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Abstract

The waveform relaxation (WR) method was developed as an iterative method for solving large systems of
ordinary di7erential equations (ODEs). In each WR iteration, we are required to solve a system of ODEs.
We then introduce the boundary value method (BVM) which is a relatively new method based on the linear
multistep formulae to solve ODEs. In particular, we apply the generalized minimal residual method with the
Strang-type block-circulant preconditioner for solving linear systems arising from the application of BVMs to
each WR iteration. It is demonstrated that these techniques are very e7ective in speeding up the convergence
rate of the resulting iterative processes. Numerical experiments are presented to illustrate the e7ectiveness of
our methods.
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1. Introduction

Consider the following linear ordinary di7erential equations (ODEs):

dy(t)
dt

+ Qy(t) = g(t); t ∈ (t0; T ];

y(t0) = z;
(1)
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where y(t), g(t) :R→ Rm, z∈Rm and Q∈Rm×m. By splitting the matrix Q as

Q =M + N; (2)

we then construct an iteration of the form

dy(k+1)(t)
dt

+My(k+1)(t) =−Ny(k)(t) + g(t); t ∈ (t0; T ];

y(k+1)(t0) = z;

(3)

where k=0; 1; : : : ; and y(0) is a given initial guess usually given by y(0)(t)=z for t ∈ [t0; T ]. Iteration
(3) is called the waveform relaxation (WR) method and is also called dynamic iteration, see [5].
The fact that WR methods are speciJcally designed for parallel algorithms has been discussed in [4].
This paper, however, presents a di7erent point of view from [4] by using sequential algorithms. The
reasons for adopting sequential algorithms are that sometimes parallel computing is not available
on the one hand, and WR methods in parallel computing are very much machine-dependent on the
other. Analysis of WR methods in sequential algorithms is also helpful for the justiJcation of the
eKciency of any proposed parallel algorithms. We recall that the WR method is originated from
electrical network simulation, see [12]. It di7ers from standard iterative techniques in that it is a
continuous-in-time analogue of stationary method by iterating with functions.

The Jacobi, Gauss–Seidel and successive overrelaxation (SOR) versions of the WR technique are
classical methods. To be precise, the matrix Q is decomposed as

Q = L+ D + U;

where D is a diagonal matrix, L is a strictly lower triangular matrix and U is a strictly upper
triangular matrix. The splittings

M = D; N = L+ U;

M = D + L; N = U

and

M = (D + !L)=!; N = Q −M with !¿ 0;

deJne, respectively, the Jacobi, Gauss–Seidel and SOR versions of WR iterations, where ! is relax-
ation parameter.

In this paper, we mainly consider the case of Q in (2) being Toeplitz (a matrix is said to be
Toeplitz if its entries are constant along its diagonals). Such kind of ODE system often appears in
numerical partial di7erential equations see [2,7]. By using the well-known circulant and skew-circulant
decomposition of Toeplitz matrix, we decompose the matrix Q as Q=M+N , where M is a circulant
matrix and N is a skew-circulant matrix see [6,8,18]. More precisely, for a Toeplitz matrix

Tn = [ti−j]ni; j=1 = [tk]n−1
k=−n+1;
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we can decompose the matrix Tn as

Tn = Cn + Sn; (4)

where

Cn =




c0 c1 · · · cn−2 cn−1

cn−1 c0
. . . . . . cn−2

...
. . . . . . . . .

...

c2
. . . . . . c0 c1

c1 c2 · · · cn−1 c0



; Sn =




s0 s1 · · · sn−2 sn−1

−sn−1 s0
. . . . . . sn−2

...
. . . . . . . . .

...

−s2
. . . . . . s0 s1

−s1 −s2 · · · −sn−1 s0




with

c0 + s0 = t0; ck = 1
2(tk + t−n+k); sk = 1

2(tk − t−n+k); k = 1; 2; : : : ; n− 1:

The WR method with this new scheme is called the C + S version.
The convergence behavior of WR methods has been studied exhaustively in a series of papers

[13–15], where the authors formulated the convergence characteristics of the method in terms of the
spectral radius of the corresponding waveform relaxation operator. To accelerate WR iterations, the
multigrid technique was studied in [17] and the preconditioning technique was discussed in [5].

