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Abstract

We study a large time behavior of a solution to the initial boundary value problem for an isentropic and
compressible viscous fluid in a one-dimensional half space. The unique existence and the asymptotic sta-
bility of a stationary solution are proved by S. Kawashima, S. Nishibata and P. Zhu for an outflow problem
where the fluid blows out through the boundary. The main concern of the present paper is to investigate
a convergence rate of a solution toward the stationary solution. For the supersonic flow at spatial infinity,
we obtain an algebraic or an exponential decay rate. Precisely, if an initial perturbation decays with the
algebraic or the exponential rate in the spatial asymptotic point, the solution converges to the corresponding
stationary solution with the same rate in time as time tends to infinity. An algebraic convergence rate is also
obtained for the transonic flow. These results are proved by the weighted energy method.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

The present paper concerns an asymptotic behavior of a solution to the initial boundary
value problem for the compressible Navier–Stokes equation in one-dimensional half space
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R+ := (0,∞). We especially study a convergence rate toward a corresponding stationary so-
lution for the problem in which fluid blows out through a boundary. An isentropic or isothermal
model of the compressible viscous fluid is formulated in the Eulerian coordinate as

ρt + (ρu)x = 0, (1.1a)

(ρu)t + (
ρu2 + p

)
x

= μuxx, (1.1b)

where the unknown functions are a mass density ρ and a fluid velocity u. A constant μ is called
a viscosity coefficient. A pressure p is given by p = p(ρ) = Kργ where K > 0 and γ � 1 are
constants. The initial condition is prescribed by

(ρ,u)(0, x) = (ρ0, u0)(x), (1.2a)

lim
x→∞(ρ0, u0)(x) = (ρ+, u+), inf

x∈R+
ρ0(x) > 0, ρ+ > 0. (1.2b)

The main concern of the present paper is a phenomena in which the gas brows out from the
boundary. This is called an outflow problem in [7]. Thus, we adopt a boundary condition

u(t,0) = ub < 0. (1.3)

Note that only one boundary condition (1.3) is necessary and sufficient for the wellposedness of
this problem since the characteristic u(t, x) of the hyperbolic equation (1.1a) is negative around
the boundary {x = 0} due to the condition (1.3).

It is shown in the paper [5] that the solution to the problem (1.1), (1.2) and (1.3) converges
to the corresponding stationary solution as time tends to infinity. Here we summarize the results
in [5]. The stationary solution (ρ̃, ũ)(x) is a solution to the system (1.1) independent of a time
variable t , satisfying the same conditions (1.2b) and (1.3). Therefore, the stationary solution
(ρ̃, ũ) satisfies the system of equations

(ρ̃ũ)x = 0, (1.4a)(
ρ̃ũ2 + p̃

)
x

= μũxx (1.4b)

and the boundary and the spatial asymptotic conditions

ũ(0) = ub, lim
x→∞(ρ̃, ũ)(x) = (ρ+, u+), inf

x∈R+
ρ̃(x) > 0, (1.5)

where p̃ := p(ρ̃). Integrating (1.4a) over (x,∞) yields

ũ = u+
v+

ṽ, (1.6)

where v := 1/ρ is called a specific volume and v+ := 1/ρ+. Due to (1.3) and (1.6), we see that

u+ = v+
ub < 0 (1.7)
v(0)
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is necessary for the existence of the stationary solution to the problem (1.4) and (1.5). Integrating
(1.4b) over (x,∞) and substituting (1.6) in the resultant equality, we get

μu+w̃x = F(w̃), (1.8)

F(w) := Kρ
γ
+
(
w−γ − 1

) + ρ+u2+(w − 1), w̃(x) := ũ(x)

u+
= ρ+

ρ̃(x)
. (1.9)

Let c+ and M+ be a sound speed and a Mach number at the spatial asymptotic states, respectively.
Then they are given by

c+ := √
p′(ρ+) =

√
γKρ

γ−1
+ , M+ := |u+|

c+
. (1.10)

