
J. Math. Anal. Appl. 277 (2003) 446–464

www.elsevier.com/locate/jmaa

Boundary controllability of Sobolev-type abstract
nonlinear integrodifferential systems

K. Balachandran,a E.R. Anandhi,a and J.P. Dauerb,∗

a Department of Mathematics, Bharathiar University, Coimbatore 641 046, India
b Department of Mathematics, University of Tennessee, Chattanooga, TN 37403, USA

Received 30 July 2002

Submitted by William F. Ames

Abstract

Sufficient conditions are established for boundary controllability of various classes of Sobolev-
type nonlinear systems including integrodifferential systems in Banach spaces. The results are
obtained using the strongly continuous semigroup of operators and the Banach contraction principle.
Examples are provided to illustrate the theory.
 2002 Elsevier Science (USA). All rights reserved.
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1. Introduction

Controllability of Sobolev-type nonlinear integrodifferential systems in Banach spaces
has been discussed by Balachandran and Dauer [3] with the help of the Schauder fixed point
theorem. In [5], Balachandran and Sakthivel studied the controllability of Sobolev-type
semilinear functional integrodifferential systems in Banach spaces by using the Schaefer
fixed point theorem. These types of equations occur in thermodynamics, in the flow of fluid
through fissured rocks and in the shear in second order fluids. Kwun et al. [14] studied
approximate controllability for delay Volterra systems with bounded linear operators, and
in [4] Balachandran and Sakthivel discussed this problem for delay integrodifferential
systems in Banach spaces.
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Several abstract settings have been developed to describe the distributed control
systems in which the control is exercised through the boundary. Balakrishnan [6] first
constructed a solution for a parabolic boundary control equation withL2 controls that
can be expressed as a mild solution to an operator equation using semigroup theory.
Fattorini [11] developed a semigroup approach for boundary control systems. Lasiecka [15]
established the regularity of optimal boundary controls for parabolic equations. In [7–9]
Barbu discussed the general theory of boundary control systems and the existence of
solutions for boundary control problems governed by parabolic equations with nonlinear
boundary value conditions. In [10] Cirina studied the existence of boundary controls for
quasilinear systems of hyperbolic equations.

The formulation of boundary control problems in terms of semigroup theory offers
the following advantage over a variational approach. The semigroup approach can treat
a problem where the spatial domain does not haveC∞ boundary, such as for an
n-dimensional parallelepiped. Related abstract descriptions of boundary control systems
and their applications to various fields of study can be found in [13,16–18,24].

Han and Park [12] studied the boundary controllability of semilinear systems with non-
local condition. Recently the problem of boundary controllability of delay integrodifferen-
tial systems in Banach spaces has been investigated by Balachandran and Anandhi [1,2].
The purpose of this paper is to establish sufficient conditions for the boundary control-
lability of various types of nonlinear Sobolev-type systems including integrodifferential
systems in Banach spaces. The approach will use semigroup theory and the Banach fixed
point theorem.

2. Preliminaries

Let Y andZ be Banach spaces with norms| · | and‖ · ‖, respectively. Letσ be a linear,
closed and densely defined operator with domainD(σ) ⊆ Y and rangeR(σ) ⊆ Z, and let
θ be a linear operator withD(θ)⊆ Y andR(θ)⊆X, a Banach space.

Consider the boundary control nonlinear system(
Ex(t)

)′ = σx(t)+ f
(
t, x(t)

)
, t ∈ J = [0, b],

θx(t)= B1u(t),

x(0)= x0, (1)

whereE :D(E)⊂ Y → R(E)⊂Z is a linear operator, the control functionu ∈ L1(J,U),
a Banach space of admissible control functions withU as a Banach space,B1 :U →X is
a linear continuous operator, and the nonlinear operatorf :J × Y →Z is given.

Let y(t)=Ex(t) for x ∈ Y , then (1) can be written as

y ′(t)= σE−1y(t)+ f
(
t,E−1y(t)

)
, t ∈ J,

θ̃y(t)= B1u(t),

y(0)= y0, (2)
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whereθ̃ = θE−1 :Z → X is a linear operator. LetA :Y → Z be a linear operator defined
by

D
(
AE−1)= {

w ∈D
(
σE−1): θ̃w = 0

}
,

AE−1w = σE−1w, for w ∈D
(
AE−1).

The operatorsA :D(A) ⊂ Y → Z and E :D(E) ⊂ Y → Z satisfy the following
hypotheses.

(H1) A andE are closed linear operators.
(H2) D(E)⊂D(A) andE is bijective.
(H3) E−1 :Z →D(E) is continuous.
(H4) The resolventR(λ,AE−1) is a compact operator for someλ ∈ ρ(AE−1), the

resolvent set ofAE−1.

The hypotheses(H1), (H2) and the Closed Graph Theorem imply the boundedness of
the linear operatorAE−1 :Z →Z.

Lemma 2.1 [21]. Let S(t) be a uniformly continuous semigroup and letA be its
infinitesimal generator. If the resolventR(λ: A) of A is compact for everyλ ∈ ρ(A), then
S(t) is a compact semigroup.

LetBr = {y ∈ Y : |y| � r}, for somer > 0. We shall make the following hypotheses.