In this paper, we apply boundary value methods (BVMs) see [3,11] to each WR iteration (3).
This method requires the solution of nonsymmetric linear systems that are often large and sparse. We
then propose to use the generalized minimal residual (GMRES) method [9,16] with the Strang-type
block-circulant preconditioner [7,10] to solve these linear systems. The main purpose of this paper
is to investigate the e7ectiveness of preconditioning technique on the speed of the resulting iterative
processes.

The paper is organized as follows. In Section 2, we brieMy study the error estimate of WR
iterations. In Section 3, we introduce the BVM and the Strang-type preconditioner. The invertibility
of the Strang-type preconditioner is discussed in Section 4. The convergence rate and operation cost
of the preconditioned GMRES method are studied in Section 5, and, Jnally, numerical experiments
are given in Section 6 to illustrate the e7ectiveness of our methods.

2. Error bound of WR iterations

In this section, We shall consider the space of continuous functions C[t0; T ] equipped with the
sup-norm:

‖y‖T ≡ sup{‖y(t)‖ : t ∈ [t0; T ]};
where y(t) :R → Rm and ‖ · ‖ is some norm on Rm. Specially, in the following, we use the norm
‖ · ‖2. It is well-known (see, e.g., [14]) that if the iterations {y(k)}∞k=0 deJned by (3) converge, the
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error of the kth iteration y(k) can be bounded by

‖y − y(k)‖T 6 (C(T − t0))k

k!
‖y − y(0)‖T ;

where y is the true solution of (1) and C is a constant such that

‖e−MtN‖T 6C:

Here ‖ · ‖T denotes the corresponding induced matrix norm. However, if C is large, then the con-
vergence of Jnding y through iteration could be very slow. Usually, it is not easy to estimate C,
see [5,14].
In the following, we will show that when the Jacobian matrix Q is Toeplitz, the bound of

‖e−MtN‖T is easy to be calculated for the C + S version of the WR iteration. It is well-known
that any m × m circulant matrix can be diagonalized by the m × m Fourier matrix Fm, see [6,10].
Hence, we have the following decomposition:

M = Fm�MF∗
m; (5)

where �M = diag(�1; �2; : : : ; �m) is a diagonal matrix holding the eigenvalues of M . Since N is a
skew-circulant matrix, it can also be diagonalized as

N = DmFm�NF∗
mD

∗
m; (6)

where �N = diag(�1; �2; : : : ; �m) is a diagonal matrix containing the eigenvalues of the matrix N and
Dm = diag(1; �; �2; : : : ; �m−1) with �= m

√−1, see [6]. By using (5) and (6), we obtain

‖e−MtN‖T = sup
‖y‖2=1

sup
t∈[t0 ;T ]

‖e−Fm�MF∗
mtDmFm�NF∗

mD
∗
my(t)‖2

6 sup
t∈[t0 ;T ]

‖Fm diag

( ∞∑
n=0

(−�1t)n=n!; : : : ;
∞∑
n=0

(−�mt)n=n!

)
F∗
m

×DmFm diag(�1; : : : ; �m)F∗
mD

∗
m‖2

6 sup
t∈[t0 ;T ]

{‖diag(e−�1t ; : : : ; e−�mt)‖2 · ‖diag(�1; : : : ; �m)‖2}

6 sup
t∈[t0 ;T ]

max
16i6m

|e−�it| max
16i6m

|�i|

= max
16i6m

|e−R(�i)t0 | max
16i6m

|�i|= C;

where R(·) is the real part of a complex number.



