which consists of a~. Let tr, fl e $1, 
a~#:fl. Since both a~ and fl pass through (u, v) and (v, w) it follows from 
Corollary 4.11 that/S,(D,,) 4: L(Dp). Therefore, by (4.13) there exists tee $1 such 
that/S,(D,,) does not contain an element of $2. Since E'(L(D,~)) contains (i, j) and 
(s, t) and since IL(D )I = k it follows that/_,(D,,) e ~ in contradiction to (4.6). 
Thus E'(L(D)) does not consist of two separated arcs so it must consist of two 
adjacent arcs. [] 

As consequences of Proposition 4.12 we obtain the following two propositions. 

Proposition 4.14. If  k <n, then IL(Dq)I = I for all i, j ~ (n),  i ~=j. 

Proof. Assume that for some i, j e (n) ,  i ~ j  we have [L(Dq)[ > 1. By Proposition 
4.10 we have E'(L(Dq))= {(u, v), (v, u)} for some u, v e ( n ) ,  ug:v. Since 
3 ~< k < n we have n I> 4 so we can choose s, t e (n)  such that u, v, s, and t are 
distinct. By Proposition 4.12, the set E'(f_,(D,,,)) consists ~ one arc which is 
adjacent to (i, j). Without loss of generality we may assume that L(Dv, )=  Dp. 
Again, by Proposition 4.12, the set E ' (L(D, , ) )  must consist of an arc which is 
adjacent to (j, l) as well as to (i, j). Hence, necessarily L(D,,)=:Dn: Similarly, 
since (u, t) is adjacent to (s, u) as well as to (v, u) it follows that the only arc 
contained in f-,(Dut) is adjacent to (i, j) as well as to (l, i) and hence L(Dut) = Djt. 
It now follows that E'(L(Djl)) contains the two separated arcs (v, s) and (u, t), a 
contradiction to Proposition 4.8. Therefore, [L(Dq) I ~< 1 for all i, j e (n) ,  i ~ j .  
Since L is given to be a digraph covering mapping it follows that IL(Dq)[ = 1 for 
alli, j e ( n ) , i g : j .  [] 

Corollary 4.15. Let k < n and let D e ~n. I f  E'(D) consists of two adjacent arcs, 
then E'(L(D)) consists of two adjacent arcs. 

Proof. The claim follows from Propositions 4.12 and 4.14 using counting 
arguments. [] 

Proposition 4.16. Let  k < n, let i, j ~ ( n ) ,  i ~ j, and let u, v ~ (n )  be such that 
E'(L(Dq)) = {(u, v)}. Then E'(L(Dji))= {(v, u)}. 

Proof. Let E'(L(Dji))= {(s, t} and assume that (s, t ) ~  (v, u). We distinguish 
between two cases: 
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Case 1. The arcs (s, t) and (u, v) are nonseparated 
Here by Lemma 4.9 it follows that (s, t) and (u, v) are also nonadjacent. 

Therefore, without loss of generality assume that t = v. Since 3 ~< k < n we have 
n I> 4 so let w e (n )  be such w #: u, v, s. By Proposition 4.12, the set E'(L(Dvw)) 
consists of an arc which is adjacent to (i, j) as well as to (j, i). Clearly, no such an 

arc exists. 

Case 2. The arcs (s, t) and (u, v) are separated 
(In view of Lemma 4.9 such a situation is possible only in the case k = 3.) By 

Proposition 4.12, the set E'(L(Dt=)) consists of an arc which is adjacent to (i, j )  as 
well as to (j, i) which, as observed above, is impossible. 

We have shown that our assumption that (s, t) :/: (v, u) leads to a contradiction, 

hence (s, t) = (v, u). [] 

Proposition 4.17. Let k < n. Then there exists i e (n) such that the set S = 
E'(L([._ff=2 Dlj)) is either 

n n 

(..J {(i, j ) }  or 1,.] {(j, i)}. 
y=l j= l  
j~ i  i~j  

Proof. Observe that as in Propositions 4.14 and 4.16 we have n ~>4. Let 
E'(L(D12)) = {(s, t)} and let E'(L(D31))= {(u, v)}. By Corollary 4.15, the arcs 
(s, t) and (u, v) are adjacent. We have two possibilities: 

(1) s = v .  By Proposition 4.16 we have E'(L(D13))={(s,u)}.  Let I e (n ) ,  
l >  3, and let E'(L(DtO) = {(p, q)}. Since (/, 1) is adjacent to (1,2) as well as to 
(1.3), it follows from Corollary 4.15 that q =s .  By Proposition 4.16 we have 
E'(L(Dtl)) = ( (s ,p)} .  It now follows, by Proposition 4.3, that the set S is 

{(s, j)}. 
(2) t = u .  Similar to Case 1 we show that in this case the set S is 

s)}. [] 

We are now ready for stating the main theorem of this section. 

Theorem 4.18. Let n > k >t 3 and let L: ~,---> ~ ,  be a digraph covering linear 
mapping. Then L ( ~  k) ~_ ~ if and only if  L is a composition of  one or more of  the 
following types of  transformations: 

(1) Vertex permutation; 
(2) The linear mapping T satisfying T(Dij) = Dii for all i, j e (n)  ; 
(3) A linear mapping T satisfying E ' (T(D))  = E'(D) for all D e ~, ,  that is the 

mapping T results in possible addition or elimination of  loops. 
Furthermore, the following are equivalent 
(i) L(~  k) = ~k; 

(ii) L(~  k) ~_ ~k, 

E'(L(Dij))=E(L(Dij)) ,  Vi, j e ( n ) ,  i . j ,  
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and there exists a permutation o on (n) such that 

L(Dil) = L(Do(i),o(i)), i= 1 , . . . ,  n. 

