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a b s t r a c t

The aim of this work is to explain why the most popular algorithm for approximating
IFS fractals, the chaos game, works. Although there are a few proofs of the algorithm’s
correctness in the relevant literature, the majority of them utilize notions and theorems
of measure and ergodic theories. As a result, paradoxically, although the rules of the
chaos game are very simple, the logic underlying the algorithm seems to be hard to
comprehend for non-mathematicians. In contrast, the proof presented in this work uses
only fundamentals of probability and can be understood by anyone interested in fractals.

© 2011 Elsevier Ltd. All rights reserved.

1. Preliminaries

An iterated function system (IFS) on a complete metric space (X, d) is a finite collection {w1, . . . , wN},N > 1, of contrac-
tions wi : X → X . Given an IFS, one can define the Hutchinson operator W that operates on the metric space (H(X), h):

W (E) =

N
i=1

wi(E), E ∈ H(X), (1)

where H(X) denotes the collection of the nonempty compact subsets of X , and h is the Hausdorff metric induced by the
metric d.

One can show that if (X, d) is complete, then (H(X), h) is complete as well, and W is a contraction mapping on it [1].
Hence, on the basis of the Banach fixed-point theorem, there is a set A ∈ H(X) that is the unique fixed point ofW :

A = W (A). (2)

The fixed point is called the attractor of the IFS.
One of the most popular algorithms for generating a point-set approximation of the IFS attractor is the so-called chaos

game [1]. The algorithm is as follows: Given an IFS {w1, . . . , wN}, associate with each mapping wi a nonzero probability
pi ∈ (0, 1), such that

∑N
i=1 pi = 1, and do the following iteration:

1. Choose any point x0 ∈ X .
2. Choose a map wi from {w1, . . . , wN} at random according to the probabilities pi.
3. Compute the point xn+1 = wi(xn).
4. Return to step 2 and repeat the process with xn+1 replacing xn.
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2. The motivation of the work

One can show that, for any ε > 0, there is a natural number M such that the set {xn}∞n=M generated by the chaos game
approximates the IFS attractor A with accuracy ε with respect to the Hausdorff metric. However, the formal proofs of this
fact usually engage notions and theorems of measure and ergodic theories [2–4], which are usually considered an ‘‘esoteric’’
matter for non-mathematicians, e.g. computer scientists. As a result, paradoxically, although the rules of the chaos game
are very simple, the reason why the algorithm works seems to be hard to comprehend for many people who utilize it
but are not mathematicians. On the other hand, the paper [5] showed that the mechanism that underlies the chaos game
can be explained using only fundamentals of probability. Nevertheless, the paper mentioned covers the chaos game for
generalizations of the IFS—the hierarchical IFS [6] and the recurrent IFS [7], treating the ordinary IFS as a special case. Since
the considerations proceeded in a top-downmanner (starting from the chaos game for hierarchical IFS, then for the recurrent
IFS, and finally for the IFS), the simplicity of the proof for the ordinary IFS remained ‘‘hidden’’ behind the intricate notation
related to the IFS generalizations. It turns out that the proof of the chaos game correctness takes a much simpler formwhen
the IFS is considered separately from its generalizations.

3. Why does the chaos game work?

The answer to the above question is the proof of the following theorem:

Theorem 1. Let {w1, . . . , wN} be an IFS on a complete metric space (X, d). Let A be the attractor of the IFS. Let {xn}∞n=0 be a
set of points generated by the chaos game, where x0 is any point of X. Then, with probability 1, for any ε > 0, there is a number
M ∈ N such that h(A, {xn}∞n=M) ≤ ε. That is, the closure of the set {xn}∞n=M approximates A with an error not greater than ε
with respect to the Hausdorff metric h.

Proof. The proof consists of two parts. In the first part we assume that the initial point x0 belongs to the attractor A and
show that the set {xn}∞n=M is dense in A for anyM ∈ N—thus {xn}∞n=M = A. Then, in the second part, we use that fact to show
the correctness of the chaos game in the more general case in which x0 is any point of X .

Let x0 ∈ A. By (2) the IFS mappings transform the attractor into itself, so {xn}∞n=0 ⊂ A. Let a be any point of A. In order
to prove that {xn}∞n=M is dense in A for any M ∈ N, we need to show that for any ε > 0 and any M ∈ N, the subset {xn}∞n=M
includes, with probability 1, a point x ∈ A such that d(x, a) ≤ ε. On the basis of (2) we have

A = W ◦k(A) =


i1,...,ik∈{1,...,N}

wi1 ◦ · · · ◦ wik(A), for any k ∈ N.

