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Abstm~ 

We show that nlogn space is sufficient for three-way nondeterminislic Turing machines 
(3NTs) to simulate two-dimensional alternating finite automata (AFs), where n is the number 
of columns of rectangt~lar input tapes. It is already known that nlogn space is necessary for 
3NTs to simulate AFs. Thus, our algorithm is optimal in the sense of spare complexity point 
of view. 

I. Introduction 

Recently, Jiang et al. [7] has shown interesting properties of two-dimensional 
alternating finite automata (AFs). For example, the class of sets accepted by AFs are 
not closed under complementation, and two-dimensional alternating finite automata 
with only universal states (UFs) are not equal to the complements of two-dimensional 
nondeterministic finite automata (NAs). These results contradict our earlier expecta- 
tion with usual sense. 

In order to draw them out, the same paper reveals the fact that three.way nondeter- 
ministic Turing machines (3NTs) require at least nlogn space to simulate UFs, where 
n is the number of columns of a rectangular input tape. 

This paper will show that nlog n space is also sufficient for 3NTs to simulate AFs. 
Combined with Jiangs" revelation, we can say that n logn space is necessary and 
sufficient, thus optimal for 3NTs to simulate AFs and UFs. 
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...... naturally extend~ to the are 

two-dimensional automata, except slight modifications:. One-way movement of the 
input head b,~co,,-aes three-way movement of left, right, and downward directions. 
Also, two.dimensional space complexity functions here have two variables m and n, 
which represent the number of rows and columns of the input tapes, respectively. 

A configuration of two.dimensional alternating "luring machine M on input tape 
x is a triple (x, (i,j),(q,~.k)), where x is a rectangular input tape for M, (/,j) is the 
position of the input head, q is a state of the finite control, at is the content of the 
working tape, and k is the position of the working tape head. The initial configuration 
of M on x is In(x) = (x, (1, l), (qo,,i, 1)), where qo is the initial state of M and ,t denotes 
the empty string. The set of all possible configurations of M on x is denoted by C~(x). 
For two configurations c,c'cCu(x), we write ct--Mc; if M can go from c to c' in one 
step, according to the transition rules 6. 

A two-dimensional alternating Turing machine M is called L(m, n)space-bounded if 
for each m,n (m,n >I I) and for each input tape x with m rows and n columns, when 
M accepts x, there exists an accepting computation tree such that each node labeled 
with configuration (x,(i,)),(q,~,k)) satisfies I~i < L(m,n). Also, M is called L(m) 
space.hounded if for each m (m ~> 1) and for each square input tape x with m rows (and 
m colnmns), when M accepts x, there exists an accepting computation tree such that 
each node labeled with configuration (x, (i,j), (q, ~.,k)) satisfies i~l < L(m). 

A two-dimensional finite automaton can be regarded as a two-dimensional Turing 
machine whose space complexity function is constantly bounded, i.e., L(m, n) <. d for 
some constant d. See Fig. 1 for the schematic view of a two-dimeasional finite 
automaton. 

Let AF, UF, and 3NT(L(m, n)) denote a two-dimensional alternating finite automa- 
ton, a t~7-dbnensional alternating finite automaton with only universal states, and 
a t~z~-way nondeterministic L(m, n) space-bounded two-dimensional Turing machine, 
respectively [3- 5]. 

For any family of two-dimensional automata ~f, the class of sets of rectangular 
input tapes accepted by ~ is denoted by .~#[~] and the class of sets of"square" input 
tapes accepted by ~ is denoted by , ~ [ ~ ] ,  that is, the superscript s indicates the 
restriction of their input tapes to square ones. 

Fo r  convenience, we simply denote a configuration of two-dimensional alternating 
finite automaton M by a triple (x, q, (i,))), where x is the input tape for M, q is a state of 
the finite control of M, and (i,j) is an input head position. 
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Fi& 1. Two-dimensional finite amomaton. 

Normally, the acceptance of alternating machines is defined in connection with the 
existence of an accepting computation tree [3]. It can, however, also be defined by the 
deterministic procedure given in Fig. 2. This is essentially the same scheme given by 
Chandra et aL [1]. 

Let each element of the set SATURATE(Cu(x)~O) after Line ( i)of the program 
GENERA L be called generalized accepting configurcaion, or g~. configuration in short. 
In terms of [43, a generalized accepting configuration is the configuration c such that 
there exists a c-accepting computation tree (c-accepting computation tree itself is the 
computation tree whose root is labeled with c and whose leaves are all labeled with 
accepting configurations). 