Proof. The "if" part of the first part of the theorem is obvious. Conversely, by 
Proposition 4.17, after an appropriate permutation of the vertices we have either 

o r  

E'(L(Dxi)) = {(1, j)}, ] = 2 , . . . ,  n, (4.19) 

E'(L(Dli)) = {(j, 1)}, j = 2 , . . . ,  n. (4.20) 

Assume that (4.19) holds. By Proposition 4.16 

E'(L(Djl)) = {(j, 1)}, ] = 2 , . . . ,  n. (4.21) 

Let i, j • (n) ,  i, ] >  1, i e j .  Since (i, j) is adjacent to (1, i) as well as to (j, 1), it 
follows from (4.19), (4.21) and from Corollary 4.15 that E'(L(Dq))= {(i, j)}. 
Similarly we show that if (4.20) holds, then E'(L(Do) ) = {(j, i)}. Hence, the 
mapping L is a composition of the types of transformations listed in the theorem. 

The proof of the second part of the theorem is essentially the same as the proof 
of the corresponding part is in Theorem 3.19. [] 

Theorem 4.18 does not hold in the case k = 2 as demonstrated by the following 
example. 

Example 4.22. Let L be defined by 

and 

n 

L(D12) = [._J Dip 
i,]=l 
i<] 

n 

L(D21) = [..J D~j, 
i , j = l  
i>] 

L(Dq)=Do {i,j} ¢ {1, 2}. 

Observe that if L(D) contains any directed circuit then D12 U D21 c: D. Hence L 
satisfies even L ( ~  2) _c ~ ,  although L is not a composition of transformations of 
the types specified in Theorem 4.18. 

It is easy to verify that if L is a digraph covering linear mapping such that 
L(~2)  ~_ ~2 then, as in Proposition 4.2, we have 

and also 
E'(L(Di~))=O, i = l , . . . , n ,  (4.23) 

(s,t)eE'(L(Dq))C~(t,s)eE'(L(Dji)), s, t e ( n ) ,  s4=t. (4.24) 

Furthermore, since the digraph D = [..JT, j--1,i<j Du contains no directed circuit it 
follows that L(D) contains no directed circuit of length greater than 1. As is well 
known, after an appropriate permutation of the vertices we have 

E '  L Dq ~_ I,..J {(i, j ) } .  (4.25) 
\ \ i , j = l  i,j---1 

i<] i<j 
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However, Conditions (4.23), (4.24) and (4.25) are not sufficient for having 
L(~2)  ~ ~2 as demonstrated by the following example. 

Example 

L(Dm) = D12, 

L(D21 ) = 921 , 

4.26. Let n = 3 and let L be defined by 

L(923) =/)13, 

L(Da2) = D3,, 
and 

L(D13) = Dz3, 

L(D31) =/932, 

i=1,2,3. L(Du)= D~, 

Let D be the digraph /912 LI D13 I..J 932. Observe that D contains no directed 
circuit while L(D) contains the directed 3-circuit (1, 2, 3, 1). So even L ( ~ )  _~ ~2 
although, as can easily be verified, (4.23), (4.24) and (4.25) are satisfied. 

Example 4.22 shows that Theorem 4.18 does not hold also in the case k = 1. It 
is easy to verify that if we assume that 

L(i,~.=l Di]) ~ i,~.=l Dij" (4.27) 

then L ( ~ )  ~ ~ implies that 

(s,t)eE'(L(Di/))g:>(t,s)eE'(L(Dji)), wheneveri~j,s#:t. (4.28) 

As in the case k = 2, after an appropriate permutation of the vertices we have 

(4.29) 

i<j i<j 
However, Conditions (4.27), (4.28) and (4.29) are not sufficient for having 

L ( ~ )  ~_ ~ as demonstrated by Example 4.26. 
Finally, we use an example which is similar to Example 3.24 in order to show 

that Theorem 4.18 does not hold for noncovering mappings. 

Exmaple 4.30. Let T be any linear mapping on ~n and let H be any element of 
fl~. We define a linear mapping L:  ~,,----> ~n by 

L(D) = T(D) f"l H, VD e ~,,. 

The mapping L is not a composition of the types of transformations listed in 
Theorem 4.18 but clearly L(~) _~ ~. 

5. Digrapim ".he case k = n 

The discussion of this section is devoted to digraph covering linear mappings 
L : ~,~-* ~,~ satisfying 

L ( ~ , )  ~_ ~ .  (5.1) 
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In all our propositions we assume that n ~> 4. The cases n = 1, n = 2 and n = 3 
will be discussed after the proof of Theorem 5.30. As in the previous sections we 
shall also describe those L for which L(~,") = ~,". 

Recall that the discussion in the previous section through Lemma 4.11 holds 
also for the case k = n. 

Proposition 5.2. I f  for  some i, j e (n ), i 4: j we have [Sql > 2, then there exist n 
arcs (sl,  q) ,  • • . ,  (s,,  t~) which fo rm a directed n-circuit such that either 

or 

E'(L(D~:,))  = U {(i, j)}, i =  1 , . . . ,  n (5.3) 
/=1 

n 

E' (L(D, : , ) )  = 1.3 {(j, i)}, i =  1 , . . . ,  n. (5.4) 
i = l  
]q,i 

Proof. Assume that [Sq[ > 2  for some i, j e ( n ) ,  i q:j. by Proposition 4.7 and 4.8 
we may assume that after an appropriate permutation of the vertices we have 
either 

o r  

{(1, 2), (1, 3)} c_ E ' ( L ( D o )  ) 

{(2, 1), (3, 1)} _~ E ' ( L ( D o )  ). 