(i) D(σ) ⊂ D(θ) and the restriction ofθ to D(σ) is continuous relative to graph norm
of D(σ).

(ii) The operatorAE−1 is the infinitesimal generator of aC0 semigroupT (t) onZ and
there exists a constantM > 0 such that‖T (t)‖ �M.

(iii) There exists a linear continuous operatorB :U → Z such thatσE−1B ∈ L(U,Z),
θ̃ (Bu) = B1u, for all u ∈ U . Also,Bu(t) is continuously differentiable and‖Bu‖ �
C‖B1u‖ for all u ∈U , whereC is a constant.

(iv) For all t ∈ (0, b] andu ∈ U , T (t)Bu ∈ D(AE−1). Moreover, there exists a positive
functionν ∈L1(0, b) such that‖AE−1T (t)B‖ � ν(t), a.e.t ∈ (0, b).

Let y(t) be the solution of (2). Then define the functionz(t)= y(t)−Bu(t). From the
assumptions, it follows thatz(t) ∈D(AE−1). Hence (2) can be written in terms ofA and
B as

y ′(t)=AE−1z(t)+ σE−1Bu(t)+ f
(
t,E−1y(t)

)
, t ∈ J,

y(t)= z(t)+Bu(t),

y(0)= y0.

If u is continuously differentiable on[0, b], thenz can be defined as a mild solution to the
Cauchy problem
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z′(t)=AE−1z(t)+ σE−1Bu(t)−Bu′(t)+ f
(
t,E−1y(t)

)
,

z(0)= y(0)−Bu(0),

and the solution of (2) is given by

y(t)= T (t)
[
y(0)−Bu(0)

]+Bu(t)

+
t∫

0

T (t − s)
[
σE−1Bu(s)−Bu′(s)+ f

(
s,E−1y(s)

)]
ds. (3)

Since the differentiability of the controlu represents an unrealistic and severe requirement,
it is necessary to extend the concept of a solution for general inputsu ∈ L1(J,U).

Integrating (3) by parts, yields

y(t)= T (t)y(0)+
t∫

0

[
T (t − s)σE−1B −AE−1T (t − s)B

]
u(s) ds

+
t∫

0

T (t − s)f
(
s,E−1y(s)

)
ds,

which is well defined. Hence the mild solution of system (1) is given by

x(t)=E−1T (t)Ex(0)+
t∫

0

E−1[T (t − s)σE−1B −AE−1T (t − s)B
]
u(s) ds

+
t∫

0

E−1T (t − s)f
(
s, x(s)

)
ds. (4)

Definition 2.2. System (1) is said to becontrollableon intervalJ if for every x0, x1 ∈ Y ,
there exists a controlu ∈L2(J,U) such that the solutionx(·) of (1) satisfiesx(b)= x1.

Further, assume the following conditions.

(v) There exist constantsN, K > 0 such that
∫ b

0 ν(t) dt �K and|E−1| �N .
(vi) The linear operatorW fromL2(J,U) into Y defined by

Wu=
b∫

0

E−1[T (b − s)σE−1B −AE−1T (b− s)B
]
u(s) ds

induces an invertible operator̃W defined onL2(J,U)/kerW , and there exists a
constantK1 > 0 such that‖W̃−1‖ �K1. The construction of̃W−1 in general Banach
spaces is outlined in [22].
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(vii) f :J × Y → Z is continuous and there exist constantsM1, M2 > 0 such that for all
y1, y2 ∈ Br∥∥f (t, y1)− f (t, y2)

∥∥�M1|y1 − y2|
and

M2 = max
t∈J

∥∥f (t,0)∥∥.
(viii) NM‖Ex0‖ + N[bM‖σE−1B‖ + K]K1[|x1| + NM‖Ex0‖ + L] + L � r, where

L= bNM[M1r +M2].
(ix) Let q = bNMM1[NK1(bM‖σE−1B‖ +K)+ 1] be such that 0� q < 1.

3. Controllability of nonlinear system

Theorem 3.1. If the hypotheses(i)–(ix) are satisfied, then the boundary control nonlinear
system(1) is controllable onJ .

Proof. Using hypothesis (vi), for an arbitrary functionx(·), define the control

u(t)= W̃−1

[
x1 −E−1T (b)Ex0 −

b∫
0

E−1T (b− s)f
(
s, x(s)

)
ds

]
(t).

Let V = C(J,Br ). Using this control, it will now be shown that the operatorΦ defined by

Φx(t)=E−1T (t)Ex0 +
t∫

0

E−1[T (t − s)σE−1B −AE−1T (t − s)B
]
W̃−1

×
[
x1 −E−1T (b)Ex0 −

b∫
0

E−1T (b− τ )f
(
τ, x(τ )

)
dτ

]
(s) ds

+
t∫

0

E−1T (t − s)f
(
s, x(s)

)
ds

has a fixed point. This fixed point is then a solution of (1).
ClearlyΦx(b)= x1, which means that the controlu steers the system from the initial

statex0 to x1 in timeb provided the operatorΦ has a fixed point.
First to see thatΦ mapsV into itself, letx ∈ V then