If M+ > 1, the equation F(w) = 0 has the distinct two roots w = 1 and w = wc satisfying
wc < 1. If M+ = 1, the equation F(w) = 0 admits only one root w = wc = 1. The asymptotic
stability of the stationary solution is discussed in the function space X(0, T ) defined by

X(0, T ) := {
(ϕ,ψ);ϕ ∈ B1+σ/2,1+σ

T , ψ ∈ B1+σ/2,2+σ
T , (ϕ,ψ) ∈ C

([0, T ];H 1(R+)
)
,

ϕx ∈ L2(0, T ;L2(R+)
)
, ψx ∈ L2(0, T ;H 1(R+)

)}
.

Proposition 1.1. (See [5].) Assume that the conditions (1.3) and (1.7) hold.

(i) (Existence) The boundary value problem (1.4) and (1.5) has a unique smooth solution (ρ̃, ũ)

if and only if M+ � 1 and wcu+ > ub. If M+ > 1, there exist positive constants λ and C such
that the stationary solution satisfies the estimate

∣∣∂k
x

(
ρ̃(x) − ρ+, ũ(x) − u+

)∣∣ � CδSe−λx for k = 0,1,2, . . . , (1.11a)

where δS := |ub − u+|. If M+ = 1, the stationary solution satisfies

∣∣∂k
x

(
ρ̃(x) − ρ+, ũ(x) − u+

)∣∣ � C
δS

k+1

(1 + δSx)k+1
for k = 0,1,2, . . . , (1.11b)

where C is a positive constant.
(ii) (Stability) Suppose that M+ � 1 and wcu+ > ub hold. In addition, the initial data (ρ0, u0)

is supposed to satisfy

(ρ0 − ρ̃, u0 − ũ) ∈ H 1(R+), (ρ0, u0) ∈ B1+σ (R+) ×B2+σ (R+) (1.12)

for a certain constant σ ∈ (0,1). Then there exists a positive constant ε0 such that if
‖(ρ0 − ρ̃, u0 − ũ)‖1 + δS < ε0 the initial boundary value problem (1.1), (1.2) and (1.3)
has a unique solution (ρ,u) satisfying (ρ − ρ̃, u − ũ) ∈ X(0, T ) for an arbitrary T > 0.
Moreover, the solution (ρ,u) converges to the stationary solution (ρ̃, ũ) as time tends to
infinity: limt→∞ ‖(ρ,u)(t) − (ρ̃, ũ)‖∞ = 0.
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The main purpose of the present paper is to investigate the convergence rate of the solution
(ρ,u) toward the stationary solution (ρ̃, ũ) under the assumption that the initial perturbation
decays exponentially or algebraically fast in the spatial direction.

Theorem 1.2. Suppose that the same assumptions as in (ii) of Proposition 1.1 hold.

(i) Suppose that M+ > 1 holds. If the initial data satisfies (1 + x)α/2(ρ0 − ρ̃), (1 + x)α/2(u0 −
ũ) ∈ L2(R+) for a certain positive constant α, then the solution (ρ,u) to (1.1), (1.2) and
(1.3) satisfies the decay estimate

∥∥(ρ,u)(t) − (ρ̃, ũ)
∥∥∞ � C(1 + t)−α/2. (1.13)

On the other hand, if the initial data satisfies e(ζ/2)x(ρ0 − ρ̃), e(ζ/2)x(u0 − ũ) ∈ L2(R+) for
a certain positive constant ζ , then there exists a positive constant α such that the solution
(ρ,u) to (1.1), (1.2) and (1.3) satisfies

∥∥(ρ,u)(t) − (ρ̃, ũ)
∥∥∞ � Ce−αt . (1.14)

(ii) Suppose that M+ = 1 holds. There exists a positive constant ε0 such that if the initial data
satisfies ‖(1 + x)α/2(ρ0 − ρ̃, u0 − ũ)‖1 < ε0 for a certain constant α satisfying α ∈ [2, α∗),
where α∗ is a constant defined by