Moreover wi are contractive mappings, so given ε > 0, and taking

k ≥

 log ε − log diam(A)

log max
i=1,...,N

Lip(wi)


the attractorA can be regarded as a finite union ofNk subsetswi1◦· · ·◦wik(A)whose diameters diam(wi1◦· · ·◦wik(A)) ≤ ε,
where Lip(wi) ∈ [0, 1) denotes the Lipschitz constant of the mapping wi. Hence, the point a belongs to at least one of the
sets of the attractor decomposition, say a ∈ wi1 ◦ · · · ◦ wik(A). Thus, if, starting from any mth iteration of the chaos game,
the sequence wik , . . . , wi1 of the IFS mappings gets chosen in the k successive iterations of the algorithm, then the point
xm+k−1 ∈ {xn}∞n=0 will belong to the set wi1 ◦ · · · ◦wik(A) and, hence, d(xm+k−1, a) ≤ ε. Nowwe show that, with probability
1, the sequence will occur infinitely many times as the chaos game proceeds.

Let Bm denote the event that the mappingswik , . . . , wi1 get chosen successively in themth, (m+1)th, . . . , (m+k−1)th
iteration of the chaos game respectively. Since, in successive iterations of the algorithm the IFS mappings are chosen
independently, the probability for the event Bm to occur is

P(Bm) =

k∏
j=1

pij > 0. (3)

Obviously the events Bm,m = 1, 2, . . . , are not independent. Nevertheless, the events Bkm,m = 1, 2, . . . , are independent
and, thus, the occurrence of the events from the subsequence {Bkm}

∞

m=1 can be regarded in terms of infinite Bernoulli trials
with probabilities p for success specified by (3). On the basis of Borel’s law of large numbers we have that with probability 1,

lim
m→∞

Sm
m

= p,

where Sm denotes the number of successes in the first m trials. Hence, with probability 1, Sm → ∞ as m → ∞. Therefore,
during the infinite iteration of the chaos game, infinitely many events from the subsequence {Bkm}

∞

m=1 will occur, and all the
more so from the sequence {Bm}

∞

m=1.
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On the basis of the above, for any M ∈ N, during the infinite iteration of the chaos game, infinitely many events from
{Bm}

∞

m=M will occur with probability 1 as well. The point a has been specified as any point of the attractor A. Therefore,
assuming that the initial point x0 ∈ A, we obtain that for any point a ∈ A, any M ∈ N, and every ε > 0, the set of points
{xn}∞n=M generated by the chaos game includes, with probability 1, a point lying within a distance not greater than ε from a.
Since {xn}∞n=M ⊂ A, it follows that, with probability 1, the set {xn}∞n=M is dense in A.

Nowwe go to the second part of the proof in which we take the initial point x0 to be any point of the space X . Let {xn}∞n=0
and {yn}∞n=0 be sets of points which are generated concurrently by the same realization of the chaos game for the initial
points x0 ∈ X and y0 ∈ A, respectively. In other words, xn+1 = wi(xn) and yn+1 = wi(yn), where wi is the IFS mapping
chosen in the nth iteration of the algorithm. Since the IFS mappings are contractive, we obtain that the distance between
the points xm and ym in the mth iteration satisfies

d(xm, ym) = d(wim ◦ · · · ◦ wi1(x0), wim ◦ · · · ◦ wi1(x0))
≤ Lip(wim ◦ · · · ◦ wi1)d(x0, y0)

≤

m∏
j=1

Lip(wij)d(x0, y0)

and, moreover, for every n > m,

d(xn, yn) ≤ Lip(W )n−md(xm, ym),

where Lip(W ) = maxi=1,...,N Lip(wi) < 1. It follows that for any ε > 0, there is anM ∈ N such that the distance d(xn, yn) ≤ ε
for every n ≥ M . Hence, the Hausdorff distance between the closures of the subsets {xn}∞n=M and {yn}∞n=M satisfies

h({xn}∞n=M , {yn}∞n=M) ≤ ε.

But y0 ∈ A. So on the basis of the first part of the proof, {yn}∞n=M = A with probability 1. This completes the proof. �
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