∣∣Φx(t)
∣∣� ∣∣E−1T (t)Ex0

∣∣+ ∣∣∣∣∣
t∫

0

E−1[T (t − s)σE−1B −AE−1T (t − s)B
]
W̃−1

×
[
x1 −E−1T (b)Ex0 −

b∫
0

E−1T (b− τ )f
(
τ, x(τ )

)
dτ

]
(s) ds

∣∣∣∣∣
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+
∣∣∣∣∣

t∫
0

E−1T (t − s)f
(
s, x(s)

)
ds

∣∣∣∣∣
�
∣∣E−1

∣∣∥∥T (t)Ex0
∥∥+

t∫
0

∣∣E−1
∣∣[∥∥T (t − s)

∥∥∥∥σE−1B
∥∥

+ ∥∥AE−1T (t − s)B
∥∥]∥∥W̃−1

∥∥[|x1| +
∣∣E−1

∣∣∥∥T (b)Ex0
∥∥

+
b∫

0

∣∣E−1
∣∣∥∥T (b− τ )

∥∥[∥∥f (τ, x(τ ))− f (τ,0)
∥∥+ ∥∥f (τ,0)∥∥]dτ]ds

+
t∫

0

∣∣E−1
∣∣∥∥T (t − s)

∥∥[∥∥f (s, x(s))− f (s,0)
∥∥+ ∥∥f (s,0)∥∥]ds

�NM‖Ex0‖ +N
[
bM

∥∥σE−1B
∥∥+K

]
K1
[|x1| +NM‖Ex0‖ +L

]+L

� r.

Thus,Φ mapsV into itself.
Now, for x1, x2 ∈ V

∣∣Φx1(t)−Φx2(t)
∣∣� t∫

0

∣∣E−1
∣∣[∥∥T (t − s)

∥∥∥∥σE−1B
∥∥+ ∥∥AE−1T (t − s)B

∥∥]∥∥W̃−1
∥∥

×
[ b∫

0

∣∣E−1
∣∣∥∥T (b − τ )

∥∥∥∥f (τ, x1(τ )
)− f

(
τ, x2(τ )

)∥∥dτ]ds
+

t∫
0

∣∣E−1
∣∣∥∥T (t − s)

∥∥∥∥f (s, x1(s)
)− f

(
s, x2(s)

)∥∥ds
� bNMM1

[
NK1

(
bM

∥∥σE−1B
∥∥+K

)+ 1
]∣∣x1(t)− x2(t)

∣∣
� q

∣∣x1(t)− x2(t)
∣∣.

Therefore,Φ is a contraction mapping.
Hence there exists a unique fixed pointx ∈ Y such thatΦx(t) = x(t). Any fixed point

of Φ is a mild solution of (1) onJ satisfyingx(b)= x1. Thus, system (1) is controllable
onJ . ✷

4. Controllability of integrodifferential system

Consider the boundary control integrodifferential system of the form
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(
Ex(t)

)′ = σx(t)+
t∫

0

k(t, s)f
(
s, x(s)

)
ds, t ∈ J,

θx(t)= B1u(t),

x(0)= x0, (5)

wherek :J × J → R is a continuous function andf :J × Y → Z is given. Using the
similar argument as in the previous section, the mild solution of the system (5) is given by

x(t)=E−1T (t)Ex(0)+
t∫

0

E−1[T (t − s)σE−1B −AE−1T (t − s)B
]
u(s) ds

+
b∫

0

E−1T (t − s)

( s∫
0

k(s, τ )f
(
τ, x(τ )

)
dτ

)
ds.

Consider the following conditions:

(A1) There exists a constantN1 > 0 such that|k(t, s)| �N1.
(A2) NM‖Ex0‖ + NK1[bM‖σE−1B‖ + K][|x1| + NM‖Ex0‖ + L] + L � r, where

L= b2NMN1[M1r +M2].
(A3) Let q = b2NMN1M1[NK1(bM‖σE−1B‖ +K)+ 1] be such that 0� q < 1.

Theorem 4.1. If the hypotheses(i)–(vii) and (A1)–(A3) are satisfied, then the boundary
control integrodifferential system(5) is controllable onJ .

Proof. Using the hypothesis (vi), for an arbitrary functionx(·), define the control

u(t)= W̃−1

[
x1 −E−1T (b)Ex0

−
b∫

0

E−1T (b− s)

( s∫
0

k(s, τ )f
(
τ, x(τ )

)
dτ

)
ds

]
(t).