X.-q. Jin et al. / Journal of Computational and Applied Mathematics 162 (2004) 431–444 435

3. BVM and Strang-type preconditioner

In WR iterations, we are required to solve a series of ODE systems (3) and therefore BVMs are
proposed. BVMs are numerical methods based on the linear multistep formulae (LMF) for solving
ODEs. Although initial value methods (IVMs) are more eKcient than BVMs, the advantage in using
BVMs over IVMs comes from their stability properties see for instance [3]. A BVM approximates
the solution of (3) by means of a discrete boundary value problem. By using a �-step LMF over a
uniform mesh

tj = t0 + jh; j = 0; : : : ; s;

where h= (T − t0)=s is the step size, we have

�−�∑
i=−�

 i+�y
(k+1)
n+i = h

�−�∑
i=−�

!i+�fn+i; n= �; : : : ; s− � + � (7)

with boundary values

y(k+1)
0 ; : : : ; y(k+1)

�−1 ; y(k+1)
s−�+�+1; : : : ; y

(k+1)
s : (8)

In (7), y(k+1)
n is an approximation to the true solution y(k+1)(tn) of (3) and

fn ≡ −My(k+1)
n − Ny(k)n + g(tn)

with y(k)n obtained by the kth dynamic iteration.
For the boundary values (8), the dynamic iteration (3) only provides one initial condition

y(k+1)(t0) = z. For the others, we can supply other two sets (initial and Jnal) of additional dif-
ference equations with the same order of accuracy of (7) see [3], say,

�∑
i=0

 ( j)i y(k+1)
i = h

�∑
i=0

!( j)
i fi ; j = 1; : : : ; �− 1 (9)

and

�∑
i=0

 ( j)�−iy
(k+1)
s−i = h

�∑
i=0

!( j)
�−ifs−i; j = s− � + �+ 1; : : : ; s: (10)

Now, by combining (7), (9), (10) and the initial condition

y(k+1)
0 = y(k+1)(t0) = z;

we obtain a linear system

T ỹ(k+1) = Gỹ(k) + d̃; (11)



436 X.-q. Jin et al. / Journal of Computational and Applied Mathematics 162 (2004) 431–444

where

T = A⊗ Im + hB⊗M;

ỹ(k+1) = ((y(k+1)
0 )T; : : : ; (y(k+1)

s )T)T ∈R(s+1)m;

G =−h(B⊗ N ) (12)

and

d̃ = e1 ⊗ z + h(B⊗ Im)̃g∈R(s+1)m

with e1 = (1; 0; : : : ; 0)T ∈R(s+1) and g̃ = (g(t0); g(t1); : : : ; g(ts))T ∈R(s+1)m. In (12), Im ∈Rm×m is
the identity matrix, the matrix A∈R(s+1)×(s+1) is deJned by

A ≡




1 · · · 0

 (1)0 · · ·  (1)�

...
...

...

 (�−1)
0 · · ·  (�−1)

� 0

 0 · · ·  �

 0 · · ·  �

. . . . . . . . .

. . . . . . . . .

 0 · · ·  �

0  (s−�+�+1)
0 · · ·  (s−�+�+1)

�

...
...

...

 (s)0 · · ·  (s)�




and B∈R(s+1)×(s+1) is deJned similarly by using {!i}�i=0 instead of { i}�i=0 in A and the Jrst row of
B is zero. Obviously, (11) is a classical stationary iteration for linear systems. It is well-known that
the convergence of such an iteration requires '(T−1G)¡ 1, where '(·) is the spectral radius. Since
the size of the matrix T is very large when h is small and (or) m is large, if a direct method is
used to solve the system (11), the operation cost can be very expensive, see numerical comparisons
in [2,7].

Therefore Krylov subspace methods, such as the GMRES method [9,16], are proposed to solve
the linear system (11). In order to speed up the convergence rate of Krylov subspace methods, we
use the Strang-type block-circulant preconditioner. The Strang-type block-circulant preconditioner for
T in (12) is deJned by

S = s(A)⊗ Im + hs(B)⊗M; (13)
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where s(A) is a circulant matrix given by

s(A) ≡




 � · · ·  �  0 · · ·  �−1

...
. . . . . . . . .

...

 0
. . . . . .  0

. . . . . . . . . 0

. . . . . . . . .

0
. . . . . . . . .

 �
. . . . . .  �

...
. . . . . . . . .

...

 �+1 · · ·  �  0 · · ·  �




and s(B) is deJned similarly by using {!i}�i=0 instead of { i}�i=0 in s(A). Here { i}�i=0 and {!i}�i=0
are the coeKcients in (7). When Q in (2) is Toeplitz, by using the decomposition (4), we choose
M as a circulant matrix and N as a skew-circulant matrix.