α∗(α∗ − 2) = 4

γ + 1
and α∗ > 0, (1.15)

then the solution (ρ,u) to (1.1), (1.2) and (1.3) satisfies

∥∥(ρ,u)(t) − (ρ̃, ũ)
∥∥∞ � C(1 + t)−α/4. (1.16)

Remark 1.3. We see that the convergence rate (1.16) for the transonic flow is not as fast as
the supersonic flow. Moreover, we assume the condition α < α∗, which is necessary for the
derivation of the weighted estimate (2.48). Also, this type of assumption is used in [8] for the
analysis of the convergence rate toward the traveling wave for a scalar viscous conservation law.
It is still open problem whether the assumption α < α∗ can be removed or not.

Related results. After the work [1] by Il’in and Oleinik, there are many researches which
consider the stability of nonlinear waves. For example, Liu, Matsumura and Nishihara in [6]
study the half space problem for the viscous conservation laws. For the one-dimensional half
space problem to the compressible Navier–Stokes equation, Matsumura in [7] expects that the
asymptotic states of the solutions are classified into more than twenty cases subject to the bound-
ary condition and the spatial asymptotic data. Several problems in this classification have been
already studied. For example, Matsumura and Nishihara in [9] consider the case when the as-
ymptotic state becomes one of stationary solutions, rarefaction waves and superposition of them
for the inflow problem. The research [5] by Kawashima, Nishibata and Zhu shows the asymp-
totic stability of the stationary solution for the outflow problem. Following [5], the present paper
investigates the convergence rate toward the stationary solution for the outflow problem.
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For the multi-dimensional half space problem, Kagei and Kawashima in [2] study the outflow
problem and prove the asymptotic stability of a planar stationary wave. Recently, the authors
have obtained the convergence rate for this problem. This result also will be published soon.

Outline of the paper. The remainder of the present paper is organized as follows. In Section 2,
we begin detailed discussion with a reformulation of the problem (1.1), (1.2) and (1.3) to that for
the perturbation from the stationary solution. Then we derive the weighted a priori estimate of
the perturbation, which yields the convergence rate toward the stationary solution. In Section 2.1,
we consider the supersonic flow. In this case, the algebraic or the exponential rate is obtained,
subject to the decay rate of the initial perturbation in the spatial direction in the L2 norm. The
proof is mainly based on the weighted L2 energy method. In Section 2.2, we obtain the algebraic
rate for the transonic flow. Here we need to derive the weighted H 1 a priori estimate.

Notations. For a non-negative integer l � 0, Hl(R+) denotes the lth order Sobolev space over
R+ in the L2 sense with the norm ‖ · ‖l . We note H 0 = L2 and ‖ · ‖ := ‖ · ‖0. The norm ‖ · ‖∞
means the L∞-norm over R+. For α ∈ (0,1), Bk+α(R+) denotes the Hölder space of bounded
functions over R+ which have the kth order derivatives of Hölder continuity with exponent α.
Its norm is | · |k+α . For a domain QT ⊆ [0, T ] × R+, Bα,β(QT ) denotes the space of the Hölder
continuous functions with the Hölder exponents α and β with respect to t and x, respectively.
For integers k and l, Bk+α,l+β(QT ) denotes the space of the functions satisfying ∂i

t u, ∂
j
x u ∈

Bα,β(QT ) for arbitrary integers i ∈ [0, k] and j ∈ [0, l]. We abbreviate Bk+α,l+β([0, T ] × R+)

by Bk+α,l+β
T .