Using this control, the operatorΦ defined by

Φx(t)=E−1T (t)Ex0

+
t∫

0

E−1[T (t − s)σE−1B −AE−1T (t − s)B
]
W̃−1

[
x1 −E−1T (b)Ex0

−
b∫

0

E−1T (b − τ )

( τ∫
0

k(τ, η)f
(
η,x(η)

)
dη

)
dτ

]
(s) ds
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+
t∫

0

E−1T (t − s)

( s∫
0

k(s, τ )f
(
τ, x(τ )

)
dτ

)
ds

has a fixed point. To see this, first note thatΦ mapsV into itself. Forx ∈ V ,

∣∣Φx(t)
∣∣� ∣∣E−1

∣∣∥∥T (t)Ex0
∥∥+

t∫
0

∣∣E−1
∣∣[∥∥T (t − s)

∥∥∥∥σE−1B
∥∥

+ ∥∥AE−1T (t − s)B
∥∥]∥∥W̃−1

∥∥[|x1| +
∣∣E−1

∣∣∥∥T (b)Ex0
∥∥

+
b∫

0

∣∣E−1
∣∣∥∥T (b− τ )

∥∥( τ∫
0

∣∣k(τ, η)∣∣[∥∥f (η,x(η))
− f (η,0)

∥∥+ ∥∥f (η,0)∥∥]dη)dτ]ds
+

t∫
0

∣∣E−1
∣∣∥∥T (t − s)

∥∥( s∫
0

∣∣k(s, τ )∣∣[∥∥f (τ, x(τ ))
− f (τ,0)

∥∥+ ∥∥f (τ,0)∥∥]dτ)ds
�NM‖Ex0‖ +NK1

[
bM

∥∥σE−1B
∥∥+K

][|x1| +NM‖Ex0‖ +L
]+L

� r.

Thus,Φ mapsV into itself.
Now, for x1, x2 ∈ V∣∣Φx1(t)−Φx2(t)

∣∣
�

t∫
0

∣∣E−1
∣∣[∥∥T (t − s)

∥∥∥∥σE−1B
∥∥+ ∥∥AE−1T (t − s)B

∥∥]∥∥W̃−1
∥∥

×
[ b∫

0

∣∣E−1
∣∣∥∥T (b − τ )

∥∥( τ∫
0

∣∣k(τ, η)∣∣∥∥f (η,x1(η)
)

− f
(
η,x2(η)

)∥∥dη)dτ]ds
+

t∫
0

∣∣E−1
∣∣∥∥T (t − s)

∥∥( s∫
0

∣∣k(s, τ )∣∣∥∥f (τ, x1(τ )
)− f

(
τ, x2(τ )

)∥∥dτ)ds
� b2NMN1M1

[
NK1

(
bM

∥∥σE−1B
∥∥+K

)+ 1
]∣∣x1(t)− x2(t)

∣∣
� q

∣∣x1(t)− x2(t)
∣∣.
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Hence, by the Banach fixed point theorem, there exists a unique fixed pointx ∈ Y

which is a mild solution of (5) onJ satisfyingx(b)= x1. Thus, system (5) is controllable
onJ . ✷

5. Controllability of nonlinear delay system

Consider the boundary control nonlinear delay system of the form(
Ex(t)

)′ = σx(t)+ f
(
t, x

(
γ1(t)

)
, x
(
γ2(t)

)
, . . . , x

(
γn(t)

))
, t ∈ J,

θx(t)= B1u(t),

x(0)= x0, (6)

whereγi(t) :J → J , i = 1,2, . . . , n, are continuous functions and the nonlinear operator
f :J × Yn → Z is continuous. The mild solution of the system (6) is given by

x(t)=E−1T (t)Ex0 +
t∫

0

E−1[T (t − s)E−1σB −AE−1T (t − s)B
]
u(s) ds

+
t∫

0

E−1T (t − s)f
(
s, x

(
γ1(s)

)
, x
(
γ2(s)

)
, . . . , x

(
γn(s)

))
ds.

In addition to the above assumptions, assume the following conditions.

(C1) f :J × Yn → Z is continuous and there exist constantsM3 andM4 such that for all
vi,wi ∈Br , i = 1,2, . . . , n,∥∥f (t, v1, v2, . . . , vn)− f (t,w1,w2, . . . ,wn)

∥∥�M3

n∑
i=1

|vi −wi |

and

M4 = max
t∈J

∥∥f (t,0, . . . ,0)∥∥.
(C2) There exists a constantp such that for allx1, x2 ∈ Y∣∣x1

(
γi(t)

)− x2
(
γi(t)

)∣∣� p
∣∣x1(t)− x2(t)

∣∣, for i = 1,2, . . .n.

(C3) NM‖Ex0‖ + N[bM‖σE−1B‖ + K]K1[|x1| + NM‖Ex0‖ + L] + L � r, where
L= bNM(M3nr +M4).

(C4) Let q = bnpNMM3[NK1(bM‖σE−1B‖ +K)+ 1].

Theorem 5.1. If the hypotheses(i)–(vi) and (C1)–(C4) are satisfied, then the boundary
control nonlinear delay system(6) is controllable onJ .

Proof. Using the hypothesis (vi), for an arbitrary functionx(·), define the control
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u(t)= W̃−1

[
x1 −E−1T (b)Ex0

−
b∫

0

E−1T (t − s)f
(
s, x

(
γ1(s)

)
, x
(
γ2(s)

)
, . . . , x

(
γn(s)

))
ds

]
(t).