(5.5) 

(5.6) 

Consider the case that (5.5) holds and let D be the digraph which consists of 
the directed n-circuit (1, 2 , . . . ,  n, 1). Let 

E'(L(DI, I+I)) = {(s,, tl)}, 

I ^ E ( L ( D . 1 ) ) =  {(s., t,)}. 

l = 2 ,  . . . , n -  1, 
and 

(5.7) 

(5.8) 

By (4.6), the n arcs (i, ]), (s2, t2), (s3, ta), • • • ,  (s,,  t ,) form a directed n-circuit 
tr. Let Din, m = 3 , . . . ,  n be the digraph consists of the directed n-circuit 
(1, m, m + 1 , . . . ,  n, 2 , . . . ,  m - 1, 1). Observe that by (5.5) and (5.7), the set 
E'(f-.(D3)) contains the n - 2  arcs (i, ]), (s3, t 3 ) , . . . ,  (S~-l, t, .1). It is easy to 
verify that the only directed n-circuit through these n -  2 arcs is tr. Since, by 
(4.6), L(D3) consists 

E ' (L(D,2  U 
If 

of a directed n-circuit, that circuit must be a~ and hence 

D21)) = {(Sz, tz), (s,, t,)}. (5.9) 

E (L(D.z) )=  {(s2, tz)}, (5.10) 

then by (5.7) and (5.10), the set E'(L(Ds2t2)) contains the arcs (2, 3) and (n, 2) 
which, since n I> 4, are adjacent. This contradicts Proposition 4.7. Hence, (5.10) 
is false by (5.9) we have 

E ' (L(D,2))  = {(s,,, t ,)}, (5.11) 

E'(L(D21)) = ((s2, tg}. (5.12) 
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Let 4 ~< m ~< n. By (5.7) and (5.11), the set E'([-,(Dm)) contains the arcs 

(Sm, t i n ) , ' ' ' ,  ($n--1, t,_~), (S,, t,), (S2, t2), . . . , ($m--2, tm--2)" 

Again, it is easy to verify that the only directed n-circuit through these n - 2  arcs 
is a~. Since, by (4.6), L(Dm) consists of a directed n-circuit, that circuit must be a~ 
and hence 

E'(L(D~m tO Dm-x,O)= {(i, j), (Sm--X, /m--l))- (5.13) 
If 

E'(L(Dm-I,1)) = {(/, j)) ,  (5.14) 

then by (5.5) and (5.14) the set E'(L(Dq)) contains the arcs (m - 1, 1) and (1, 2) 
which, since m >~4, are adjacent. This is a contradiction to Proposition 4.7. 
Hence, (5.14) is false and by (5.13) we have 

(1, m) e E'(L(Dij)) 
and 

£ ( D m _ 1 , 1  ) "-" { (Sm_l  , t i n - l ) } .  

Since (5.15) holds for all m, 4 ~< m <~ n it follows by (5.5) that 

(5.15) 

(5.16) 

n 
E'(L(Dq)) D_ [...) {(1, p)}. (5.17) 

p=2 

Also, by (5.7), (5.8), (5.11), (5.12) and (5.15) we have 

F {(/, 1), (l, l + 1)} _ E  (L(Ds, t,)), 

{(n, 1), (n, 2)} ~_ E'(L(D,,~.)). 

l = 2 , . . . , n - 1  
(5.18) 

In a similar way to our proof that (5.5) implies (5.17) we prove that (5.18) 
implies 

n 
E'(L(Ds,t,)) ~_ [_J {(1, p)}. (5.19) 

p=1 
p ~ l  

By Proposition 4.3 equality holds in (5.17) and (5.19). If we let sx = i and q =j  
then we have (5.3). 

In the case that (5.6) holds we prove in essentially the same way that (5.4) 
holds. [] 

Proposition 5.20 If 

Is,jl ~< 2 foral l i ,  j e ( n ) , i g : j ,  
then 

]L(Dij)[= I foral l i ,  j e  ( n ) , i ~ j .  

(5.21) 

(5.22) 

ProoL Assume that [L(Do) [ > 1 for some i, j ~ (n) ,  i ~ j .  By (5.21) we have 
E ' ( L ( D o ) ) = { ( u , v ) , ( v , u ) }  for some u, v e ( n ) ,  u4=v. Let { q , . . . , t n _ 2 } =  
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(n ) \ {u ,  v}, and let D and D'  be the digraphs which consist of the directed 
n-circuits (u, v, q , . . . ,  t,_2, u) and (v, u, q , . . . ,  t,_2, v) respectively. By (4.6) 
the digraphs f,(D) and L(D')  consist of a single directed n-~ircuit each, say a~ and 
fl respectively. Let 

£(o. , ,1)  = ors 

£ (0 , ._2o)  = 
and 

(5.23) 

(5.24)  

Since L(D~,) =/~(Do,,) it follows that a" and fl have at least n - 2 common arcs. 
Since a~ and fl are both directed n-circuits it follows that a~ = fl and so 

E'(£(D,,,, LI D,._2u) ) = {(r, s), (p, q)}. (5.25) 

The fact that n I> 4 yields that t._2 4: tl and hence the arcs (t,_2, v) and (v, tl) 
are adjacent. By Proposition 4.7 and (5.24) it follows that (v, ta)~ E'(L(D~,q)) 
and therefore it follows from (5.25) that 

(v, q) e E'(L(O~)). (5.26) 

By (5.23) and (5.26) we now have [S,~ 1 I> 3 in contradiction to (5.21). We thus 
conclude that [L(Dij)]~I for all i, j e  (n),  i4:j. Since L is a digraph covering 
mapping, (5.22) follows. [] 

lhro0osition 5.27. Given that (5.22) holds let i, j e (n) ,  i ~ j ,  and let u, v e (n) be 
such that E'(L(Oq))= {(u, v)}. Then E'(L(Oji))= {(v, u)}. 