2. A priori estimate

In this section, we derive the a priori estimate of the solution in the H 1 Sobolev space. To this
end, we define the perturbation (ϕ,ψ) from the stationary solution as

(ϕ,ψ)(t, x) = (ρ,u)(t, x) − (ρ̃, ũ)(x). (2.1)

Due to (1.1) and (1.4), we have the system of equations for (ϕ,ψ) as

ϕt + uϕx + ρψx = −(ũxϕ + ρ̃xψ), (2.2a)

ρψt + ρuψx + p′(ρ)ϕx − μψxx = −(ϕψ + ũϕ + ρ̃ψ)ũx − (
p′(ρ) − p′(ρ̃)

)
ρ̃x . (2.2b)

The initial and the boundary conditions to (2.2) are derived from (1.2a), (1.3) and (1.5) as

(ϕ,ψ)(0, x) = (ϕ0,ψ0)(x) := (ρ0, u0)(x) − (ρ̃, ũ)(x), (2.3)

ψ(t,0) = 0. (2.4)

The uniform bound of the solutions in the weighted Sobolev space is derived later. For this
purpose, we introduce function spaces Xω(0, T ) and X1

ω(0, T ) defined by

Xω(0, T ) := {
(ϕ,ψ) ∈ X(0, T ); (√ωϕ,

√
ωψ) ∈ C

([0, T ];L2(R+)
)}

,

X1
ω(0, T ) := {

(ϕ,ψ) ∈ X(0, T ); (√ωϕ,
√

ωψ) ∈ C
([0, T ];H 1(R+)

)}
.
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Here the two types of weight functions are considered:

ω(x) := (1 + x)α or ω(x) := eαx.

Also we use the norms | · |2,ω , ‖ · ‖a,α and ‖ · ‖e,α defined by

|f |2,ω :=
{ ∞∫

0

ω(x)f (x)2 dx

}1/2

, ‖f ‖a,α := |f |2,(1+x)α , ‖f ‖e,α := |f |2,eαx .

The following lemma, concerning the existence of the solution locally in time, is proved by the
standard iteration method. Hence we omit the proof.

Lemma 2.1. If the initial data satisfies (1.12) and
√

ω(ρ0 − ρ̃),
√

ω(u0 − ũ) ∈ L2(R+), there
exists a positive constant T depending only on |ρ0|1+σ and |u0|2+σ such that the initial bound-
ary value problem (2.2), (2.3) and (2.4) has a unique solution (ρ,u) ∈ Xω(0, T ). Moreover, if
the initial data satisfies (1.12) and

√
ω(ρ0 − ρ̃),

√
ω(u0 − ũ) ∈ H 1(R+), there exists a unique

solution (ϕ,ψ) in X1
ω(0, T ).

2.1. Supersonic flow

In this subsection, we derive the weighted energy estimate of the solution for the case when
M+ > 1 holds. To summarize the a priori estimate, we use the following notations for a weight
function W(t, x) = χ(t)ω(x) until the end of this subsection:

N(t) := sup
0�τ�t

∥∥(ϕ,ψ)(τ )
∥∥

1, (2.5)

M(t)2 :=
t∫

0

χ(τ)
(∥∥ϕx(τ)

∥∥2 + ∥∥ψx(τ)
∥∥2

1 + ϕ(τ,0)2)dτ, (2.6)

L(t)2 :=
t∫

0

χt (τ )
(∣∣(ϕ,ψ)(τ )

∣∣2
2,ω

+ ∥∥(ϕx,ψx)(τ )
∥∥2)

+ χ(τ)
(∣∣ψ(τ)

∣∣2
2,ωxx

+ ∣∣(ϕ,ψ)(τ )
∣∣2
2,|ũx |ω

)
dτ. (2.7)

Proposition 2.2. Suppose that the same assumptions as in (ii) of Proposition 1.1 hold.

(i) (Algebraic decay) Suppose that (ϕ,ψ) ∈ X(1+x)α (0, T ) is a solution to (2.2), (2.3) and (2.4)
for certain positive constants α and T . Then there exist positive constants ε0 and C such
that if N(T ) + δS < ε0, then the solution (ϕ,ψ) satisfies the estimate

(1 + t)α+ε
∥∥(ϕ,ψ)(t)

∥∥2
1 +

t∫
(1 + τ)α+ε

(∥∥ϕx(τ)
∥∥2 + ∥∥ψx(τ)

∥∥2
1

)
dτ
0
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+
t∫

0

(1 + τ)α+ε
∣∣(ϕ,ϕx)(τ,0)

