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1. Introduction

It is well known that the monotone iterative technique offers an approach for obtaining approximate solutions of
nonlinear differential equations. There existsmuch literature devoted to the applications of this technique to boundary value
problems of ordinary differential equations, see [1–6]. There are also a few papers where the monotone iterative technique
is used on nonlinear differential problems with delay, see [7–11]. In [12,13], Nieto and Rodriguez-Lopez introduced a new
concept of lower and upper solutions, and considered the periodic boundary value problems for the following first-order
functional differential equation{

u′(t) = g(t, u(t), u(θ(t))), t ∈ [0, T ],
u(0) = u(T ).

(1.1)

A similar method has already succeeded to solving nonlinear impulsive integro-differential equations [14] and impulsive
functional differential equations [15].

Motivated by [12–15], we consider the multi-point boundary value problems for the functional differential equation{
−u′′(t) = f (t, u(t), u(θ(t))), t ∈ J = [0, 1],
u(0) − au′(0) = cu(η), u(1) + bu′(1) = du(ξ),

(1.2)

where f ∈ C(J × R2,R), 0 ≤ θ(t) ≤ t, t ∈ J, θ ∈ C(J), a ≥ 0, b ≥ 0, 0 ≤ c ≤ 1, 0 ≤ d ≤ 1, 0 < η, ξ < 1.
When θ(t) = t , the boundary value problem (1.2) reduces to multi-point boundary value problems for ordinary

differential equations which have been studied in many papers, see [16–19]. To our knowledge, only a few papers paid
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attention to multi-point boundary value problems for functional differential equations. Recently, Jankowski [20] discussed
solvability of three-point boundary value problems for a class of second-order differential equations with deviating
arguments by using the monotone iterative technique. Our method is different from that of [20].

In this paper, we are concerned with the existence of extreme solutions for the boundary value problem (1.2). The paper
is organized as follows. In Section 2, we establish two comparison principles. In Section 3, we consider a linear problem
associated to equation (1.2) and then give a proof for the existence theorem. In Section 4, we first introduce a new concept
of lower and upper solutions. By using the method of upper and lower solutions with a monotone iterative technique, we
obtain the existence of extreme solutions for the boundary value problem (1.2).

2. Comparison principles

In the following, we always assume that the following condition is satisfied.
(H) a ≥ 0, b ≥ 0, 0 ≤ c ≤ 1, 0 ≤ d ≤ 1, 0 < η, ξ < 1, a + c > 0, b + d > 0.
For any given function g ∈ E = C2(J, R), we denote

Ag = max
{
g(0) − ag ′(0) − cg(η)

aπ + c sinπη
,
g(1) + bg ′(1) − dg(ξ)

bπ + d sinπξ

}
,

Bg = max{Ag , 0}, cg(t) = Bg sin(π t), r = π2.

We now present the main results of this section.

Theorem 2.1. Assume that u ∈ E satisfies{
−u′′(t) + Mu(t) + Nu(θ(t)) ≤ 0, t ∈ J,
u(0) − au′(0) ≤ cu(η), u(1) + bu′(1) ≤ du(ξ),

(2.1)

where a ≥ 0, b ≥ 0, 0 ≤ c ≤ 1, 0 ≤ d ≤ 1, 0 < η, ξ < 1 and constants M, N satisfy

M > 0, N ≥ 0, M + N ≤ 2. (2.2)

Then u(t) ≤ 0 for t ∈ J .

Proof. Suppose, to the contrary, that u(t) > 0 for some t ∈ J .
If u(1) = maxt∈J u(t) > 0, then u′(1) ≥ 0, u(1) ≥ u(ξ) and

du(ξ) ≤ u(1) ≤ u(1) + bu′(1) ≤ du(ξ).

So d = 1 and u(ξ) is a maximum value.
If u(0) = maxt∈J u(t) > 0, then u′(0) ≤ 0, u(0) ≥ u(η) and

cu(η) ≤ u(0) ≤ u(0) − bu′(0) ≤ cu(η).