We shall show that, when using this control, the operatorΦ defined onY by

Φx(t)=E−1T (t)Ex0

+
t∫

0

E−1[T (t − s)σE−1B −AE−1T (t − s)B
]
W̃−1

[
x1 −E−1T (b)Ex0

−
b∫

0

E−1T (b − τ )f
(
τ, x

(
γ1(τ )

)
, x
(
γ2(τ )

)
, . . . , x

(
γn(τ )

))
dτ

]
(s) ds

+
t∫

0

E−1T (t − s)f
(
s, x

(
γ1(s)

)
, x
(
γ2(s)

)
, . . . , x

(
γn(s)

))
ds

has a fixed point.
First, we show thatΦ mapsV into itself. Forx ∈ V ,

∣∣Φx(t)
∣∣� ∣∣E−1

∣∣∥∥T (t)Ex0
∥∥+

t∫
0

∣∣E−1
∣∣[∥∥T (t − s)

∥∥∥∥σE−1B
∥∥

+ ∥∥AE−1T (t − s)B
∥∥]∥∥W̃−1

∥∥[|x1| +
∣∣E−1

∣∣∥∥T (b)Ex0
∥∥

+
b∫

0

∣∣E−1
∣∣∥∥T (b− τ )

∥∥[∥∥f (τ, x(γ1(τ )
)
, x
(
γ2(τ )

)
, . . . , x

(
γn(τ )

))

− f (τ,0, . . . ,0)
∥∥+ ∥∥f (τ,0, . . . ,0)∥∥]dτ]ds

+
t∫

0

∣∣E−1
∣∣∥∥T (t − s)

∥∥[∥∥f (s, x(γ1(s)
)
, x
(
γ2(s)

)
, . . . , x

(
γn(s)

))
− f (s,0, . . . ,0)

∥∥+ ∥∥f (s,0, . . . ,0)∥∥]ds
�NM‖Ex0‖ +N

[
bM

∥∥σE−1B
∥∥+K

]
K1
[|x1| +NM‖Ex0‖ +L

]+L

� r.

Thus,Φ mapsV into itself.
Now, for x1, x2 ∈ V
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∣∣Φx1(t)−Φx2(t)
∣∣

�
t∫

0

∣∣E−1
∣∣[∥∥T (t − s)

∥∥∥∥σE−1B
∥∥+ ∥∥AE−1T (t − s)B

∥∥]∥∥W̃−1
∥∥

×
[ b∫

0

∣∣E−1
∣∣∥∥T (b − τ )

∥∥∥∥f (τ, x1
(
γ1(τ )

)
, x1

(
γ2(τ )

)
, . . . , x1

(
γn(τ )

))

− f
(
τ, x2

(
γ1(τ )

)
, x2

(
γ2(τ )

)
, . . . , x2

(
γn(τ )

))∥∥dτ]ds
+

t∫
0

∣∣E−1
∣∣∥∥T (t − s)

∥∥∥∥f (s, x1
(
γ1(s)

)
, x1

(
γ2(s)

)
, . . . , x1

(
γn(s)

))
− f

(
s, x2

(
γ1(s)

)
, x2

(
γ2(s)

)
, . . . , x2

(
γn(s)

))∥∥ds
�
[(
bM

∥∥σE−1B
∥∥+K

)
K1bN

2MM3 + bNMM3
][∣∣x1

(
γ1(τ )

)− x2
(
γ1(τ )

)∣∣
+ ∣∣x1

(
γ2(τ )

)− x2
(
γ2(τ )

)∣∣+ · · · + ∣∣x1
(
γn(τ )

)− x1
(
γn(τ )

)∣∣]
� bnqNMM3

[
NK1

(
bM

∥∥σE−1B
∥∥+K

)+ 1
]∣∣x1(t)− x2(t)

∣∣
� p

∣∣x1(t)− x2(t)
∣∣.

Hence,Φ is a contraction mapping and has a unique fixed pointx ∈ Y . This fixed
point is a mild solution of (6) onJ satisfyingx(b)= x1. Thus, system (6) is controllable
onJ . ✷

6. Controllability of delay integrodifferential system

Consider the boundary control delay integrodifferential system of the form

(
Ex(t)

)′ = σx(t)+ f

(
t, x

(
γ1(t)

)
,

t∫
0

k(t, s)g
(
s, x

(
γ2(s)

))
ds

)
, t ∈ J,

θx(t)= B1u(t),

x(0)= x0, (7)

wherek :J ×J →R is a continuous function and the nonlinear operatorsf :J ×Y ×Y →
Z andg :J × Y → Y are given.

To establish the results we shall assume the following conditions.

(a) f :J × Y × Y → Z is continuous and there exist constantsM5, M6 > 0 such that for
all v1, v2 ∈ Br andw1,w2 ∈ Y we have∥∥f (t, v1,w1)− f (t, v2,w2)

∥∥�M5
[|v1 − v2| + |w1 −w2|

]
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and

M6 = max
t∈J

∥∥f (t,0,0)∥∥.
(b) g :J × Y → Y is continuous and there exist constantsL1, L2 > 0 such that for all

v1, v2 ∈Br∥∥g(t, v1)− g(t, v2)
∥∥� L1|v1 − v2|

and

L2 = max
t∈J

∥∥g(t,0)∥∥.
(c) There exists a constantN1 such that∣∣k(t, s)∣∣�N1 for (t, s) ∈ J × J.

(d) There exists a constantp such that for allx1, x2 ∈ Y∣∣x1
(
γi(t)

)− x2
(
γi(t)

)∣∣� p
∣∣x1(t)− x2(t)

∣∣, for i = 1,2.