The set A as an argument of the function SATURATE is assumed to be that of 
configurations which had been already judged as g.& configurations. In the constraint 
that the elements of A are fixed, the function SATURATE produces additional g.a. 
configurations only from the target set D, excluding the outer set Cu(x) - D, which is 
beyond D. W e  also neglect the part D r~ A ( c A) of D from the output range since it is 
already known as g~a. configurations. 

The outer loop of the function is repeated until there is no more configuration in 
D to be judged as g.a. configuration. At each step of the inner for-loop, each 
configuration in D which has not yet been judged as a g.a. configuration is tested by 
means of conjunction or disjunction on the previous judgment of its immediate 
successors. Thus, the algorithm proceeds in the bottom-up manner from the leaves 
(-accepting configurations) up to the root (=the initial configuration)of the compu- 
tation tree of M on x. 
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tTURATE(Cu(x),0) tSm accept else reject 

f ~ g 6 ~  SATURATE (var D, A: subsets of eM(x)g a subset of D - A 

E ~  {cic is an accepting configuration in D v  A}; 
teep ~e 

4 ~ 0 :  
for each ceD - £ tie 

if (c is existential and 3c°~E[c t-u c']) 
er(c is universal and Vc'(cI-Hc') [c'fE" j) 

tim, , ~  ~! + {c}' 
emlfec 
E ~ E + J ;  
if ,~ -- 0 tllen getum E - A; 

emneep 

(t) 

F'~Z 

ma~a program MODIFIED:. 
beg~ {assume CI u C2 = Cu(x) & CI ~ C2 = ~} 
A ~  O; 
repeat 

~A! ~ SA TURA IT.(Ci. Ak 
A ~ A + dAl;  
zlA2.'= SATURATE(C2, Ak 
A.~--A+AA2 

if lu(x)eA then accept else reject 
end. 

Fig. 3. 

It should be noted that the final set of generalized accepting configurations will 
never change even if we evaluate it in any order. In other words, the calculating order 
is restri~ed only with the partial order relation i'M. Based on this property of g.a. 
configurations, we can take another strategy. For example, we partition the set CM(x) 
into two disjoint part~ CI and C2 earlier, then alternatively change one part by the 
other as the scope of the evaluation in the function SA TURA TE, see Fig. 3. It is clear 

t For two sets A and B, A + B denotes the set A • B - A ~ B. 
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that this startegy will finally produce the same set of gra. configurations as the 
program GENERAL. 

& Remits 

in that follows, we show that two-dimensional a l t ~ t i n g  finite automata (AFs) 
can be simulated by three-way nondeterministic nlog n space'bound~ Turing ma, 
chin~ (3NT(n log nJs), where n is the number of columns ofthe input tapes. Note that 
this space bounding function nlog n does not depend on the number m of rows of the 
given input tapes. 

Theorem..~[AF] =__ .~[3NT(nlo~n)] 

Proof. Assume that an input tape x with m rows and n columns is given to an AF M. 
Let Q be the set of states of the finite control of M. 

First of all, with such a principle that the bottom area of x is saturated caflier than 
the top area, we can further modify the program MODIFIED described in the 
preceding section into a "recursive program" as shown in Fig. 4. 

main program RECURSIVE: 
global ¢onst C[0..m + 1]: where C[i] -- {(x,q,(i,j))lqeQ & 0 ~ j  ~ n + 1} 

(O~i<...m+ lk 
global r a t A [ -  1..m + 2]: where A[~ c_ C[~ (0 ~ i ~< m + 1) and 

A[- - I ]  = Aim + 2] = ~ 
begin 
A[i]:= 0 for each i(O<.i<.m+ 1); 
ROLLER(O); 
if IM(x)~A[I] then accept else reject 
end. 

procedure ROLLER(vat i: row index of x): 
hegln 
if i = m + 2 then return; 
loop do 

ROL .ER(i + 1); 
AAi:= $ATURATE(C[i], A[i - 1] u A[~ • A[i + 1]); 
if AAi --- ~ then return; 
A[i]:-- A[i] + AAi 

endloop 
end. 