So c = 1 and u(η) is a maximum value.
Therefore, there is a t∗ ∈ (0, 1) such that

u(t∗) = max
t∈J

u(t) > 0, u′(t∗) = 0, u′′(t∗) ≤ 0. (2.3)

Suppose that u(t) ≥ 0 for t ∈ J . From the first inequality of (2.1), we obtain that u′′(t) ≥ 0 for t ∈ J . Hence

u(0) = max
t∈J

u(t) or u(1) = max
t∈J

u(t).

If u(0) = maxt∈J u(t) > 0, then u(t) ≡ K (K is a positive constant) for t ∈ [0, η]. From the first inequality of (2.1), we
have that when t ∈ [0, η],

0 < MK ≤ Mu(t) + Nu(θ(t)) ≤ u′′(t) = 0,

which is a contradiction.
If u(1) = maxt∈J u(t) > 0, then u(t) ≡ K (K is a positive constant) for t ∈ [ξ, 1]. From the first inequality of (2.1), we

have that when t ∈ [ξ, 1],

0 < MK ≤ Mu(t) + Nu(θ(t)) ≤ u′′(t) = 0,

which is a contradiction.
Suppose that there exist t1, t2 ∈ J such that u(t1) > 0 and u(t2) < 0. We consider two cases.

Case 1. u(0) > 0. Since u(t2) < 0, there is κ > 0, ε > 0 such that u(κ) = 0, u(t) ≥ 0 for t ∈ [0, κ) and u(t) < 0 for all
t ∈ (κ, κ + ε]. It is easy to obtain that u′′(t) ≥ 0 for t ∈ [0, κ]. If t∗ < κ , then 0 < Mu(t∗) ≤ u′′(t∗) ≤ 0, a contradiction.
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Hence t∗ > κ + ε. Let t∗ ∈ [0, t∗) such that u(t∗) = mint∈[0,t∗) u(t), then u(t∗) < 0. From the first inequality of (2.1), we
have

u′′(t) ≥ (M + N)u(t∗), t ∈ [0, t∗).

Integrating the above inequality from s(t∗ ≤ s ≤ t∗) to t∗, we obtain

−u′(s) ≥ (t∗ − s)(M + N)u(t∗), t∗ ≤ s ≤ t∗,

and then integrate from t∗ to t∗ to obtain

−u(t∗) < u(t∗) − u(t∗)

≤

∫ t∗

t∗
(s − t∗)(M + N)u(t∗)ds

≤ −
M + N

2
u(t∗)(t∗ − t∗)2

≤ −
M + N

2
u(t∗).

From (2.2), we have that u(t∗) > 0. This is a contradiction.
Case 2. u(0) ≤ 0. Let t∗ ∈ [0, t∗) such that u(t∗) = mint∈[0,t∗) u(t) ≤ 0. From the first inequality of (2.1), we have

u′′(t) ≥ (M + N)u(t∗), t ∈ [0, t∗).

The rest of the proof is similar to that of case 1. The proof is complete. �

Theorem 2.2. Assume that (H) holds and u ∈ E satisfies

−u′′(t) + Mu(t) + Nu(θ(t)) + [(M + r)cu(t) + Ncu(θ(t))] ≤ 0, t ∈ J,

where constants M, N satisfy (2.2), then u(t) ≤ 0 for t ∈ J .

Proof. Assume that u(0) − au′(0) ≤ cu(η), u(1) + bu′(1) ≤ du(ξ), then cu(t) ≡ 0. By Theorem 2.1, u(t) ≤ 0.
Assume that u(0) − au′(0) ≤ cu(η), u(1) + bu′(1) > du(ξ), then

cu(t) =
sin(π t)

bπ + d sin(πξ)
(u(1) + bu′(1) − du(ξ)).

Put y(t) = u(t) + cu(t), t ∈ J, then y(t) ≥ u(t) for all t ∈ J , and

y′(t) = u′(t) +
π cos(π t)

bπ + d sin(πξ)
(u(1) + bu′(1) − du(ξ)), t ∈ J,

y′′(t) = u′′(t) − rcu(t), t ∈ J.

