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Quark–hadron phase transition in QCD in the presence of magnetic field is studied. It is shown that
both the temperature of a phase transition and latent heat decrease compared to the case of zero
magnetic field. The phase diagram in the plane temperature-magnetic field is presented. Critical point,
T∗ = 104 MeV,

√
eH∗ = 600 MeV, for which the latent heat goes to zero, is found.
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1. Introduction

QCD is essentially nonperturbative at low temperatures T < Tc

(Tc is a quark–hadron phase transition temperature) and is char-
acterized by confinement and spontaneous chiral symmetry break-
ing. In the hadron phase, at low temperature, the dominating con-
tribution to the partition function of the system is given by lightest
particles in the physical spectrum. In the case of QCD these par-
ticles are π -mesons, which in the limit of massless quarks are
Goldstone excitations in the chiral condensate. It is a common
method in the low temperature physics of QCD to use effective
chiral theory [1–3], often called chiral perturbation theory (ChPT).

One of the important questions is the phase structure of vac-
uum in the external magnetic field H . In the recent paper [4] it is
argued that high magnetic fields eH ∼ 102–104 MeV2 are created
in heavy ion collisions. Such magnetic fields should lead to effects
that can be experimentally observed at RHIC. Also high magnetic
fields eH ∼ Λ2

QCD could exist in the early universe at the scale
of strong interactions. Such high field strength can lead to new
interesting phenomena at the stage of quark–hadron phase tran-
sition. At the same time it is interesting to study the influence of
the external magnetic field on the dynamics of strong interactions
from purely theoretical point of view. Different nonperturbative
phenomena in Abelian magnetic fields were previously studied in
[5–20].

In this Letter, we study the quark–hadron phase transition in
QCD in Abelian magnetic field. The physics of the considered phe-
nomenon is the following. The plasma of hot quarks and gluons
at T > Tc in the magnetic field is a thermodynamic system in
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a paramagnetic phase. On the other hand, at low temperature,
T < Tc , hadron matter, which mainly consists of scalar π -mesons,
is in diamagnetic phase. The paramagnetic phase is preferable ther-
modynamicly, because it minimizes the free energy (maximizes
pressure). Therefore the temperature of the transition from hadron
phase to the quark-gluon phase decreases as compared to the case
of zero magnetic field H = 0. Thus, there is the analogy with the
physics of condensed matter: confinement phase corresponds to
the diamagnetic gas of scalar π -mesons (we neglect the contribu-
tion of heavier hadrons), and deconfinement phase corresponds to
the paramagnetic phase of quarks and gluons.

2. Free energy of the QCD vacuum at T �= 0 and H �= 0

The partition function of QCD in Euclidean formulation in the
presence of external Abelian field Aμ can be written in a form
(here T = 1/β is temperature)

Z = exp

{
−1

4

β∫
0

dx4

∫
V

d3x F 2
μν

}

×
∫

[D B][Dq̄][Dq]exp

{
−

β∫
0

dx4

∫
V

d3xL
}

, (1)

where QCD Lagrangian in the background field is

L= 1

4g2
0

(
Ga

μν

)2

+
∑

q=u,d

q̄

[
γμ

(
∂μ − i Q qe Aμ − i

λa

2
Ba

μ

)
+ mq

]
q, (2)
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here Q q is the charge matrix of quarks with flavor q = (u,d), and
we omitted ghost and gauge fixing terms for simplicity. Free en-
ergy density is given by the expression βV F (T , H,mq) = − ln Z .

Let us consider the hadron phase. At low temperature, T < Tc ,
(Tc is the temperature of chiral phase transition) and at weak ex-
ternal field, H < μ2

hadr ∼ (4π Fπ )2, the characteristic momentum
in the vacuum loops is small, and the theory is described by the
effective low-energy Lagrangian Leff [2,3].

Zeff[T , H] = e−βV Feff[T ,H]

= Z0[H]
∫

[DU ]exp

{
−

β∫
0

dx4

∫
V

d3x Leff[U , A]
}

. (3)

Leff can be represented as a decomposition in a series of powers
of momentum (derivatives) and masses

Leff = L(2) + L(4) + L(6) + · · · . (4)

The leading term in (4) is a Lagrangian of nonlinear σ -model in
external field Vμ

L(2) = F 2
π

4
Tr

(∇μU+∇μU
) + 
 Re Tr

(
M̂U+)

,

∇μU = ∂μU − i[U , Vμ]. (5)

Here U is unitary SU(2) matrix, Fπ = 93 MeV is a pion decay con-
stant, and the parameter 
 has the meaning of quark condensate,

 = |〈ūu〉| = |〈d̄d〉|. External Abelian magnetic field H , directed
along z axis, corresponds to Vμ(x) = (τ 3/2)e Aμ(x), and vector-
potential Aμ is taken in the form Aμ(x) = δμ2 Hx1. We will further
neglect the breaking of isospin symmetry of strong interactions
and consider masses of light u- and d-quarks equal, mu = md = mq ,
thus the mass matrix diagonal, M̂ = mq Î .