Proof. Assume that L(D~.,)= Dst. Since (u, v) and (v, u) are neither adjacent 
nor separated it follows from Lemma 4.9 and (5.22), using counting arguments, 
that (s, t) and (i, j) are neither adjacent nor separated. If (s, t)4: (j, i), then it 
follows that either s = j or t = i. In each of these cases, given that n I> 4, wc can 
f indp e (n) ,  p#:i, ,Ls, t. The arc (s,p) in the case that s =j or the arc (p, t) in 
the case that t = i is neither separated nor adjacent to both (s, t) and (j, i). By 
[,emma 4.9, E'(L(DsF)) (in case s =j )  or E'(L(Dpt)) (in case t= i )  consists of an 
arc which is neither separated nor adjacent to both (u, v) and (v, u), but no such 
an arc exists (except for (u, v) and (v, u) themselves). Hence (s, t ) =  (i, i) and 
our claim is proved. [] 

As a consequence we have 

Proposition 5.28. Assume that (5.22) holds and let D e @n. I f  E'(D) consists of 
two adjacent arcs, then E'(L(D)) consists of two adjacent arcs. 

]Proof. Let i, j, I e (n) be distinct, and let E'(L(Do))= {(s, t)) and E'(L(D#))= 
{(u, v)}. By Proposition 5.27 we have E'(L(Do) ) = {(v, u)} and by Lemma 4.9 
and Proposition 5.27 we have either s = v a n d  t 4= u o r  t = u a n d  s 4:  v. In each 
case it follows that the arcs (s, t) and (u, v) are adjacent. [] 
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lhropo~lion 5.29. I f  (5.22) holds, then there exists i ~ ( n )  such that the set 
E'(L(U~j=2 Dlj)) is either 

n n 

U {(i, j)} or L_J {(/', i)}. 
j = l  j----1 
j~i i~j 

Proof. The proof is the same as of Proposition 4.17, using Proposition 5.27 
instead of Proposition 4.16 and Proposition 5.28 instead of Corollary 4.15. [] 

Theorem 5.30. Let n >14 and let L:~.--> ~ .  be a digraph covering linear 
mapping. Then L ( ~ , )  ~_ ~ i f  and only i f  L is a composition o f  one or more o f  the 
fol lowing types o f  transformations: 

(1) Vertex permutation; 

(2) The linear mapping T satisfying T(Do) = Dji for  all i, j ~ ( n )  ; 
(3) A linear mapping T satisfying E ' ( T ( D ) ) =  E ' ( D )  for  all D ~ ~ ;  
(4) A linear mapping T defined as follows: Let sl,  . • . ,  s . ,  tl ,  . . . , t~ e (n ) be 

such that the arcs (sl,  tl), . • . ,  (s~, t , )  f o rm a directed n-circuit and let S be the set 
which consists o f  these n arcs. Then T is defined by 

n 

T(D.,t,)= U Dq, i =  l,  . . . , n, T(D.)= D.. i ¢ (n), 
j = l  
j ~ i  

and 
T ( D o ) = D o ,  i, j e ( n ) ,  ( i , j ) ~ S ,  i ~ j .  

Furthermore, the following are equivalent: 
(i) L ( ~ ) =  ~ , ;  

(ii) L(~)c_  ~ ;  

E'(L(Do))=E(L(Do) ), Vi, j e (n ) ,  i=/=j, 
and there exists a permutation o on ( n ) such that 

L ( D , )  = D o(i),o(O, i = 1 , . . . ,  n. 

Proof. It is easy to check that mappings T of the types 1, 2 and 3 satisfy 
T(~,~) ~_ f~. Let T be a mapping of the type 4, and assume that T ( D )  contains a 
directed n-circuit for some D ~ ~, .  Observe that for every i e (n)  the set 
E ' ( T ( D ) )  must contain an arc (i, j), where i ~ j .  Hence, (si, t i )e  E ' ( D )  for all 
i ~ (n) ,  so D contains a directed n-circuit. Therefore T ( D )  ~ ~ , : : > D  ~ ~'~, or 

Conversely, if (5.21) holds, then by Proposition 5.20 (5.22) holds and our proof 
follows as the proof of Theorem 4.18, using Propositions 5.28 and 5.29 instead of 
Corollary 4.15 and Proposition 4.17. If (5.21) does not hold then by Proposition 
5.2 we have either (5.3), in which case L is a composition of transformations of 
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types 3 and 4, or (5.4) in which case L is a composition of transformation of types 
2 ,3 ,  and4.  

The proof of the second part of the theorem is essentially the same as the proof 
of the second part of Theorem 3.19. [] 

Theorem 5.30 does not hold for noncovering mappings as demonstrated by 
Example 4.30. 

We conclude the section with the investigation of the cases where n ~< 3. 
The case k = n = 1 is trivial. It is easy to verify that in the case k = n = 2 

Proposition 4.2 ~ is valid. Hence we clearly have either E'(L(D12))= {(1, 2)}, 
E'(L(D2a)) = {(2, 1)} or E'(L(Dx2))= {(2, 1)}, E'(L(Dm)= {(1, 2)}. Observe 
that where n = 2, a mapping of the type 4 is, either of the type 3 or a composition 
of transformations of types 2 and 3. Therefore, Theorem 5.30 (in fact Theorem 
4.18) holds also in the case k = n = 2. 

In the remaining case, the case k = n  = 3, we have two possible directed 
3-circuits tr = (1, 2, 3, 1) and fl = (1, 3, 2, 1). In view of Propositions 4.2 and 4.3 
we may define the mapping L and we have (4.6). Let D and D '  be the digraphs 
which consist of tr and fl respectively. By (4.6) we have either L ( D ) =  D or 
L(D) = D', and independently we have either L ( D ' ) =  D or L(D')= D'. So, 
there are 144 different possibilities for /,, and hence there are exactly 144 
different digraph covering linear mappings L (up to adding or eliminating loops) 
satisfying L(~])~_ ~3. We conclude the section with two examples of such 
mappings. 