Hence

y(0) = u(0), y(1) = u(1),

y(ξ) = u(ξ) +
sin(πξ)

bπ + d sin(πξ)
(u(1) + bu′(1) − du(ξ)),

y′(0) = u′(0) +
π

bπ + d sin(πξ)
(u(1) + bu′(1) − du(ξ)),

y′(1) = u′(1) −
π

bπ + d sin(πξ)
(u(1) + bu′(1) − du(ξ)).

−y′′(t) + My(t) + Ny(θ(t)) = −u′′(t) + Mu(t) + Nu(θ(t)) + [(M + r)cu(t) + Ncu(θ(t))]
≤ 0,

y(0) − ay′(0) = u(0) − au′(0) −
aπ

bπ + d sin(πξ)
(u(1) + bu′(1) − du(ξ))

≤ cu(η) ≤ cy(η),

y(1) + by′(1) − dy(ξ) = u(1) + bu′(1) − du(ξ) −
bπ

bπ + d sin(πξ)
(u(1) + bu′(1) − du(ξ))

−
d sin(πξ)

bπ + d sinπξ
(u(1) + bu′(1) − du(ξ))

≤ 0.
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By Theorem 2.1, y(t) ≤ 0 for all t ∈ J , which implies that u(t) ≤ 0 for t ∈ J .
Assume that u(0) − au′(0) > cu(η), u(1) + bu′(1) ≤ du(ξ), then

cu(t) =
sinπ t

aπ + c sin(πη)
(u(0) − au′(0) − cu(η)).

Put y(t) = u(t) + cu(t), t ∈ J, then y(t) ≥ u(t) for all t ∈ J , and

y′(t) = u′(t) +
π cos(π t)

aπ + c sin(πη)
(u(0) − au′(0) − cu(η)), t ∈ J,

y′′(t) = u′′(t) − rcu(t), t ∈ J.

Hence

y(0) = u(0), y(1) = u(1),

y(η) = u(η) +
sin(πη)

aπ + c sin(πη)
(u(0) − au′(0) − cu(η)),

y′(0) = u′(0) +
π

aπ + c sin(πη)
(u(0) − au′(0) − cu(η)),

y′(1) = u′(1) −
π

aπ + c sin(πη)
(u(0) − au′(0) − cu(η)).

−y′′(t) + My(t) + Ny(θ(t)) = −u′′(t) + Mu(t) + Nu(θ(t)) + [(M + r)cu(t) + Ncu(θ(t))]
≤ 0,

y(0) − ay′(0) − cy(η) = u(0) − au′(0) − cu(η) −
aπ

aπ + c sin(πη)
(u(0) − au′(0) − cu(η))

−
c sin(πη)

aπ + c sin(πη)
(u(0) − au′(0) − cu(η))

≤ 0,

y(1) + by′(1) = u(1) + bu′(1) −
bπ

aπ + c sin(πη)
(u(0) − au′(0) − cu(η))

≤ du(ξ) ≤ dy(ξ).

By Theorem 2.1, y(t) ≤ 0 for all t ∈ J , which implies that u(t) ≤ 0 for t ∈ J .
Assume that u(0) − au′(0) > cu(η), u(1) + bu′(1) > du(ξ), then cu(t) = Au sin(π t). Put y(t) = u(t) + cu(t), t ∈ J,

then y(t) ≥ u(t) for all t ∈ J , and

y′(t) = u′(t) + Auπ cos(π t), t ∈ J,
y′′(t) = u′′(t) − rcu(t), t ∈ J.

Hence

y(0) = u(0), y(1) = u(1),
y(η) = u(η) + Au sin(πη), y(ξ) = u(ξ) + Au sin(πξ),

y′(0) = u′(0) + Auπ, y′(1) = u′(1) − Auπ.

−y′′(t) + My(t) + Ny(θ(t)) = −u′′(t) + Mu(t) + Nu(θ(t)) + [(M + r)cu(t) + Ncu(θ(t))]
≤ 0,

y(0) − ay′(0) − cy(η) = u(0) − au′(0) − cu(η) − a Auπ − cAu sin(πη)
≤ 0,

y(1) + by′(1) − dy(ξ) = u(1) + bu′(1) − du(ξ) − bAuπ − dAu sin(πξ)
≤ 0.