∣∣2
dτ

� C
(∥∥(ϕ0,ψ0)

∥∥2
1 + ∥∥(ϕ0,ψ0)

∥∥2
a,α

)
(1 + t)ε (2.8)

for arbitrary t ∈ [0, T ] and ε > 0.
(ii) (Exponential decay) Suppose that (ϕ,ψ) ∈ Xeζx (0, T ) is a solution to (2.2), (2.3) and (2.4)

for certain positives ζ and T . Then there exist positive constants ε0, C, β (< ζ) and α

satisfying α 
 β such that if N(T ) + δS < ε0, then the solution (ϕ,ψ) satisfies

eαt
(∥∥(ϕ,ψ)(t)

∥∥2
1 + ∥∥(ϕ,ψ)(t)

∥∥2
e,β

) +
t∫

0

eατ
∣∣(ϕ,ϕx)(τ,0)

∣∣2
dτ

+
t∫

0

eατ
(∥∥ϕx(τ)

∥∥2 + ∥∥ψx(τ)
∥∥2

1

)
dτ +

t∫
0

eατ
(∥∥(ϕ,ψ)(τ )

∥∥2
e,β + ‖ψx(τ)

∥∥2
e,β

)
dτ

� C
(∥∥(ϕ0,ψ0)

∥∥2
1 + ∥∥(ϕ0,ψ0)

∥∥2
e,β

)
. (2.9)

To prove Proposition 2.2, we first derive the basic energy estimate. To this end, we define an
energy form E , as in [5], by

E := 1

2
ψ2 + Kρ̃γ−1Φ

(
ρ̃

ρ

)
, Φ(s) := s − 1 −

s∫
1

η−γ dη. (2.10)

Owing to Proposition 1.1, we see that the energy form E is equivalent to |(ϕ,ψ)|2. Namely, there
exist positive constants c and C such that

c
(
ϕ2 + ψ2) � E � C

(
ϕ2 + ψ2). (2.11)

We also have positive bounds of ρ as

0 < c � ρ(t, x) � C (2.12)

for (t, x) ∈ [0, T ] × R+.

Lemma 2.3. Suppose that the same assumptions as in Theorem 1.2 hold. Then there exists a
positive constant ε0 such that if N(T ) + δS < ε0, it holds that

χ(t)
∣∣(ϕ,ψ)(t)

∣∣2
2,ω

+
t∫

0

χ(τ)
(∣∣(ϕ,ψ)(τ )

∣∣2
2,ωx

+ ∣∣ψx(τ)
∣∣2
2,ω

+ ϕ(τ,0)2)dτ

� C
∣∣(ϕ0,ψ0)

∣∣2
2,ω

+ CL(t)2. (2.13)
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Proof. Multiplying (2.2b) by ψ , we see that the energy form satisfies the equality

(ρE)t − G1x + μψ2
x = (μψψx)x + R0, (2.14)

G1 := −ρuE − (
p(ρ) − p(ρ̃)

)
ψ, (2.15)

R0 := −{
(ρu − ρ̃ũ)ψ + p(ρ) − p(ρ̃) − p′(ρ̃)ϕ

}
ũx − 1

ρ̃
ϕψp(ρ̃)x.

Here, the positive bound of ρ (2.12) and the Schwarz inequality yield the estimate for R0 as

|R0| � C|ũx |
(
ϕ2 + ψ2). (2.16)

Multiplying (2.14) by a weight function W(t, x) = χ(t)ω(x), we have

(WρE)t − (WG1)x + WxG1 + μWψ2
x

= WtρE +
(

μWψψx − μ

2
Wxψ

2
)

x

+ μ

2
Wxxψ

2 + WR0. (2.17)

Due to the boundary conditions (1.3) and (2.4), the integration of the second term on the left-hand
side of (2.17) over R+ is estimated from below as

∞∫
0

{
WρuE + W

(
p − p(ρ̃)

)
ψ

}
x
dx = −χ(t)ρ(t,0)ubE(t,0) � cχ(t)ϕ(t,0)2, (2.18)

where we have used the estimates (2.11) and (2.12). The third term on the left-hand side of (2.17)
is computed as