Example 5.31. Let L be defined by 

L(Dlz) = D~z; L(D23) = 023, 

D(DI3) = D32, L(D32) = D 3, 

L(D30 = D31, 

L(D~,)= D,~, 

L(D21) = Din; 

i- I, 2, 3. 

Example 5.32. Let L be defined by 

D12 LI D2x, (i, j) - (1, 2), 

L(Do ) = ] D23 tO Dxa, (i, j) = (2, 3), 
DaEtODa~, (i, ]) = (3, 1), 

/ 
I~ Do, otherwise. 

6. Applications to matrices 

Let F be a field with characteristic p. 
Consider the set ~ d k [ d ~  of all matrices in F "  whose graph (digraph) 

contains no circuit (directed circuit) of length greater than or equal to k. In this 
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section we apply the results of the previous sections to characterizing linear 
transformations L:  F '~--> F nn for which L ( ~ )  ___ ~ce~ or L ( A g ~  ~_ a g ~ .  Our 
results are obtained for p = 0 or p > n 2 -  n, under certain restrictions on L 
induced by the covering requirements in our previous results. 

Definition 6.1. A linear transformation L :F~--> F '~ is said to be a covering 
transformation if for all i, j e {n),  i =/:j there exist s, t e (n)  such that (L(Est))o q: 
0 or (L(Est))# q:O. The transformation L is said to be a strongly covering 
transformation if for all i, j e (n ) ,  i :/:j there exist s, t e (n)  such that (L(Est))o q: 

0. 

Remark 6.2. Observe that if L is nonsingular then L ( F  "~) = F ~.  Hence it follows 
that every nonsingular linear transformation on F '~ is a strongly covering 
transformation. 

Lemma 6.3. (i) The transformation L is a covering transformation i f  and only i f  
Lg is a graph covering mapping; 

(ii) The transformation L is a Strongly covering transformation i f  and only i f  La 
is a digraph covering mapping. 

Proof. The observations of our lemma follow from Definitions 2.8, 2.16, 2.21 and 

6.1. [] 

The following lemma is pure algebraic. 

[,emma 6.4. Let al, . • • ,  am,  bl, • • . ,  bm e F such that for every i e ( m )  we have 
a~ q:O or bi ~0 .  I f  either p = 0 or p > m ,  then there exists c ~ F such that 

a i q- cb  i =fl: O, i = 1 , . . . ,  m. 

Proof. If bi = O, then, since ai ~ O, for every x e F we have ai + xbi ~ O. If b~ ~ O, 
then, since x = aib'71 is the unique solution of the equation ai + xbi = O, it follows 
that the cardinality of the set S = {x e F: a~ + xb~ = 0 for some i e (m)  } is at most 
m. Since either p = 0 or p > m, we can find a number c E F which is not in S, so 

we h a v e a i + c b i ~ O , i = l , . . . , m .  [] 

Lemma 6.4 is used in proving the following proposition. 

Proposition 6.5. Let n >I 2. I f  either p = 0 or p > n 2 - n ,  

there exists a matrix A e F nn such that G(A)  = G and 

E ' ( G ( L ( A ) ) )  = E'(Lg(G)) .  

then for  every G e ~dn 

(6.6) 

Proof. We prove our assertion by induction on the number h - [E(G)[. If h = 1, 
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then let E ( G )  = {[s, t]}. We set B = L(E~t) and C = L(Et~). By Lemma 6.4 we can 
find x • F such that b~j + xc o :/: 0 whenever b~j 4= 0 or c~j 4= 0, i, j • ( n ) ,  i 4: j. Hence 
the matrix A = E~t + xEt~ satisfies G(A)  = G = G~t and 

E ' ( G ( L ( A ) ) )  = E ' (G(L(E, , ) )  LI G(L(E~))) = E' (Ls(G)) .  

Assume that our claim holds for h < m and let h = m. Let Is, t] • E(G) ,  and let 
G '  be the graph obtained from G by eliminating the edge Is, t]. By the inductive 
assumption there exists a matrix A ' • F " '  such that G ( A ' ) = G '  and 
E ' (G(L(A ' ) ) )  = E'(L~(G')) .  

Let B = (L(A ' ) ,  C = L(Est) and K = L(E=). By Lemma 6.4 we can find x • F 
such that rij = b# + xc o ~ 0 whenever bij ~ 0 or c o ~ 0, i, j • (n ) ,  i ~ j .  Using 
Lemma 6.4 again we now find y e F such that r o + yk# :/: 0 whenever r o ~ 0 or 
k 0 ~ 0 ,  i , j • ( n ) ,  i ~ j .  The matrix A = A ' + x E s , + y E ~  is the required 
matrix. [] 

The same result holds for digraphs. 

Proposition 6.7. Let n >~ 2. I f  either p = 0 or p > n 2 - n, then for  every D • ~ ,  
there exists a matrix A • F '~ such that D(A)  = D and 

E ' ( D ( L ( A ) ) )  = E ' (Ld(O)) .  (6.8) 

Proof. The lines of the proof are the same as those of the proof of Proposition 
6.5, using induction on IE(D)I. The proof here is even somewhat simpler because 
we have to consider only Est and not Et, whose digraph is different. [] 

Corollary 6.9. Let n >>- 2. I f  either p = 0 or p > n 2 - n ,  then we have 

L(~u3k) ___ ~ 3 ~  (6.10) 

if and only if 
Lg(q3~) c_ ~a~'~. (6.11) 

Proof. Assume that (6.10) holds and let 

G • ~3 k. (6.12) 

Consider first the case k > 1. By Proposition 6.5 there exists A e F "  such that 
(6.6) holds. By (6.12) we have A e dg~'~, and hence it follows from (6.10) that 
G(L(A) )  • ~d k. Since k > 1 it follows from (6.6) that Lg(G) • ~3 k. 