In one-loop approximation it is sufficient to use the decompo-
sition of Leff up to quadratic over pion field terms. In exponential
parametrization of the matrix U (x) = exp{iτ aπa(x)/Fπ } we find
that

L(2) = 1

2

(
∂μπ0) + 1

2
M2

π

(
π0)2

+ (
∂μπ+ + ie Aμπ+)(

∂μπ− − ie Aμπ−) + M2
ππ+π−, (6)

where we introduced the fields of charged π± and neutral π0

mesons

π± = (
π1 ± iπ2)/√2, π0 = π3. (7)

The QCD partition function (1) in one-loop approximation of
the effective chiral theory takes the form1

Z R
eff[T , H] = Z−1

P T Z0[H]
∫ [

Dπ0][Dπ+][
Dπ−]

× exp

{
−

β∫
0

dx4

∫
V

d3x L(2)[π, A]
}

. (8)

Here the partition function is normalized to the case of perturba-
tion theory at T = 0, H = 0

Z P T = [
det

(−∂2
μ + M2

π

)]−3/2
. (9)

Integrating (8) over π -fields one gets

Z R
eff = Z−1

P T Z0[H][detT
(−∂2

μ + M2
π

)]−1/2

× [
detT

(−|Dμ|2 + M2
π

)]−1
, (10)

1 The partition function Z R
eff describes charged π± and neutral π0 Bose gases in

magnetic field.
where Dμ = ∂μ − ie Aμ is a covariant derivative, and the subscript
T means that the determinant is evaluated at finite temperature T
using standard Matsubara rules. Using (9) and regrouping multipli-
ers in (10) we arrive at the following expression for Z R

eff

Z R
eff[T , H] = Z0[H]

[
detT (−∂2

μ + M2
π )

det(−∂2
μ + M2

π )

]−1/2[det(−|Dμ|2 + M2
π )

det(−∂2
μ + M2

π )

]−1

×
[

detT (−|Dμ|2 + M2
π )

det(−|Dμ|2 + M2
π )

]−1

. (11)

Free energy then takes the form [7]

F R
eff(T , H) = − 1

βV
ln Z R

eff

= H2

2
+ Fπ0 (T ) + Fπ± (H) + Fdia(T , H). (12)

Here Fπ0 is the free energy of massive scalar boson

Fπ0 (T ) = T

∫
d3 p

(2π)3
ln

(
1 − exp

(−√
p2 + M2

π/T
))

, (13)

Fπ± is Schwinger’s result for the vacuum energy density of
charged scalar particles in magnetic field

Fπ± (H) = − 1

16π2

∞∫
0

ds

s3
e−M2

π s
[

eHs

sinh(eHs)
− 1

]
. (14)

Next, it is technically not hard to generalize the case of the
vacuum H = 0, T = 0 for charged π±-mesons

F = Tr ln
(

p2
4 + ω2

0(p)
)

(15)

to the case of H 	= 0, T 	= 0. Omitting the details, we will note that
it corresponds to the following substitutions

p4 → ωk = 2πkT (k = 0,±1, . . .),

ω0 =
√

p2 + M2
π → ωn =

√
p2

z + M2
π + eH(2n + 1) (16)

and

Tr → eH T

2π

∞∑
n=0

+∞∑
k=−∞

+∞∫
−∞

dpz

2π
,

where the degeneracy multiplicity of Landau levels eH/2π is taken
into account. Summing over Matsubara frequencies, one obtains
the following result for the diamagnetic part of free energy of
charged Bose gas

Fdia(T , H) = eH T

π2

∞∑
n=0

∞∫
0

dk ln
(
1 − exp(−ωn/T )

)
,

ωn =
√

k2 + M2
π + eH(2n + 1), (17)

here ωn are Landau levels of π±-mesons in a constant magnetic
field H .

Expanding ln(· · ·) in the integrand of (13), (17) in a series, one
gets the following expressions:

Fπ0 = − M2
π T 2

2π2

∞∑
n=1

1

n2
K2

(
n

Mπ

T

)
(18)

and

Fdia = −eH T

π2

∞∑
n=0

√
M2

π + eH(2n + 1)

×
∞∑

k=1

1

k
K1

(
k

T

√
M2

π + eH(2n + 1)

)
, (19)

where Kn is the Macdonald function.
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3. Quark–hadron phase transition in magnetic field

In order to determine the temperature of phase transition we
will write down the pressure in two phases. At zero chemical po-
tential pressure is equal to minus free energy.