G1 = F1(ϕ,ψ) + R1,

F1(ϕ,ψ) := Kγρ
γ−2
+ |u+|
2

ϕ2 + ρ+|u+|
2

ψ2 − Kγρ
γ−1
+ ϕψ,

R1 := −Kγρ+u+
2ρ2

(
ρ̃γ−1 − ρ

γ−3
+ ρ2)ϕ2 − Kρ+u+ρ̃γ−1

{
Φ

(
ρ̃

ρ

)
− γ

2

(
ρ̃

ρ
− 1

)2}

− Kγ
(
ρ̃γ−1 − ρ

γ−1
+

)
ϕψ − Kρ̃γ

{(
ρ

ρ̃

)γ

− 1 − γ

(
ρ

ρ̃
− 1

)}
ψ − (ρu − ρ+u+)E .

(2.19)

The condition M+ > 1 yields that the quadratic form F1(ϕ,ψ) is positive definite since

F1(ϕ,ψ) =
(

p′(ρ+)3/2

2ρ+
ϕ2 + ρ+

√
p′(ρ+)

2
ψ2

)
(M+ − 1) +

√
p′(ρ+)

2ρ+
(√

p′(ρ+)ϕ − ρ+ψ
)2

� c
(
ϕ2 + ψ2). (2.20)

Utilizing (1.11), (2.11) and the inequalities
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∣∣∣∣Φ(s) − γ

2
(s − 1)2

∣∣∣∣ � C|s − 1|3, ∣∣sγ − 1 − γ (s − 1)
∣∣ � C|s − 1|2 (2.21)

for |s − 1| 
 1, we have the estimate for R1 as

|R1| � C
(
N(t) + δS

)(
ϕ2 + ψ2). (2.22)

Therefore, integrating (2.17) over R+ × (0, t), substituting (2.16), (2.18), (2.20) and (2.22) in
the resultant equality, and then taking N(T ) + δS suitably small, we obtain the desired estimate
(2.13). �

Next, we obtain the estimate for the first order derivatives of the solution (ϕ,ψ). As the
existence of the higher order derivatives of the solution is not supposed, we need to use the
difference quotient for the rigorous derivation of the higher order estimates. Since the argument
using the difference quotient is similar to that in the paper [5], we omit the details and proceed
with the proof as if it verifies

(ϕ,ψ) ∈ C
([0, T ];H 2(R+)

)
, ϕx ∈ L2(0, T ;H 1(R+)

)
, ψx ∈ L2(0, T ;H 2(R+)

)
.

Lemma 2.4. There exists a positive constant ε0 such that if N(T ) + δS < ε0, then

χ(t)
∥∥ϕx(t)

∥∥2 +
t∫

0

χ(τ)
(∥∥ϕx(τ)

∥∥2 + ϕx(τ,0)2)dτ

� C
(‖ϕ0x‖2 + ∣∣(ϕ0,ψ0)

∣∣2
2,ω

) + CL(t)2 + C
(
N(t) + δS

)
M(t)2. (2.23)

Proof. Differentiating (2.2a) in x and multiplying the resultant equality by ϕx yield

(
1

2
ϕ2

x

)
t

+
(

1

2
uϕ2

x

)
x

= −ρψxxϕx + R2,

R2 := 1

2
uxϕ

2
x − ϕx(2ϕxψx + 2ũxϕx + 2ρ̃xψx + ũxxϕ + ρ̃xxψ). (2.24)

On the other hand, multiplying (2.2b) by ρϕx gives

(
ρ2ϕxψ

)
t
− (

ρ2ϕtψ
)
x

+ ρp′(ρ)ϕ2
x = μρψxxϕx + R3,

R3 := −(
2ρρ̃xψ − ρ2ψx

)
ϕt − ρ2uϕxψx − ρũx(ϕψ + ũϕ + ρ̃ψ)ϕx − ρρ̃x

(
p′(ρ) − p′(ρ̃)

)
ϕx.