In the case k = 1 we use the same proof to show that Lg(G) contains no circuit 
of length greater than 1. To see that Lg(G) contains no loop observe that by 
(6.10) L(Eij) has zero diagonal elements whenever i 6: j. Hence, since G contains 
no loop it follows from Definition 2.21 that Ls(G ) contains no loop. Therefore 
L , ( G )  • ~ .  
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Conversely, assume that (6.11) holds and let A e ~ , ~ .  Since G ( A ) e  ,~, it 
follows from (2.22) and (6.11) that L(A) e ~ k .  [] 

Corollary 6.13. Let n >I 2. I f  either p = 0 or p > n 2 - -  n, then we have L (~ t~  k) ~_ 
,~l~ k if and only if Ld(~k) C ~k. 

Proof. The proof is essentially the same as the proof of Corollary 6.9, using 
Proposition 6.7 instead of Proposition 6.5 and (2.23) instead of (2.22). [] 

Lenuna 6.14. We have 

Lg(G)=G,  VG e ~,, 

if and only if  L satisfies 

L(E~i) = biiEa, b~i :/: O, 
and 

i e ( n ) ,  

L(Eiy)=bijE#+cijE#, i, j e ( n ) ,  i ~ j ,  

where at least one of  bij, b#, cij and c# is nonzero for all i, j ~ (n ) , i < j. 

(6.15) 

(6.16) 

(6.17) 

Proof. By Definition 2.7, (6.15) holds if and only if 

Lg(G#)=G#, Yi, j e  (n) .  (6.18) 

In view of Definition 2.21, (6.18) holds if and only if (6.16) and (6.17) hold 
with at least one of bij, b#, cij and c# is nonzero for all i, j e (n) ,  i < j. [] 

In view of Corollaries 6.9 and 6.13, the first part of the following theorems are 
translations of the results of the previous sections into terms of matrices. 

Theorem 6.19. Let n>Ik > l, except for n = k = 4 ,  let F be a field with 
characteristic p where either p = 0 or p > n 2 - n, and let L be a covering linear 
transformation on F '~. Then L ( J t ~ ) c _  .1/l(~ if and only if L is a composition of  
one or more of  the following types of  transformations: 

(1) A---> pTAp,  in which P is a permutation matrix (permutation similarity). 
(2) A---> A + F, where F is a diagonal matrix whose diagonal entries are linear 

combinations of  the entries of  A. 
(3) A linear transformation T satisfying 

and 
i e ( n ) ,  

T(ED = bijEij + cijE #, i, j e (n ), i q:j, 

where at least one of  bij, b#, cij and c# is nonzero for all i, j e (n ) , i < j. 
Furthermore, the following are equivalent: 
(i) L(.,W-~)= d/~3~; 

(ii) L is nonsingular and L ( . g ~ )  c_ Jl t~.  
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Proof. By Lemma 6.3, L is a coveting transformation if and only if Lg is a graph 
covering mapping, and by Corollary 6.9, (6.10) and (6.11) are equivalent. 
Therefore, we have L(~fa~) __. Jftra~, if and only if Lg is a composition of mappings 
of the types listed in Theorem 3.19. Observe that Lg is a vertex permutation if 
and only if after a permutation similarity we have L g ( G ) =  G for all G e q3,. 
Therefore it follows, using Lemma 6.14, that Lg is a vertex permutation if and 
only if L is a composition of the types 1 and 3 in our theorem. Similarly Lg is of 
type 2 in Theorem 3.19 if and only if L is a composition of types 2 and 3 in our 
theorem. 

We now prove the equivalence statement in the second part of the theorem. 
(i) ~ (ii). Since k > 1, it follows that 

Eo e.,l/tc~,, Vi, j e (n ). 

Therefore, L(J~r~,) = jlr~, implies that L ( F " ' )  = F "~ which is possible only if L is 
nonsingular. 

(ii) ::), (i). Assume that 

L ( . / ~ )  c_ .//~jk. (6.20) 

Observe that permutation similarity is a nonsingular transformation which 
Clearly maps ~q3~ onto itself. Hence, it view of the first part of the theorem it is 
enough to consider a nonsingnlar L which is a composition of transformations of 
types 2 and 3. Consider the n 2 × n 2 matrix £ which represents L with respect to 
the following basis of F "n 

{EI1, E 2 2 , . . . ,  E,,,,, Eau, F-~I, E13, Eal, . . . , E,,-1.,,, En,n-1}. 

We partition L as 

[LI  L 21 
£-"  LL21 L22J" 

where/~n is n x n. It is easy to verify that L is a composition of types 2 and 3 if 
and only if L2~ = 0 and/o.2 is a block diagonal matrix with nonzero 2 x 2 blocks 
along the diagonal. Since L is nonsingular if follows that L is invertible. Partition 
/~-~ in accordance to the partitioning of L. Observe that L2-~ 1 = 0 and that/.421 is a 
block di.~a~onal matrix with nonzero 2 x 2 blocks along the diagonal,. Since 
L -x =  (L- ' )  it now follows that L -~ too is a composition of types 2 and 3 and 
hence L-~(~qJ~) ~_ ~q3~. Together with (6.20) we have (i). [] 

Theorem 6.21. For n = k = 4 Theorem 6.19 remains valid i f  the fo l lowing  
transformation is added to the list: 