In the confinement phase pressure of π -mesons in magnetic
field takes the form (see (12))

P1(T , H) = Pπ0(T ) + Pπ± (H) + Pdia(T , H), (20)

where the pressure of neutral gas of π0-mesons is Pπ0(T ) =
−Fπ0 (T ). Renormalized contribution of vacuum polarization of
charged π±-mesons to the pressure, which does not depend on
temperature (Schwinger polarization) is

Pπ±(H) = 1

16π2

∞∫
0

ds

s3
e−M2

π /s
[

eHs

sinh(eHs)
− 1 + 1

6
(eHs)2

]
. (21)

Diamagnetic term in the pressure, which comes from charged π±
mesons is Pdia(T , H) = −Fdia(T , H).

Fermion (quark) determinant at finite temperature in the mag-
netic field can be considered in a similar way. Then the pressure
in the quark–gluon plasma phase has the form

Ppl(T , H) = 2
(
N2

c − 1
)π2

90
T 4 + Pq(H) + Ppara(T , H). (22)

The term proportional to ∝ T 4 comes from the gas of hot gluons,
Pq(H) is the contribution from vacuum polarization of quarks to
the pressure

Pq(H) = − 1

8π2

∑
q=u,d

∞∫
0

ds

s3
e−m2

q s

×
[
|eq|Hs cth

(|eq|Hs
) − 1 − 1

3
(eq Hs)2

]
(23)

and Ppara is a paramagnetic term

Ppara = 2Nc

∑
q=u,d

|eq|H
2π

T
∞∑

n=0

∑
σ=± 1

2

+∞∫
−∞

dpz

2π
ln

(
1 + e−ωq/T )

,

ωq = p2
z + m2

q + |eq|H(2n + 1 + 2σ). (24)

An important physical property of the phase transition is the
rearrangement of the nonperturbative QCD vacuum. Due to the
scale anomaly in the trace of the energy-momentum tensor the
new dimensional quantity, gluon condensate 〈G2〉 ≡ 〈(gGa

μν)2〉,
emerges in QCD. Nonperturbative energy density of the vacuum
is related to 〈G2〉:

εvac = − b

128π2

〈
G2〉, (25)

where b = (3Nc − 2N f )/3, Nc = 3 is the number of colors, and
b = 29/3 for N f = 2.

Energy density of vacuum is the negative quantity, and the
state with 〈G2〉 	= 0 turns out to be thermodynamically advanta-
geous. Theoretical studies [21,22] and numerical computations in
the lattice approximation of QCD [23] show that at the point of
phase transition Tc one part of the condensate (chromoelectric
part) turns to zero, while the chromomagnetic condensate remains
almost unchanged as compared to the case T = 0. In the vacuum
at T = 0 〈(Ea

i )
2〉 = 〈(Ha

i )
2〉, and therefore vacuum energy density

above phase transition appears to be less in magnitude than be-
low phase transition, and the difference is approximately

Δεv = 1 |εvac| = b
2

〈
G2〉. (26)
2 256π
Taking this into account, the quantity −Δεv should be added
to the equation of state in the plasma phase. Thus, the pressure in
the quark-gluon plasma state is given by the expression

P2(T ) = Ppl(T , H) − Δεv . (27)

Eq. (27) is similar to the equation for the phase transition in MIT
bag model, where bag constant B plays the role of Δεv .

Phase transition temperature can be found from the condition
of equality of pressures in both phases

P1(Tc, H) = P2(Tc, H). (28)

Let us now consider “weak” magnetic field, eH  T 2
c . Then the

Schwinger contribution to the pressure can be neglected. In the
weak field one can use Euler–Maclaurin formula for Pdia

1

2
F (a) +

∞∑
n=1

F (a + n) ≈
∞∫

0

dx F (x) − 1

12
F ′(a) (29)

and (17) can be rewritten in the form

Pdia = 2Pπ0(T ) − (eH)2

12π2
h1

(
Mπ

T

)
,

h1(z) =
∞∫

0

dx√
x2 + z2(e

√
x2+z2 − 1)

. (30)

For the paramagnetic term Ppara we find in the weak field

Ppara = P0q(T , H = 0) + Nc Q 2(eH)2

6π2
f1

(
m

T

)
,

f1(z) =
∞∫

0

dx√
x2 + z2(e

√
x2+z2 + 1)

, (31)

where mu = md = m and Q 2 = (e2
u + e2

d)/e2 = ( 4
9 + 1

9 ) = 5
9 , and

pressure P0q(T , H = 0) is given by2

P0q(T , H = 0) = 2Nc

π2
T 4

∞∫
0

x2 dx ln
(
1 + e−ωq/T )

,

ωq =
√

x2 + m2/T 2. (32)

In the absence of magnetic field and in the chiral limit one finds
[21]

Tc =
(

Δεv

(γ − 3)(π2/90)

)1/4

. (33)

Here γ = 2 · (N2
c − 1) + (7/8) · 2 · 2 · Nc · N f is the number of in-

dependent degrees of freedom of quarks and gluons, and γ = 37
for Nc = 3, N f = 2. Lattice calculations give the value 〈G2〉 =
0.87 GeV4, and one finds from (33) phase transition temperature
Tc � 177 MeV at H = 0.