(e) NM‖Ex0‖ +NK1[bM‖σE−1B‖ +K][|x1| +NM‖Ex0‖ +L] +L� r, whereL=
bNM[M5(r + bN1(L1r +L2))+M6].

(f) Let q = bpNMM5[1+bN1L1][NK1(Mb‖σE−1B‖+K)+1] be such that 0� q < 1.

The mild solution of the system (7) is given by

x(t)=E−1T (t)Ex0 +
t∫

0

E−1[T (t − s)σE−1B −AE−1T (t − s)B
]
u(s) ds

+
t∫

0

E−1T (t − s)f

(
s, x

(
γ1(s)

)
,

s∫
0

k(s, τ )g
(
τ, x

(
γ2(τ )

))
dτ

)
ds.

Theorem 6.1. If the hypotheses(i)–(vi) and(a)–(f)are satisfied, then the boundary control
delay integrodifferential system(7) is controllable onJ .

Proof. Using the hypothesis (vi), for an arbitrary functionx(·), define the control

u(t)= W̃−1

[
x1 −E−1T (b)Ex0

−
b∫

0

E−1T (b − s)f

(
s, x

(
γ1(s)

)
,

s∫
0

k(s, τ )g
(
τ, x

(
γ2(τ )

))
dτ

)
ds

]
(t).

We shall show that, when using this control, the operatorΦ defined onY by
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Φx(t)=E−1T (t)Ex0

+
t∫

0

E−1[T (t − s)σE−1B −AE−1T (t − s)B
]
W̃−1

[
x1 −E−1T (b)Ex0

+
b∫

0

E−1T (b − τ )f

(
τ, x

(
γ1(τ )

)
,

τ∫
0

k(τ, η)g
(
η,x

(
γ2(η)

))
dη

)]
(s) ds

+
t∫

0

E−1T (t − s)f

(
s, x

(
γ1(s)

)
,

s∫
0

k(s, τ )g
(
τ, x

(
γ2(τ )

))
dτ

)
ds

has a fixed point.
First it is shown thatΦ mapsV into itself. Forx ∈ V ,∣∣Φx(t)

∣∣
�
∣∣E−1

∣∣∥∥T (t)Ex0
∥∥+

t∫
0

∣∣E−1
∣∣[∥∥T (t − s)

∥∥∥∥σE−1B
∥∥+ ∥∥AE−1T (t − s)B

∥∥]

× ∥∥W̃−1
∥∥[|x1| +

∣∣E−1
∣∣∥∥T (b)Ex0

∥∥+
b∫

0

∣∣E−1
∣∣∥∥T (b− τ )

∥∥
×
[∥∥∥∥∥f

(
τ, x

(
γ1(τ )

)
,

τ∫
0

k(τ, η)g
(
η,x

(
γ2(η)

))
dη

)
− f (τ,0,0)

∥∥∥∥∥
+ ∥∥f (τ,0,0)∥∥]dτ]ds

+
t∫

0

∣∣E−1
∣∣∥∥T (t − s)

∥∥[∥∥∥∥∥f
(
s, x

(
γ1(s)

)
,

s∫
0

k(s, τ )g
(
τ, x

(
γ2(τ )

))
dτ

)

− f (s,0,0)

∥∥∥∥∥+ ∥∥f (s,0,0)∥∥]ds
�NM‖Ex0‖ +N

[
bM

∥∥σE−1B
∥∥+K

]
K1
[|x1| +NM‖Ex0‖ +L

]+L

� r.

Thus,Φ mapsV into itself. Now, forx1, x2 ∈ V ,∣∣Φx1(t)−Φx2(t)
∣∣

�
t∫

0

∣∣E−1
∣∣[∥∥T (t − s)

∥∥∥∥σE−1B
∥∥+ ∥∥AE−1T (t − s)B

∥∥]∥∥W̃−1
∥∥
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×
[ b∫

0

∣∣E−1
∣∣∥∥T (b − τ )

∥∥∥∥∥∥∥f
(
τ, x1

(
γ1(τ )

)
,

τ∫
0

k(τ, η)g
(
η,x1

(
γ2(η)

))
dη

)

− f

(
τ, x2

(
γ1(τ )

)
,

τ∫
0

k(τ, η)g
(
η,x2

(
γ2(η)

))
dη

)∥∥∥∥∥dτ
]
ds

+
t∫

0

∣∣E−1
∣∣∥∥T (t − s)

∥∥∥∥∥∥∥f
(
s, x1

(
γ1(s)

)
,

s∫
0

k(s, τ )g
(
τ, x1

(
γ2(τ )

))
dτ

)

− f

(
s, x2

(
γ1(s)

)
,

s∫
0

k(s, τ )g
(
τ, x2

(
γ2(τ )

))
dτ

)∥∥∥∥∥ds
� pbNMM5(1+ bN1L1)

[
NK1

(
Mb

∥∥σE−1B
∥∥+K

)+ 1
]∣∣x1(t)− x2(t)

∣∣
� q

∣∣x1(t)− x2(t)
∣∣.