(4) The linear transformation T defined by 

T(Ea4) = Era, T(E,x)  = Ea2, T(F-o.z) = Ea4, 
and 

T ( E , j ) = E o ,  Vi, j e (4) ,  

T(F 2)- E,1, 

{i, j} {1, 4}, {2, 3}. 
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Proof. The first part of the theorem (as stated in Theorem 6.19) follows from 
Theorem 3.20 and Corollary 6.9, observing that Lg is of type 3 in Theorem 3.20 if 
and only if L is a composition of the transformation 4 and a transformation of the 
type 3 in Theorem 6.19. As to the second part of the theorem (the equivalence 
statement) observe that in view of Theorem 6.19 and its proof, all we have to 
show is that the nonsingular transformation T defined in 4 satisfies T(dgq~4)= 
d/q3~4. Observe that T -I  = T and hence T-l(d~qd~4) ~_ gtr~44. Since T(dC~4) _~ d~r~4 it 
follows that T(d~r~44) = d/~4. [] 

Theorems 6.19 and 6.21 do not hold for noncovering transformations as 
demonstrated by the following example, based on Example 3.24. 

Example 6.22. Let T be any linear transformation on F n" and let H be any matrix 
in d ~ .  The linear transformation L on F '~ defined by 

L(A)= T(A)oH, VA eF 

satisfies L ( d ~ ' ) ~ _  d¢~'~, but L is not a composition of transformations of the 
types described in Theorems 6.19 and 6.21. 

Theorem 6.23. Let F be a field with characteristic p where either p = 0 or 
p > n  2 - n, and let L be a linear transformation on F ~' such that for all i, j E (n) ,  
i:/:j there exist s, t e  (n) ,  s:/:t satisfying (L(E=))o~O or L((E,t))ji:/:O. Then 
L(d~q3~) ~_ d ~  if and only if L is a composition of  one or more of  the following 
types of  transformations: 

(1) Permutation similarity; 
(2) A--* A + F, where F is a matrix whose entries are linear combinations of  the 

diagonal entries of  A; 
(3) A linear transformation T satisfying 

and 

T(Eii)=biiEu, bii~O, i • (n) ,  

T(EIj) = bijEIj + cIjE,, i, j ~ (n ), i #:j, 

where at least one of  bij, bji, cij and cji is nonzero for all i, j e ( n ) , i < ]. 
Furthermore, the following are equivalent 
(i) L( .a~ . ' )=  ~ . ' .  

(ii) L (dg~)  ~_ d g ~  and 

N(L) t'I {A ~ F'~: a~ = O, Vi ~ (n ) } = (O}, 

where N(L)  denotes the null space (kernel) of  L. 

Proof. The proof of the first part of the theorem is similar to the proof of 
Theorem 6.19, using Theorem 3.25 and observing that L satisfies the covering 
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condition of the theorem if and only if Lg satisfies 

Lgxi,j=I Gij ~_ U Gij. 
i,j=l 

i<j i<j 

In order to prove the second part of the theorem we denote 

S = {A eF":aii=O, Vi e (n)} 

and we define/~, to be the restriction of L to the subspace S. Observe that if 

L(Aff~.a) m_ Affq3~, (6.24) 
then 

(L(Eij))u=O, Vi, j, lE(n) ,  i~j .  

Therefore, if (6.24) holds then l(S)m_ S, so [. can be considered as a linear 
transformation on S. Moreover, since ~ d ~  _m S it follows that 

L(a//~Jx) = ~ j ~  <:~ [ , ( ~  q3~) = ~qJ~. (6.25) 

We now prove the equivalence statement. 
(i) ::~ (ii). Since 

EijEatt~, Vi, j e ( n ) ,  i4:j, 

it follows from (i) that L ( S ) =  S so/~, is nonsingular which implies N(L)N S = 
{0}. 

(ii) ~ (i). As in the proof of the corresponding part of Theorem 6.19 we may 
assume that L is a composition of transformations of types 2 and 3. It is easy to 
verify that L is such if and only if L12 = 0 and L22 is a block diagonal matrix with 
nonzero 2 x 2 blocks along the diagonal. Define a linear transformation T on F "  
by 

T(Eu)=Ea, i e (n ) ,  T(A)=L(A), VAeS. (6.26) 

Observe that 7"12 = 0 and 7'22 = Lz2. Hence T is composition of types 2 and 3 
and by the first part of the theorem 

T ( ~ J ~ )  ~_ ~ J ~ .  (6.27) 

Furthermore, by (6.26) if T(A) = 0, then A e S, but then it follows from (ii) that 
A = 0. Therefore T is nonsingular. Since 2r~ 1 = 0 and T~2 x is a block diagonal 
matrix with nonzero 2 x 2 blocks along the diagonal, it follows that 

T-~(~q3~) ~_ ~q3, x. (6.28) 

By (6.27) and (6.28) we have T ( a f f ~ ) =  J/¢~, and by (6.25) (with respect to T) 
we obtain 

= f - ( . u  = 

By (6.25) (with respect to L) we now have L ( ~ )  = ~d~ .  [] 
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Theorem 6.23 does not hold without the covering requirement on L as 
demonstrated by the following example, based on Example 3.26. 

Example 6.29. Let n = 3 and let L be defined by 

L(E~j)= ~ F~ + E~ + E~3 + F~,  i = ] = 1  
(Eaz, otherwise. 

Observe that L(Jfffg]) c_ d/~], but although L is a coveting transformation L is 
not a composition of transformations of the types in Theorem 6.23. This is 
because L does not fulfill the special coveting requirement of Theorem 6.23. 