Fig. 4. 
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Of course. SA TURA TE is the i'unetion deso-ibed in the preceding section. Note that 

J flattens the ground level by  
6 illustrates the behaviors of 

the program for the computation graph shown in Fig. 5. which k derived from the pair 
of some AF and some x. The reader can see from Fig. 6 that configurations of the 
bottom area are evaluated as early as possible than those of the top area. 

Here. we construct a three-way nondeterministic"luring machine M' that simulates 
the running process of the deterministic program RECURSIVE, not directly simula- 
ting the four-way alternating automaton M itself. Since M' can visit each row only 
once from the 1st row down to the bottom boundary row of the given input tape x, it 
must guess the consequences of the entire calls for the subroutine ROLLER evoked on 
the CUise,,t row. which are not necessarily consecutive events. 

in the program presented in Fig. 7. the array AL is used as an argument of 
SATURATE, which corresponds to A D - - I ] u A [ Q u A [ i + I ]  of the program 
RECURSIYE. dGt [1] is the guessed dements that would be added to A [i + l] by the 
kth execution of ROLLER([ + !). AAa[0] corresponds to the output AA[ front the 
function SATURATE.  The two variables AAL0 and AGt[0] are used to check the 
correctness of the guesses. The integer variable maxc represents the number of times of 
calls for the subroutine ROLLER on the preceding (i - i)st row. K(Q,n) denotes the 
set {(q,J)lqc(2 & 0 <~j ~< n + 1} and qo is the initial state of M. 

When the latest value of the output AAi front the function SATURATE of the 
fomler program RECURSIV£ is empty (except when the very first call of it on each 
row)~ our simulating progrant stops the honest trace of the further recursion which 
will he evoked here, since there would be no change in the array variable A. In order to 
save the wasteful job of this kind, it simply sets AGt[I] to empty as shown in Line (2) 
and on the next row it skips the simulations of such calls evoked just above as shown 
in Line (1). On the ith (0 ~< [ ~< m) row, the correctness of each guess AG~[0], which 
had been guessed on the preceding (i -- l)st row, is checked at Line (4) by the value of 
AAt[0] (which has been probably influenced by the recent guess dG~[l] during the 
computation of the function SATURATE).  

On the (m + I)st row, we can faithfully fix the value of AGt[l] to empty set for 
each k as shown in Line (3), since the recursive call for ROLLER(m + 2) evoked here 
immediately returns without anything done. Therefore, the correctness of all the 
guesses described above is lastly confirmed when M' visits the bottom boundary row. 

Table I illustrates the process when the key variables of the program are changing 
their contents in an accepting computation of M' on the computation graph shown in 
Fig. 6. 

It is clear that the program above correctly simulates the program RECURSIVE, 
thus T(M')= T(M). 
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Fig. 5. A computation graph derived from the pair of an alternating machine M and an input tape x ~ith 
three rows. Here, ~ ,  ~), ~), andS)denote an initial, universal, existential, and accepting configuration. 
respectively. Small numbers denote the row number components of configurations of M. #m(# t~ )  stands 
for the top (bottom) boundary row. 
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Fi~. 6. 8eha~or of  the i ~ r a m  RECURSIVE on the graph shown in Fig. 5, Script numbers denote the 
onk'r of configurations when the)" are judged as gener'~lized accepting configurations. 

Now, we consider the amount of space used by M'. For the simplicity of the argument, 
we distinguish between all empty sets of AA~[0], .4Grill, AAh[-- 1"i and AGt[0]. For 
instance, we consider them as indexed ~ith integer numbers such as 0t, 0z, and so on. 

First of alL we classify Ut~ t {AAt[r]} { -  ! ~< r ~< 0) into two disjoint sets Air] and 
~f[r] as follows. 

Air] = {dA~[r]IdAt[r] ~ 0}, 
= {aA [,:ll aA,[.r] -- 0 } .  
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main program THREE- WA Y_ NONDETERMINISTIC: 
varAL[-1 . . I ] :  where AL[r] ~_ K(Q.n) ( -  I ~ r ~ |); 