Therefore,Φ is a contraction mapping. Hence there exists a unique fixed pointx ∈ Y

which is a mild solution of (7) onJ satisfyingx(b)= x1. Thus, system (7) is controllable
onJ . ✷

7. Applications

Theorem 7.1. LetΩ be a bounded, open subset ofRn, and letΓ be a sufficiently smooth
boundary ofΩ . Consider the following boundary control system

∂

∂t

(
z(t, y)−9z(t, y)

)−9z(t, y)= µ
(
t, z(t, y)

)
, in Q= (0, b)×Ω,

z(t,0)= u(t,0), onΣ = (0, b)× Γ, t ∈ [0, b],
z(t, y)= 0, z(0, y)= z0(y), for y ∈Ω, (8)

whereu ∈ L2(Σ), z0 ∈ L2(Ω) andµ ∈ L2(Q). If conditions(i)–(ix) of Theorem3.1 are
satisfied, then system(8) is controllable.

Proof. The above problem can be formulated abstractly into the boundary control system
(1) by suitably choosingY = Z = L2(Ω), X = H−1/2(Γ ), U = L2(Γ ), B1 = I, the
identity operator, the operatorE :D(E) ⊂ Y → Z defined byEw = w − 9w with
D(E)=H 2(Ω) and

D(σ)= {
z ∈L2(Ω); 9z ∈ L2(Ω)

}
, σz =9z.

The operatorθ is the “trace” operator such thatθz = z|Γ is well defined and belongs to
H−1/2(Γ ) for eachz ∈D(σ) (see [20]).

Define the operatorA :D(A)⊂ Y →Z by

AE−1w =9E−1w with D
(
AE−1)=H 1

0 (Ω)∪H 2(Ω).
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HereHk(Ω),H s(Γ ) are the usual Sobolev spaces onΩ , Γ. ThenA andE can be written,
respectively, as

Aw =
∞∑
n=1

n2(w,wn)wn, w ∈D(A),

Ew =
∞∑
n=1

(
1+ n2)(w,wn)wn, w ∈D(E),

wherewn(y) = √
2sinny, n = 1,2,3, . . . , is the orthogonal set of eigenvectors ofA.

Furthermore, forw ∈ Y

E−1w =
∞∑
n=1

1

1+ n2 (w,wn)wn,

AE−1w =
∞∑
n=1

n2

1+ n2 (w,wn)wn,

T (t)w =
∞∑
n=1

e
n2

1+n2 t (w,wn)wn.

It is easy to see thatAE−1 generates a strongly continuous semigroupT (t) onZ. Hence,
assumptions (i) and (ii) are satisfied.

To verify (iii) and (iv) define the linear operatorB :L2(Γ )→ L2(Ω) byBu= vu, where
vu is the unique solution to the Dirichlet boundary value problem

9vu = 0 inΩ,

vu = u in Γ.

In other words (see [19])∫
Ω

vu9ψ dx =
∫
Γ

u
∂ψ

∂n
dx, for all ψ ∈H 1

0 (Ω)∪H 2(Ω), (9)

where∂ψ
∂n

denotes the outward normal derivative ofψ . This outward normal is well defined
as an element ofH 1/2(Γ ). From (9), it follows that

‖vu‖L2(Ω) � C1‖u‖H−1/2(Γ ), for all u ∈H−1/2(Γ ),

and

‖vu‖H1(Ω) � C2‖u‖H1/2(Γ ), for all u ∈H 1/2(Γ ).

From the above estimates it follows by an interpolation argument [23] that∥∥AE−1T (t)B
∥∥
L(L2(Γ ),L2(Γ ))

� C3t
−3/4, for all t > 0 with ν(t)= C3t

−3/4,

whereCi , i = 1,2,3, are positive constants independent ofu.
Assume the nonlinear functionµ satisfies∥∥µ(t, v1)−µ(t, v2)

∥∥�K1‖v1 − v2‖, v1 ∈Br , K1 > 0,
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and the bounded invertible operator̃W exists. Chooseb and other constants such that the
conditions (viii) and (ix) are satisfied. Hence all the conditions stated in Theorem 3.1 are
satisfied and so the system (8) is controllable on[0, b]. ✷
Theorem 7.2. Consider the boundary control system

∂

∂t

(
z(t, y)−9z(t, y)

)−9z(t, y)= µ
(
t, z(t, y)

)
, in Q,

∂z(t,0)

∂n
+ βz(t,0)= u(t,0), onΣ, t ∈ J,

z(t, y)= 0, z(0, y)= z0(y), for y ∈Ω, (10)

where z0 ∈ L2(Ω), u ∈ L2(Γ ), µ ∈ L2(Q) and β is a nonnegative constant. Then
system(10) is controllable provided the conditions of Theorem3.1 are satisfied.

Proof. To formulate this as a boundary control problem (1), suitably choose the spaces
Y , Z, U , X and the operatorsE,B1, σ andθ as follows. LetY = Z = L2(Ω), U = X =
L2(Γ ), B1 = I , the identity operator, andθz= βz+ ∂z

∂n
. The operatorE :D(E)⊂ Y → Z

is defined byEz = z − 9z with domainD(E) = H 2(Ω) and σz = 9z with D(σ) =
H 2(Ω). The operatorA is given by

AE−1z=9E−1z with D
(
AE−1)= {

z ∈H 2(Ω); θE−1z= 0
}
.