4. Invertibility of Strang-type preconditioner

Now, we prove that under stability assumption on a given BVM, the Strang-type preconditioner
is invertible. The stability of a BVM is closely related to two characteristic polynomials '(z) and
*(z) deJned by

'(z) ≡ z�
�−�∑
i=−�

 i+�zi and *(z) ≡ z�
�−�∑
i=−�

!i+�zi;

where { i}�i=0 and {!i}�i=0 are given in (7). The A�;�−�-stability polynomial is deJned by

+(z; q) ≡ '(z)− q*(z);

where z; q∈C. Let
C− ≡ {q∈C :R(q)¡ 0} and C+ ≡ {q∈C :R(q)¿ 0}:

We have

De$nition 1. The region

D�;�−� ≡ {q∈C : +(z; q) has � zeros inside |z|= 1 and � − � zeros outside |z|= 1}
is called the region of A�;�−�-stability of a given BVM and the BVM is said to be A�;�−�-stable if

C− ⊆ D�;�−�:
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Theorem 1. If the BVM for (3) is A�;�−�-stable and the eigenvalues of M satisfy

�k(M)∈C+

for k = 1; : : : ; m, then the preconditioner S de4ned by (13) is invertible.

Proof. Follows the proof of Theorem 1 in [7] directly.

If there is a �l(M) which does not satisfy the condition in Theorem 1, say, �l(M) �∈ C+, and M
is assumed to be diagonalized by a unitary matrix (for instance, M is circulant), we can “move”
�l(M) into C+ by subtracting �min − . from the main diagonal of the matrix M , where

�min = min
l

{R(�l(M)) : �l(M) �∈ C+}

and . is a positive real number. After such a modiJcation, a new matrix M̃ can be written as

M̃ =M − (�min − .)Im:

It yields a new decomposition of the matrix Q:

Q = M̃ + Ñ ;

where

Ñ = N + (�min − .)Im:

Obviously, all the eigenvalues of M̃ are now in C+ and therefore Theorem 1 is still applicable.

5. Convergence rate and operation cost

In this section, we Jrst take a look at the convergence rate of the GMRES method. We know
that if the preconditioned matrix is nonsingular and can be decomposed as

S−1T = I + L;

where I is the identity matrix, T and S are deJned by (12) and (13), respectively, the convergence
rate of the GMRES method will be bounded by rank(L) + 1, see [10]. We therefore have the
following theorem.

Theorem 2. The preconditioned matrix S−1T is nonsingular and can be decomposed as S−1T=I+L
where rank(L)6 2 m�. If the GMRES method is applied to solving

S−1T ỹ(k+1) = S−1b̃;

the method will converge in at most 2 m� + 1 iterations in exact arithmetic.

Proof. Follows the proof of Theorem 2 in [7] directly.

We should emphasize that the numerical examples in the next section show a much faster conver-
gence rate than that predicted by the estimate provided by Theorem 2. Therefore, a detailed analysis
for the convergence rate could be carried out in the future work.
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Now, we consider the operation cost in each iteration of the GMRES method. Since s(A) and
s(B) are both circulant matrices, we have the following decompositions:

s(A) = Fs+1�AF∗
s+1; s(B) = Fs+1�BF∗

s+1; (14)

where �A and �B are diagonal matrices containing the eigenvalues of s(A) and s(B), respectively,
and Fs+1 is the (s+ 1)× (s+ 1) Fourier matrix. It yields a decomposition of S−1(Tv), i.e.,

S−1(Tv) = (Fs+1 ⊗ Im)(�A ⊗ Im + h�B ⊗M)−1(F∗
s+1 ⊗ Im)(Tv);

where v is some vector. This matrix–vector multiplication is the main work in each iteration of the
GMRES method see, e.g. [6,10]. We then consider the following four cases for Toeplitz matrix:

Q = [qi−j]mi; j=1 = [qk]m−1
k=−m+1;

(i) In the Jacobi version of WR iterations, since T is a block-Toeplitz matrix with Toeplitz blocks
(plus a small rank perturbation), by using the Strang’s embedding algorithm with the fast Fourier
transform (FFT), see [6,10], Tv can be computed within O(ms logms) operations. Meanwhile,
note that

S = s(A)⊗ Im + q0hs(B)⊗ Im;

therefore, S−1 can be calculated within O(ms log s) operations. Thus, it requires O(ms logms)
operations to compute S−1(Tv).