Theorem 6.30. Let n > k >I 3, let F be a field with characteristic p where either 
p = 0 or p > n z - n, and let L be a strongly covering linear transformation on F '~. 
Then L ( ~  k) ~ ¢¢l~ k if  and only if  L is a composition of  one or more of  the 
following types o f  transformations: 

(1) Permutation similarity; 
(2) A---> A r (transposition); 
(3) A---> A + F, where F is a diagonal matrix whose diagonal entries are linear 

combinations of  the entries of  A; 
(4) A---> K o A,  where K ~ F "  and all the entries of  K are nonzero. 
Furthermore, the following are equivalent: 

(i) L ( ~  k) = ~ ;  
(ii) L(J/t~ k) ~ .1/l~ and L is nonsingular; 

(iii) L ( J f f ~  ~_ d / t ~  and 

N(L)  rl {A ~. F " :  aij = O, Vi, j e (n }, i ~ j} = {0}. 

Proof. By Lemma 6.3, L is a strongly coveting transformation if and only if La is 
a digraph coveting mapping, and by Corollary 6.13 we have 

L ( ~ )  c ~@~ (6.31) 

if and only if Ld(~ k) c ~k. Therefore, (6.31) holds if and only if Ld is a 
composition of transformations of the types listed in Theorem 4.18. Since we 
have 

La(D)= D, VD ~ ~,, (6.32) 

if and only if 

La(Dij)=Dij, Vi, j e  (n} ,  ; 

it follows from Defmition 2.21 that (6.32) holds if and only if L ( A ) =  K o A,  
where K E F '~ and all the entries of  k are nonzero. Observe that Ld is a vertex 
permutation if and only if after a permutation similarity we have (6.32). 
Therefore, Ld is a vertex permutation if and only if L is a composition of the 
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types 1 and 4 in our theorem. Similarly, La is of type 2 [type 3] in Theorem 4.18 if 
and only if L is a composition of types 2 and 4 [types 3 and 4] in our theorem. 

We now prove the equivalence statement the second part of the theorem. 
(i) :~ (ii). Since k > 1, it follows that 

Ei]Ey~kn, Vi, j e ( n ) .  

Therefore, statement (i) implies that L(F  ~n) = F n~ which is possible only if L is 
nonsingular. 

(ii) =~ (iii). Obvious. 
(iii) ::~ (i). Assume that (iii) holds. Observe that permutation similarity as well 

as transposition are nonsingular transformations which map . ~  onto itself. 
Hence, in view of the first part of the theorem it is enough to consider a 
transformation L which is a combination of transformations of types 3 and 4. 
Clearly, L is such a transformation if and only if/~1 = 0 and Lz~ is a nonsingular 
diagonal matrix. Since /~1 = 0 it follows from (iii) that [,11 is nonsingular, and 
hence L is invertible. Observe that L2~ = 0 and L~21 is a nonsingular diagonal 
matrix. Thus, L -  ~ is also a composition of transformations of types 3 and 4 and so 
L - ~ ( ~ )  c_ ~ .  Together with (iii) we now obtain (i). [] 

Theorem 6.30 does not hold in the case that k < 3 as demonstrated by the 
following example, based on Example 4.22. 

Example 6.33. Let L be the strongly covering transformation defined by 

and 

n n 

L(Ex2) = ~ E#, L(E2,)= ~ E#, 
i,]=l i,]=1 
i<] i>j 

L(Eij)=O, {i ,]} #: {1, 2}. 

Clearly, L ( ~  2) ~_ ~ ,  although L is not a composition of transformations of 
the types specified in Theorem 6.30. 

In order to show that Theorem 6.30 does not hold for transformations which 
are not strongly covering one can use Example 6.22, where H is chosen to be in 
~ k  (instead of ~ t ~ ) .  

Theorem 6.34. For n = k >t 4 Theorem 6.30 remains valid i f  the following type of  
transformation is added to the list: 

(5) A linear transformation T defined as follows: 
For any permutation o on ( n ) we have 

n 

T(Ei,i+l) = E Eo(i)j, 
]=1 

i~o(i) 
n 

T(E~I) = ~ Eo(n)j, 
]=1 

j*o(n) 

i = l , . . . , n - 1 ,  

T(E 3 = E., Vis  <n>, 
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and 
= o, v i i  (n ) ,  (i, j) ¢ { 1, 2, (2, 3), 

. . . ,  (n - 1, n),  (n, 1)}, i =k j. 

Proof. Observe that after an appropriate vertex permutation the set 
{(sl, h ) , . . . ,  (s,,, tn)} in theorem 5.30 becomes {(1, 2), (2, 3 ) , . . . ,  ( n -  
1, n), (n, 1)}. Hence, the mapping La is of type 4 in Theorem 5.30 if and only if 
the transformation L is a composition of transformations of types 1, 4 (in 
Theorem 6.30) and 5 in our theorem. The rest of the proof of the first part of the 
theorem follows as in Theorem 6.30, using Theorem 5.30 instead of Theorem 
4.18. 

As to the second part of the theorem, the implications ( i ) ~  ( i i ) ~  (iii) follow 
as in Theorem 6.30. To prove ( i i i )~( i )  observe that any composition of 
transformations of types 1-5 which contains a transformation of type 5 vanishes 
at diagonal matrices, and thus such a transformation does not satisfy (iii). 
Therefore, if L satisfies (iii), then it is a composition of transformations of types 
1-4 and we prove the implication ( i i i )~  (i) as in Theorem 6.30. [] 

Theorem 6.34 does not hold for transformations which are not strongly 
covering as demonstrated by Example 6.22 (choosing H ~ Jff@~). 

As observed in Section 5, Theorem 4.18 holds also in the case n = k = 2, and 
hence Theorem 6.30 holds in that case. For n = k = 3 ,  in spirit of the 
corresponding discussion in Section 5, we have 144 different strongly covering 
linear transformations L satisfying L(~@~)c_ ~@],  besides transformations of 
the types 3 and 4 in Theorem 6.30. 
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