By Theorem 2.1, y(t) ≤ 0 for all t ∈ J , which implies that u(t) ≤ 0 for t ∈ J . The proof is complete. �

3. Linear problem

In this section, we consider the boundary value problem{
−u′′(t) + Mu(t) + Nu(θ(t)) = σ(t), t ∈ J,
u(0) − au′(0) = cu(η), u(1) + bu′(1) = du(ξ).

(3.1)



W. Wang et al. / Computers and Mathematics with Applications 56 (2008) 2065–2072 2069

Theorem 3.1. Assume that (H) holds, σ ∈ C(J) and constants M, N satisfy (2.2) with

µ =

(
a(1 + 2b)

2(a + b + 1)
+

1
8

(
1 + 2b

a + b + 1

)2
)

(M + N) < 1. (3.2)

Further suppose that there exist α, β ∈ E such that

(h1) α ≤ β on J.
(h2)

−α′′(t) + Mα(t) + Nα(θ(t)) + [(M + r)cα(t) + Ncα(θ(t))] ≤ σ(t), t ∈ J.

(h3)

−β ′′(t) + Mβ(t) + Nβ(θ(t)) − [(M + r)c−β(t) + Nc−β(θ(t))] ≥ σ(t), t ∈ J.

Then the boundary value problem (3.1) has a unique solution u(t) and α ≤ u ≤ β for t ∈ J .

Proof. We first show that the solution of (3.1) is unique. Let u1, u2 be the solution of (3.1) and set v = u1 − u2. Thus{
−v′′(t) + Mv(t) + Nv(θ(t)) = 0, t ∈ J,
v(0) − av′(0) = cv(η), v(1) + bv′(1) = dv(ξ).

By Theorem 2.1, we have that v ≤ 0 for t ∈ J , that is, u1 ≤ u2 on J . Similarly, one can obtain that u2 ≤ u1 on J . Hence
u1 = u2.

Next, we prove that if u is a solution of (3.1), then α ≤ u ≤ β . Let p = α − u. From boundary conditions, we have that
cα(t) = cp(t) for all t ∈ J . From (h2) and (3.1), we have

−p′′(t) + Mp(t) + Np(θ(t)) + [(M + r)cp(t) + Ncp(θ(t))] ≤ 0, t ∈ J.

By Theorem 2.1, we have that p = α − u ≤ 0 on J . Analogously, u ≤ β on J .
Finally, we show that the boundary value problem (3.1) has a solution by five steps as follows.

Step 1. Let ᾱ(t) = α(t) + cα(t), β̄(t) = β(t) − c−β(t). We claim that
(1) −ᾱ′′(t) + Mᾱ(t) + Nᾱ(θ(t)) + [(M + r)cᾱ(t) + Ncᾱ(θ(t))] ≤ σ(t) for t ∈ J.
(2) −β̄ ′′(t) + Mβ̄(t) + Nβ̄(θ(t)) − [(M + r)c−β̄(t) + Nc−β̄(θ(t))] ≥ σ(t) for t ∈ J.
(3) α(t) ≤ ᾱ(t) ≤ β̄(t) ≤ β(t) for t ∈ J.
From (h2) and (h3), we have

−ᾱ′′(t) + Mᾱ(t) + Nᾱ(θ(t)) ≤ σ(t), t ∈ J, (3.3)

−β̄ ′′(t) + Mβ̄(t) + Nβ̄(θ(t)) ≥ σ(t), t ∈ J, (3.4)

and

ᾱ(0) − a ᾱ′(0) − cᾱ(η) = α(0) − aα′(0) − cα(η) − (aπ + c sin(πη))Bα ≤ 0, (3.5)

ᾱ(1) + bᾱ′(1) − dᾱ(ξ) = α(1) + bα′(0) − dα(ξ) − (bπ + d sin(πξ))Bα ≤ 0, (3.6)

−[β̄(0) − aβ̄ ′(0) − cβ̄(η)] = −β(0) + aβ ′(0) + cβ(η) − (aπ + c sin(πη))B−β ≤ 0, (3.7)

−[β̄(1) + bβ̄ ′(1) − dβ̄(ξ)] = −β(1) − bβ ′(0) + dβ(ξ) − (bπ + d sin(πξ))B−β ≤ 0. (3.8)

From (3.3)–(3.8), we obtain that cᾱ(t) = c−β̄(t) ≡ 0, t ∈ J. Combining (3.3) and (3.4), we obtain that (1) and (2) hold.
It is easy to see thatα ≤ ᾱ, β̄ ≤ β on J .We show that ᾱ ≤ β̄ on J . Let p = ᾱ−β̄, then p(t) = α(t)−β(t)+cα(t)+c−β(t).