(ii) In the Gauss–Seidel version of WR iterations, we note that

�A ⊗ Im + h�B ⊗M

is a block diagonal matrix with lower triangular Toeplitz blocks. Therefore, we have to solve
s+1 lower triangular Toeplitz systems of size m×m. When using the superfast direct Toeplitz
solver, see [1,18], it requires O(sm log2 m) operations to calculate S−1w for some vector w.
As in (i), Tv can also be computed within O(ms logms) operations. Therefore, it requires
O(ms logms+ ms log2 m) operations to compute S−1(Tv).

(iii) For the SOR version of WR iterations, with a similar analysis given as in (ii), we know that
it also requires O(ms logms+ ms log2 m) operations to compute S−1(Tv).

(iv) In the C + S version of WR iterations, since the matrix M is a circulant matrix, by using (5)
and (14), we have

S−1(Tv) = (Fs+1 ⊗ Fm)(�A ⊗ Im + h�B ⊗ �M )−1(F∗
s+1 ⊗ F∗

m)(Tv):

By using the FFT, S−1 can be calculated within O(ms logms) operations. As in (i), Tv can also
be computed within O(ms logms) operations. Therefore, it requires O(ms logms) operations to
compute S−1(Tv).

Consequently, by Theorem 2, the total complexity of each WR iteration is bounded by O(m2s logms)
operations by using the C + S version and the Jacobi version, while is bounded by O(m2s logms+
m2s log2 m) operations by using the Gauss–Seidel version and the SOR version.
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6. Numerical experiments

So far, we have introduced our method which combines WR iterations, the BVM and the GMRES
method together with the Strang-type preconditioner for solving (1). To illustrate the eKciency of
this method, in this section, two numerical examples are performed. From the preceding analysis, we
specially choose diagonal dominant Toeplitz matrices as our Jacobian matrices in order to guarantee
the convergence of WR iterations. The BVM we used here is the Jfth order GAM [3], the following
equations,

yn − yn−1 =
h

720
(−19fn−2 + 346fn−1 + 456fn − 74fn+1 + 11fn+2); n= 2; : : : ; s− 2

can be used with the following initial equation:

y1 − y0 =
h
720

(−19f4 + 106f3 − 264f2 + 646f1 + 251f0);

and the two Jnal additional equations,

ys−1 − ys−2 =
h

720
(−19fs + 346fs−1 + 456fs−2 − 74fs−3 + 11fs−4);

ys − ys−1 =
h

720
(251fs + 646fs−1 − 264fs−2 + 106fs−3 − 19fs−4):

All experiments are performed in MATLAB and we use the MATLAB-provided M-Jle “gmres”
(see MATLAB on-line documentation) to solve the preconditioned systems. In our calculations, the
stopping criterion in the GMRES method (which is applied within each WR iteration) is

‖rq‖2
‖r0‖2 ¡ 10−6;

where rq is the residual after the qth iteration in the GMRES method and the zero vector is the
initial guess. The stopping criterion of WR iterations is

‖y(k+1) − y(k)‖2
‖y(k)‖2 6 10−6;

where y(k) is the solution after the kth WR iteration. All programs are run on a 1:7 GHz PC with
512 Mbytes of memory.

Example 1. Consider

dy(t)
dt

+ Qy(t) = 0; t ∈ (0; 1];

y(0) = (1; 2; : : : ; m)T;
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Table 1
Number of WR iterations for convergence in Example 1

m s C + S Jacobi Gauss–Seidel SOR (!= 0:987)

20 16 11 18 11 11
32 11 18 11 11
64 11 18 11 11
128 11 17 11 11

40 16 11 18 11 11
32 11 19 11 11
64 11 17 11 11
128 10 17 11 11

60 16 11 18 11 11
32 11 17 11 11
64 11 17 11 11
128 10 17 10 10

where

Q =




6 −2 1

−2 6 −2 1

1 −2 6
. . . . . .