The influence of magnetic field can be taken into account in the
first approximation by redefining vacuum energy density

ΔεH
v = Δεv − (eH)2 V , (34)

where

V = 1

12π2

[
h1

(
Mπ

Tc

)
+ 2Nc Q 2 f1

(
m

Tc

)]
. (35)

V = 6.1 · 10−2 for Mπ = 140 MeV and m ≈ 5 MeV.

2 Using
∫ ∞

0 x2 dx ln(1 + e−x) = 7π4

360 , one finds in the limit m = 0 that P0q(T , H =
0) = 4Nc

7
8

π2

90 T 4.
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Fig. 1. Quark–hadron phase transition temperature vs. external magnetic field. Crit-
ical point, T∗ = 104 MeV,

√
eH∗ = 600 MeV, where latent heat turns to zero, is

marked with the dot. Solid line corresponds to the first order phase transition, and
dashed line corresponds to the crossover.

Considering the term (eH)2 V as a perturbation, one finds from
(33) and (34) that the relative shift of the deconfinement phase
transition temperature in the presence of magnetic field is

T H
c = Tc

(
1 − V

4Δεv
(eH)2

)
(36)

and V /4Δεv � 9.2 GeV−4.
Thus, we see that the presence of a magnetic field leads to a

decrease of the quark–hadron phase transition temperature, and
ΔT /Tc ≈ 10−2(eH)2/Δεv .

4. Results of numerical simulations

Eqs. (20) and (27) allow to evaluate the pressure in both phases,
and to numerically find the dependence of phase transition tem-
perature on the magnetic field from (28). Results of numerical
calculations for Nc = 3, N f = 2 are presented in Fig. 1. Phase tran-
sition temperature, as discussed above, decreases with increasing
external magnetic field.

Thermodynamics in each phase is defined by the pressure, and
we can evaluate energy density and latent heat in both phases.
Energy density is given by

ε1 = T
dP1

dT
− P1, ε2 = T

dP2

dT
− P2. (37)

Latent heat equals to the difference of energy densities of two
phases in the point of phase transition:

Δε(H) = (ε2 − ε1)|Tc(H). (38)

The dependence of Δε(H) is plotted in Fig. 2. The value of the
magnetic field

√
eH∗ = 600 MeV where latent heat turns to zero

corresponds to the critical point, at which first order phase transi-
tion changes to the crossover.

5. Conclusion

We have studied the quark–hadron phase transition in QCD in
the presence of external magnetic field, and have shown, that the
temperature of the phase transition decreases in comparison to the
case of zero magnetic field. Eq. (28) was solved numerically, the
phase diagram in the plane temperature-magnetic field and critical
point were found.

As was shown above, there are two phases in the presence
of magnetic field: diamagnetic phase below Tc and paramagnetic
above Tc . Correspondingly magnetic susceptibility, χ = −∂2 P/∂ H2,
changes it’s sign at the critical temperature. Thus, magnetic sus-
ceptibility may be considered as the order parameter of the model
of thermal QCD in the presence of magnetic field.
Fig. 2. Latent heat Δε(H) vs external magnetic field
√

eH .

It is known from lattice calculations that there is a crossover for
finite temperature QCD with physical quark masses. In the pres-
ence of magnetic field there are additional magnetic terms in the
pressure, which give different contribution to the energy density in
two phases. Thus we expect that a crossover is replaced by a first
order phase transition. Analogous phenomenon was found in [24],
where it was shown that chiral transition changes from crossover
to the weak first order transition in the linear sigma model in a
magnetic field.

The following remark should be made. From [7] it is known
that the chiral phase transition temperature grows with the mag-
netic field. As it follows from lattice calculations, deconfinement
and chiral phase transitions take place at the same temperature
Tc in case of zero magnetic field H = 0. On the other hand, as
was shown above, quark–hadron phase transition temperature at
nonzero magnetic field is lower than in case of H = 0. Thus, chi-
ral and quark–hadron phase transition temperatures are separated
in the presence of magnetic field. Correspondingly, there appears a
temperature interval, where the quark–hadron phase transition is
already passed, but the chiral symmetry is still broken. This phe-
nomenon may be important for the consideration of quark–hadron
phase transition in heavy ion collisions and in the early universe.
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