AALO:. where AALO ~ K(Q,n); 
AG~[0..I](k ;~ i): where AGk[r] ~ K(Q.,n)(O~ r ~  I); 
AA,[-- 1..0](k >t 1):. where AA,[r] ~; K(p..n) ( -  I ,~ r ~ 0); 

begin 
maxc:= | ;  
t o r i = O t o m +  I do 

move to the ith row (when i = O. assume # 's  on the 1st row);, 
AL[r] := 0 for each r ( -  ! ~< r ~< 1~, 
k:-- 
for Q = 1 to maxc do 

t f t~ t  (Q I> 2 and AAQ- t [ -  1] = ~) then do 
AALO:= 
loop do 

k:=-k + l ;  
i f  k >~ 2 and zl,i,, t [0] = 0 then AG,[I] := 0 

else if/--- m +  l then aGt[l]:--- t) 
else guess AGk[l] c K ( Q , n )  - AL[I]; 

ALEI].~ AL[I] + AG,[I]; 
AA~[O]'= SATURATE({(x,q,(~,j))IqcQ & 0 <. j <. n + I},AL); 
if AA~[O] = 0 then exit loop; 
AL[0]:-- AL[0] + dAk[0]; 
AAL0:= AALO + AAt[0] 

endloop; 
if i ~ 0 and AALO ~ AGt[O] then reject 

end if; 
if i ~ 0 then A L l -  I] ~ A L l -  1] + AAz[-  I] 

end for, 
maxc := k; 
if i = 1 and (qo, 1) ~ AL[O] then reject; 
for k -- 1 to maxc do 

AA~[-  13 := ~A~r03; 
AGk[03 := ABk[|3 

endfor 
end for; 
accept 
end. 

(1) 

(2) 
(3) 

(4) 

Fig. 7. 
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We also classify U~,I {AGt[r]} ( 0 ~  r ~  l) into three disjoint sets/'It:], ~[r], and 

. . . .  o [ r ] =  {ao.[r] la(; l [ , ]  = 0 a a A H I : r -  t ] =  O}. 

Note that : t~  ek, m~ts  of O[ l ]  (0[0]) correspond to the symbols [O]'s in Table I. 
Atthe top boundary row(iJ~-, i = 0), it clearly holds tha t  1~[0:]1 - 1, IO[ l ] l  ¢ I, 

and lO[l] |  = 0. Below, we focus on t;~sc quantities ! ~'[0]1, !O[1]l, and IO[!]l of the 
general case (i~. i > 0). Define 

• : W[0] ~ F[0]  + O[0] such that ~(AAt[0]) = AGt[0], 

p: O[ l ] -~ A[O] such that p(AGt[I])=: A A t . , [ 0 ] ,  

7: O[1]--* 9'[0] such that 3"(AGt[I])-- AAt- t [0:]. 

Clearly. the mapping ~ is both one-one and onto and the other mappings p, 7 are 
one-one. 

From the injection p, it follows that lO[l]! ~< IA[O]! -~ O(n) (so, IO[0:][ = O(n)), 
From this and the bijeclion ~, we get I~'[O]l -- iF[0][ + IO[O:]i ~ O(n). From this 
and the injcclion 7, we also get IO[l]l ~< 19'[0:]1 -- O(n). 

At this point, we have the upper bound O(n) on the number of empty sets appeared 
in each variable AAt[0:] aml AG~[I]. 

Note that, to record a single element of K(Q, n), M needs O0og n) storage space of 
the working tape. As t'he conclusion, we can say that the total space used by M' is 
bounded by O(nlog n). E] 

Remark. It should be noted that the square tape version ,~'[:AF~_ 
W[3NT'(mlogm)] of our main theorem had been already known: In [6], the follow- 
ing facts are shown. 

.~¢[AP] ~_ .~[DCA~(O(I))] and .~[CA'(O(I))'I ~_ AC[3NT'(m log m)], 

where DCA(O(I)) (CA(O(I))) denotes two-dimensional deterministic (nondeterminis- 
tic) cellular automata with constant state changes per each cell [:6:]. A simple extension 
of this to the general rectangular case will induce the relation 

~,~'[AF'I ~_ .~[3NT(nlog m + nlogn):], 

which is, however, weaker than ours. 

Fact (Jiang et aS. [7" L(m) = o(mlog m), then .~[UF']  ~; A°[3NT'(L(m))]. 

From this (and ~ ious fact -~[UF] _ ~T[AF:]), we get the following corollary. 
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CorolhnT. nlog n space is necessary and su~cient for 3NTs to ,stimulate AFs (UFs). 

It is known [7] that n space is necessary and sufficient for 3NTs to stimulate the 
~mplm~t s  0f AFs (the n ~ i t y  is straightforward). 
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