(2.25)

Multiply (2.24) by μ and add the resultant equality to (2.25). Then we have

(
μ

2
ϕ2

x + ρ2ϕxψ

)
t

+
(

μ

2
uϕ2

x − ρ2ϕtψ

)
x

+ ρp′(ρ)ϕ2
x = μR2 + R3. (2.26)

Owing to the Schwarz inequality with the aid of (1.11), the right-hand side of (2.26) is estimated
as
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|μR2 + R3| � (ε + CδS)ϕ2
x + Cε

(
ψ2

x + |ψx |ϕ2
x

) + Cε|ũx |
(
ϕ2 + ψ2) (2.27)

for an arbitrary positive constant ε, where Cε is a positive constant depending on ε. Multiplying
(2.26) by a weight function χ = χ(t), we have

{
χ

(
μ

2
ϕ2

x + ρ2ϕxψ

)}
t

+
{
χ

(
μ

2
uϕ2

x − ρ2ϕtψ

)}
x

+ ρp′(ρ)χϕ2
x

= χt

(
μ

2
ϕ2

x + ρ2ϕxψ

)
+ χ(μR2 + R3). (2.28)

The boundary condition (1.3) gives the lower estimate of the integration of the second term on
the left-hand side of (2.28) as

∞∫
0

{
χ

(
μ

2
uϕ2

x − ρ2ϕtψ

)}
x

dx � cχ(t)ϕx(t,0)2. (2.29)

Integrate (2.28) over R+ × (0, t), substitute (2.27), (2.29) and the estimate

∞∫
0

|ψx |ϕ2
x dx � C‖ψx‖1‖ϕx‖2 � CN(t)

∥∥(ϕx,ψx,ψxx)
∥∥2 (2.30)

in the resultant equality, and take ε and δS suitably small. These computations together with
(2.13) give the desired estimate (2.23). �
Lemma 2.5. There exists a positive constant ε0 such that if N(T ) + δS < ε0, then

χ(t)
∥∥ψx(t)

∥∥2 +
t∫

0

χ(τ)
∥∥ψxx(τ )

∥∥2
dτ

� C
(∥∥(ϕ0x,ψ0x)

∥∥2 + ∣∣(ϕ0,ψ0)
∣∣2
2,ω

) + CL(t)2 + C
(
N(t) + δS

)
M(t)2. (2.31)

Proof. Multiplying (2.2b) by −ψxx gives

(
1

2
ρψ2

x

)
t

− (ρψxψt )x + μψ2
xx = R4, (2.32)

R4 := −ρxψxψt + 1

2
ρtψ

2
x + ρuψxψxx + p′(ρ)ϕxψxx + (ρu − ρ̃ũ)ũxψxx

+ (
p′(ρ) − p′(ρ̃)

)
ρ̃xψxx. (2.33)

Note that the function R4 is estimated by using (2.2b) and (1.11) as

|R4| � εψ2
xx + Cε

(
ϕ2

x + ψ2
x + ψ4

x + ϕ2
xψ

2
x

) + Cε|ũx |
(
ϕ2 + ψ2), (2.34)
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where ε is an arbitrary positive constant and Cε is a positive constant depending on ε. Multiplying
(2.32) by a weight function χ(t), we get

(
1

2
χρψ2

x

)
t

− (χρψxψt )x + μχψ2
xx = 1

2
χtρψ2

x + χR4. (2.35)

Integrating (2.35) over R+ × (0, t), substituting (2.13), (2.23) and (2.34) as well as the estimate

∞∫
0

ψ4
x + ϕ2

xψ2
x dx � C‖ψx‖2

1

∥∥(ϕx,ψx)
∥∥2 � CN(t)

∥∥(ψx,ψxx)
∥∥2 (2.36)

in the resultant equality and then letting ε sufficiently small, we obtain the desired estimate
(2.31). �
Proof of Proposition 2.2. Summing up the estimates (2.13), (2.23) and (2.31) and taking
N(T ) + δS suitably small, we have