From (3.3)–(3.8), we have

−p′′(t) + Mp(t) + Np(θ(t)) ≤ 0, t ∈ J,

and

p(0) − ap′(0) − cp(η) = α(0) − aα′(0) − cα(η) − (aπ + c sin I(πη))Bα

− β(0) + aβ ′(0) + cβ(η) − (aπ + c sin(πη))B−β

≤ 0,

p(1) + bp′(1) − dp(ξ) = α(1) + bα′(1) − dα(ξ) − (bπ + d sin(πξ))Bα

− β(1) − bβ ′(1) + dβ(η) − (bπ + d sin(πξ))B−β

≤ 0.

By Theorem 2.1, we have that p ≤ 0 on J , that is, ᾱ ≤ β̄ on J . So (3) holds.
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Step 2. Consider the boundary value problem{
−u′′(t) + Mu(t) + Nu(θ(t)) = σ(t), t ∈ J,
u(0) − au′(0) = λ, u(1) + bu′(1) = δ,

(3.9)

where λ ∈ R, δ ∈ R. We show that the boundary value problem (3.9) has a unique solution u(t, λ, δ).
It is easy to check that the boundary value problem (3.9) is equivalent to the integral equation

u(t) =
δ(t + a) + (1 − t + b)λ

a + b + 1
+

∫ 1

0
G(t, s)[σ(s) − Mu(s) − Nu(θ(s))]ds,

where

G(t, s) =
1

a + b + 1

{
(a + t)(1 + b − s), 0 ≤ t ≤ s ≤ 1,
(a + s)(1 + b − t), 0 ≤ s ≤ t ≤ 1.

It is easy to see that C(J) with norm ‖u‖0 = maxt∈J |u(t)| is a Banach space. Define a mapping Φ : C(J) → C(J) by

(Φu)(t) =
δ(t + a) + (1 − t + b)λ

a + b + 1
+

∫ 1

0
G(t, s)[σ(s) − Mu(s) − Nu(θ(s))]ds.

For any x, y ∈ C(J), we have

(Φx)(t) − (Φy)(t) =

∫ 1

0
G(t, s)[M(y(s) − x(s)) + N(y(θ(s)) − x(θ(s)))]ds.

Since

max
t∈J

∫ 1

0
G(t, s)ds =

a(1 + 2b)
2(a + b + 1)

+
1
8

(
1 + 2b

a + b + 1

)2

,

the inequality (3.2) implies that Φ : C(J) → C(J) is a contraction mapping. Thus there exists a unique u ∈ C(J) such that
Φu = u. The boundary value problem (3.9) has a unique solution.
Step 3.We show that for any t ∈ J , the unique solution u(t, λ, δ) of the boundary value problem (3.9) is continuous in λ and
δ. Let u(t, λi, δi), i = 1, 2 be the solution of{

−u′′(t) + Mu(t) + Nu(θ(t)) = σ(t), t ∈ J,
u(0) − au′(0) = λi, u(1) + bu′(1) = δi, i = 1, 2. (3.10)

Then

u(t, λi, δi) =
δi(t + a) + (1 − t + b)λi

a + b + 1
+

∫ 1

0
G(t, s)[σ(s) − Mu(s, λi, δi) − Nu(θ(s), λi, δi)]ds, i = 1, 2. (3.11)

From (3.11), we have that

‖u(t, λ1, δ1) − u(t, λ2, δ2)‖0 ≤ |λ1 − λ2| + |δ1 − δ2| + (M + N)‖u(t, λ1, δ1) − u(t, λ2, δ2)‖0 max
t∈J

∫ 1

0
G(t, s)ds

≤ |λ1 − λ2| + |δ1 − δ2| + µ‖u(t, λ1, δ1) − u(t, λ2, δ2)‖0.