ThenA andE can be written as in the previous example, and it can be easily seen that
AE−1 is the infinitesimal generator of a strongly continuous semigroupT (t). Define the
linear operatorB :L2(Γ )→L2(Ω) byBu= vu, wherevu ∈H 1(Ω) is the unique solution
to the Neumann boundary value problem,

vu −9vu = 0 inΩ,

βvu + ∂vu

∂n
= u in Γ. (11)

Consider on the product spaceH 1(Ω)×H 1(Ω) the bilinear functional

h(y,ψ)=
∫
Ω

(yψ + grady gradψ)dx −
∫
Γ

(u− βy)ψ dσ, (12)

whereu ∈ H−1/2(Γ ). Here
∫
Γ uψ dσ is the value ofu at ψ ∈ H 1/2(Γ ). Since h is

coercive, there is avu ∈ H 1(Ω) satisfyingh(vu,ψ) = 0 for all ψ ∈ H 1(Ω). Hence,
vu = Bu is the solution to (11). From (12) it follows that

‖vu‖H1(Ω) � C‖u‖
H

− 1
2 (Γ )

.

Since the operator−AE−1 is self-adjoint and positive

b∫
0

∥∥AE−1T (t)y0
∥∥2
L2(Ω)

dt � C‖y0‖2
D((−AE−1)1/2)

, (13)

for all y0 ∈D((−AE−1)1/2)=H 1(Ω).
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Let δ be the scalar function defined by

δ(t)= lim
n→∞ inf

∥∥AnT (t)
∥∥
L(H1(Ω),L2(Ω))

, t ∈ [0, b],

whereAn =AE−1(I + n−1AE−1)−1, for n= 1,2, . . . . Obviously,∥∥AE−1T (t)
∥∥
L(H1(Ω),L2(Ω))

� δ(t), for t ∈ (0, b]. (14)

Also, (13) implies

b∫
0

∥∥AnT (t)
∥∥2
L(H1(Ω),L2(Ω))

dt � C, for all n.

Therefore, by Fatou’s lemma it follows thatδ ∈ L2(0, b) and hence from (13) and (14)∥∥AE−1T (t)Bu
∥∥
L2(Ω)

� Cδ(t)‖u‖L2(Γ ), for all t ∈ (0, b), u ∈ L2(Γ ),

with ν(t) = Cδ(t) ∈ L2(0, b). Thus, assumptions (i)–(iv) are satisfied. Further, the
nonlinear functionµ satisfies∥∥µ(t, v1)−µ(t, v2)

∥∥�K1‖v1 − v2‖, v1 ∈Br , K1 > 0.

Assume the bounded invertible operatorW̃ exists and chooseb and other constants in
such a way that the conditions (viii) and (ix) are satisfied. Hence, all of the conditions
stated in Theorem 3.1 are satisfied, and system (10) is controllable on[0, b]. ✷
Example 7.3. Consider the partial delay integrodifferential equation of the form

∂

∂t

(
z(t, y)−9z(t, y)

)−9z(t, y)= z(t − h,y)+
t∫

0

sinz(s − h,y) ds, in Q,

∂z(t,0)

∂n
+ βz(t,0)= u(t,0), onΣ, t ∈ J,

z(t, y)= 0, z(0, y)= z0(y), for y ∈Ω, (15)

wherez0 ∈ L2(Ω), u ∈L2(Γ ) andβ is a nonnegative constant.
Let Y =Z = L2(Ω),U =X = L2(Γ ), B1 = I , the identity operator,θz= βz+ ∂z

∂n
and

σz = 9z with domainD(σ) = H 2(Ω). Define the operatorsE :D(E) ⊂ Y → Z, andA
by

Ez= z−9z with domainD(E)=H 2(Ω),

AE−1z=9E−1z with D(AE−1)= {
z ∈H 2(Ω): θE−1z= 0

}
,

respectively, whereA andE are as in Theorem 7.1. It can be seen thatAE−1 generates a
strongly continuous semigroupT (t), t � 0.
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Let us take

t∫
0

k(t, s)g
(
s, z(s − h)

)
(y) ds =

t∫
0

sinz(s − h,y) ds,

f

(
t, z(t − h),

t∫
0

k(t, s)g
(
s, z(s − h)

)
ds

)
(y)= z(t − h,y)+

t∫
0

sinz(s − h,y) ds,

wherek(t, s)= 1. Obviously∥∥∥∥∥
[
z(t − h,y)+

t∫
0

sinz(s − h,y) ds

]
−
[
x(t − h,y)+

t∫
0

sinx(s − h,y) ds

]∥∥∥∥∥
� (1+ b)

∥∥z(s − h,y)− x(s − h,y)
∥∥.

Using the similar argument as in Theorem 7.2, we see that the conditions (i)–(iv) are
satisfied. Assume that the bounded invertible operatorW̃ exists. Chooseb and other
constants such that the conditions (e) and (f) of Theorem 6.1 are satisfied. Hence the
system (15) is controllable on[0, b].
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