1
. . . . . . . . . 1

. . . . . . . . . −2

1 −2 6



:

Tables 1 and 2 show, respectively, the number of WR iterations and the number of megaMops
(MMops) required for convergence with di7erent combinations of matrix sizes m and s. For the SOR
method, an optimal value of ! has been tried to locate for a matrix with size m = 20 and s = 16
by calculating the spectral radius '(T−1G) versus relaxation parameter !, and the result is given in
Fig. 1. Fig. 1 shows that an optimal value of ! seems to be ! ≈ 0:987 with corresponding spectral
radius ' ≈ 0:041. From Table 2, we found that the number of megaMops of the SOR method with
!= 0:987 is the smallest one. As expected, the number of WR iterations required for convergence
remains almost a constant for increasing m and s.

Example 2. Consider

dy(t)
dt

+ Qy(t) = 0; t ∈ (0; 1];

y(0) = (1; 2; : : : ; m)T;
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Table 2
Number of MMops for convergence in Example 1

m s C + S Jacobi Gauss–Seidel SOR (!= 0:987)

20 16 12.410 16.327 14.732 14.732
32 23.026 33.621 25.191 25.191
64 45.391 65.154 47.237 47.237
128 97.632 121.104 112.654 115.321

40 16 25.971 29.172 26.950 26.950
32 49.122 50.192 48.317 46.119
64 93.521 101.463 96.175 96.175
128 171.524 195.021 185.495 185.495

60 16 39.623 42.834 40.178 40.178
32 81.434 90.762 82.329 82.329
64 171.812 230.198 193.693 193.693
128 355.705 465.014 386.611 386.611

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Relaxation parameter, 

S
pe

ct
ra

l r
ad

iu
s,

 ρ
(T

 –1
G

)

m=20, s=16

Example 1
Example 2

ω

Fig. 1. Spectral radius '(T−1G) versus relaxation parameter !.

where

Q =




2 1
3 · · · 1

3m−2
1

3m−1

− 1
2 2 1

3 · · · 1
3m−2

... − 1
2 2

. . .
...

− 1
2m−2

...
. . . . . . 1

3

− 1
2m−1 − 1

2m−2 · · · − 1
2 2



:
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Table 3
Number of WR iterations for convergence in Example 2

m s C + S Jacobi Gauss–Seidel SOR (!= 0:965)

20 16 7 8 7 6
32 7 7 7 6
64 7 7 7 6
128 6 7 7 6

40 16 7 7 7 7
32 7 7 7 6
64 6 7 7 6
128 6 7 7 6

60 16 7 7 8 7
32 6 7 7 6
64 6 7 7 6
128 6 7 7 6

Table 4
Number of MMops for convergence in Example 2

m s C + S Jacobi Gauss–Seidel SOR (!= 0:965)

20 16 9.351 11.289 11.678 10.971
32 18.293 22.575 26.316 25.728
64 38.710 47.692 62.242 60.768
128 78.485 97.842 130.024 123.071

40 16 20.115 24.862 30.419 29.655
32 38.994 49.278 65.355 63.493
64 78.716 98.560 127.82 124.947
128 150.914 194.286 251.335 241.040

60 16 31.581 39.938 53.250 50.878
32 60.838 77.242 98.226 95.419
64 127.095 161.433 223.283 215.184
128 242.671 317.087 418.843 407.939

Tables 3 and 4 give the number of WR iterations and the number of megaMops (MMops) required
for convergence with di7erent combinations of m and s. Again, Fig. 1 demonstrates that an optimal
value for ! is ! ≈ 0:965 with corresponding spectral radius ' ≈ 0:009. From Table 4, we found that
the number of megaMops of the SOR method with !=0:965 is smaller than that of the Gauss–Seidel
method. The number of WR iterations required for convergence remains almost a constant again for
increasing m and s. From Table 4, the number of megaMops of our method is the smallest one.
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