Hence

‖u(t, λ1, δ1) − u(t, λ2, δ2)‖0 ≤
1

1 − µ
(|λ1 − λ2| + |δ1 − δ2|).

Step 4.We show that

ᾱ(t) ≤ u(t, λ, δ) ≤ β̄(t) (3.12)

for any t ∈ J , λ ∈ [cᾱ(η), cβ̄(η)] and δ ∈ [dᾱ(ξ), dβ̄(ξ)], where u(t, λ, δ) is the unique solution of the boundary value
problem (3.9).

Let m(t) = ᾱ(t) − u(t, λ, δ). From (3.3), (3.5), (3.6) and (3.9), we have that m(0) − am′(0) ≤ cm(η), m(1) + bm′(1) ≤

dm(ξ) and

−m′′(t) + Mm(t) + Nm(θ(t)) = −ᾱ′′(t) + Mᾱ(t) + Nᾱ(θ(t)) + u′′(t, λ) − Mu(t, λ, δ) − Nu(θ(t), λ, δ)

≤ σ(t) − σ(t) ≤ 0.

By Theorem 2.1, we obtain thatm ≤ 0 on J , that is, ᾱ(t) ≤ u(t, λ, δ) on J . Similarly, u(t, λ, δ) ≤ β̄(t) on J .
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Step 5. Let D = [cᾱ(η), cβ̄(η)] × [dᾱ(ξ), dβ̄(ξ)]. Define a mapping F : D → R2 by

F(λ, δ) = (u(η, λ, δ), u(ξ , λ, δ))

where u(t, λ, δ) is the unique solution of the boundary value problem (3.9). From Step 4, we have

F(D) ⊂ D.

Since D is a compact convex set and F is continuous, it follows by Schauder’s fixed point theorem that F has a fixed point
(λ0, δ0) ∈ D such that

u(η, λ0, δ0, ) = λ0, u(ξ , λ0, δ0) = δ0.

Obviously, u(t, λ0, δ0) is unique solution of the boundary value problem (3.1). This completes the proof. �

4. Main results

LetM ∈ R, N ∈ R. We first give the following definition.

Definition 4.1. A function α ∈ E is called a lower solution of the boundary value problem (1.2) if

−α′′(t) + (M + r)cα(t) + Ncα(θ(t)) ≤ f (t, α(t), α(θ(t))), t ∈ J.

Definition 4.2. A function β ∈ E is called an upper solution of the boundary value problem (1.2) if

−β ′′(t) − (M + r)c−β(t) − Nc−β(θ(t)) ≥ f (t, β(t), β(θ(t))) t ∈ J.

Our main result is the following theorem.

Theorem 4.1. Assume that (H) holds. If the following conditions are satisfied
(H1) α, β are lower and upper solutions for boundary value problem (1.2) respectively, and α(t) ≤ β(t) on J.
(H2) The constants M, N in definition of upper and lower solutions satisfy (2.2) and (3.2) and

f (t, x, y) − f (t, x̄, ȳ) ≥ −M(x − x̄) − N(y − ȳ),

for α(t) ≤ x̄ ≤ x ≤ β(t), α(θ(t)) ≤ ȳ ≤ y ≤ β(θ(t)), t ∈ J .
Then, there exist monotone sequences {αn}, {βn} with α0 = α, β0 = β such that limn→∞ αn(t) = ρ(t), limn→∞ βn(t) =

%(t) uniformly on J, and ρ, % are the minimal and the maximal solutions of (1.2) respectively, such that

α0 ≤ α1 ≤ α2 ≤ · · · αn ≤ ρ ≤ x ≤ % ≤ βn ≤ · · · ≤ β2 ≤ β1 ≤ β0

on J, where x is any solution of (1.2) such that α(t) ≤ x(t) ≤ β(t) on J.

Proof. Let [α, β] = {u ∈ E : α(t) ≤ u(t) ≤ β(t), t ∈ J}. For any γ ∈ [α, β], we consider the boundary value problem{
−u′′(t) + Mu(t) + Nu(θ(t)) = f (t, γ (t), γ (θ(t))) + Mγ (t) + Nγ (θ(t)), t ∈ J,
u(0) − ax′(0) = cu(η), u(1) + bu′(1) = du(ξ).

(4.1)

Since α is a lower solution of (1.2), from (H2), we have that

−α′′(t) + Mα(t) + Nα(θ(t)) ≤ f (t, α(t), α(θ(t))) + Mα(t) + Nα(θ(t)) − (M + r)cα(t) − Ncα(θ(t))
≤ f (t, γ (t), γ (θ(t))) + Mγ (t) + Nγ (θ(t)) − (M + r)cα(t) − Ncα(θ(t)).

Similarly, we have that

−β ′′(t) + Mβ(t) + Nβ(θ(t)) ≥ f (t, γ (t), γ (θ(t))) + Mγ (t) + Nγ (θ(t)) + (M + r)c−β(t) + Nc−β(θ(t)).

By Theorem 3.1, the boundary value problem (4.1) has a unique solution u ∈ [α, β]. We define an operator Ψ by u = Ψ γ ,
then Ψ is an operator from [α, β] to [α, β].

We shall show that
(a) α ≤ Ψ α, Ψ β ≤ β .
(b) Ψ is nondecreasing in [α, β].
From Ψ α ∈ [α, β] and Ψ β ∈ [α, β], we have that (a) holds. To prove (b), we show that Ψ ν1 ≤ Ψ ν2 if α ≤ ν1 ≤ ν2 ≤ β .
Let ν∗

1 = Ψ ν1, ν∗

2 = Ψ ν2 and p = ν∗

1 − ν∗

2 , then by (H2) and boundary conditions, we have that

−p′′(t) + Mp(t) + Np(θ(t)) = f (t, ν1(t), ν1(θ(t))) + Mν1(t) + Nν1(θ(t))
− f (t, ν2(t), ν2(θ(t))) − Mν2(t) − Nν2(θ(t))

≤ 0,

p(0) − ap′(0) = cp(η), p(1) + pu′(1) = dp(ξ).

By Theorem 2.1, p(t) ≤ 0 on J , which implies that Ψ ν1 ≤ Ψ ν2.
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Define the sequences {αn}, {βn} with α0 = α, β0 = β such that αn+1 = Ψ αn, βn+1 = Ψ βn for n = 0, 1, 2, . . .. From
(a) and (b), we have

α0 ≤ α1 ≤ α2 ≤ · · · ≤ αn ≤ βn ≤ · · · ≤ β2 ≤ β1 ≤ β0

on t ∈ J , and each αn, βn ∈ E satisfies{
−α′′

n (t) + Mαn(t) + Nαn(θ(t)) = f (t, αn−1(t), αn−1(θ(t))) + Mαn−1(t) + Nαn−1(θ(t)), t ∈ J,
αn(0) − aα′

n(0) = cαn(η), αn(1) + bα′

n(1) = dαn(ξ).{
−β ′′

n (t) + Mβn(t) + Nβn(θ(t)) = f (t, βn−1(t), βn−1(θ(t))) + Mβn−1(t) + Nβn−1(θ(t)), t ∈ J,
βn(0) − aβ ′

n(0) = cβn(η), βn(1) + bβ ′

n(1) = dβn(ξ).

Therefore there exist ρ, % such that limn→∞ αn(t) = ρ(t), limn→∞ βn(t) = %(t) uniformly on J . Clearly, ρ, % are solutions
of (1.2).

Finally, we prove that if x ∈ [α0, β0] is any solution of (1.2), then ρ(t) ≤ x(t) ≤ %(t) on J . To this end, we assume,
without loss of generality, that αn(t) ≤ x(t) ≤ βn(t) for some n. Since α0(t) ≤ x(t) ≤ β0(t), from property (b), we can
obtain

αn+1(t) ≤ x(t) ≤ βn+1(t), t ∈ J.

Hence we can conclude that

αn(t) ≤ x(t) ≤ βn(t), for all n,

Passing to the limit as n → ∞, we obtain

ρ(t) ≤ x(t) ≤ %(t), t ∈ J.

This completes the proof. �
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