χ(t)
(∥∥(ϕx,ψx)

∥∥2 + ∣∣(ϕ,ψ)
∣∣2
2,ω

) +
t∫

0

χ(τ)
∣∣(ϕ,ϕx)(τ,0)

∣∣2
dτ

+
t∫

0

χ(τ)
(∣∣(ϕ,ψ)(τ )

∣∣2
2,ωx

+ ∥∥ϕx(τ)
∥∥2 + ∣∣ψx(τ)

∣∣2
2,ω

+ ∥∥ψxx(τ )
∥∥2)

dτ

� C
(∥∥(ϕ0x,ψ0x)

∥∥2 + ∣∣(ϕ0,ψ0)
∣∣2
2,ω

) + CL(t)2. (2.37)

First, we prove the estimate (2.8). Owing to the Poincaré type inequality

∣∣ϕ(t, x)
∣∣ �

∣∣ϕ(t,0)
∣∣ + √

x
∥∥ϕx(t)

∥∥ (2.38)

which is proved by the similar computation as in [4,10], substituting ω(x) = (1+x)β and χ(t) =
(1 + t)ξ in (2.37) for β ∈ [0, α] and ξ � 0 gives

(1 + t)ξ
(∥∥(ϕ,ψ)(t)

∥∥2
1 + ∥∥(ϕ,ψ)(t)

∥∥2
a,β

) +
t∫

0

(1 + τ)ξ
∣∣(ϕ,ϕx)(τ,0)

∣∣2
dτ

+
t∫

0

(1 + τ)ξ
(
β
∥∥(ϕ,ψ)

∥∥2
a,β−1 + ‖ψx‖2

a,β + ∥∥(ϕx,ψxx)
∥∥2)

dτ

� C
(∥∥(ϕ0,ψ0)

∥∥2
1 + ∥∥(ϕ0,ψ0)

∥∥2
a,β

) + Cβ(β − 1)

t∫
(1 + τ)ξ‖ψ‖2

a,β−2 dτ
0
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+ Cξ

t∫
0

(1 + τ)ξ−1(∥∥(ϕ,ψ)
∥∥2

a,β + ∥∥(ϕx,ψx)
∥∥2)

dτ. (2.39)

Therefore, applying an induction to (2.39) gives the desired estimate (2.8). Since this computa-
tion is similar those in [3,8,11], we omit the details.

Next, we prove the estimate (2.9). Substitute ω(x) = eβx and χ(t) = eαt in (2.37) for β < λ

to obtain

eαt
(∥∥(ϕ,ψ)(t)

∥∥2
e,β + ∥∥(ϕx,ψx)(t)

∥∥2) +
t∫

0

eατ
∣∣(ϕ,ϕx)(τ,0)

∣∣2
dτ

+
t∫

0

eατ
(
β
∥∥(ϕ,ψ)(τ )

∥∥2
e,β + ∥∥(ϕx,ψxx)(τ )

∥∥2 + ∥∥ψx(τ)
∥∥2

e,β

)
dτ

� C
(∥∥(ϕ0,ψ0)

∥∥2
e,β + ∥∥(ϕ0x,ψ0x)

∥∥2) + C
(
α + β2) t∫

0

eατ
∥∥(ϕ,ψ)(τ )

∥∥2
e,β dτ

+ Cα

t∫
0

eατ
∥∥(ϕx,ψx)(τ )

∥∥2
dτ + CδS

t∫
0

eατ
(
ϕ(τ,0)2 + ∥∥(ϕx,ψx)(τ )

∥∥2)
dτ. (2.40)

Here, we have used the Poincaré type inequality (2.38) again. Thus, taking δS, β and α suitably
small, we obtain the desired a priori estimate (2.9). �
2.2. Transonic flow

This subsection is devoted to prove the algebraic decay estimate for the transonic case M+ = 1
in Theorem 1.2. To state the a priori estimate of the solution precisely, we use the notations:

N1(t) := sup
0�τ�t

∥∥(
(1 + x)α/2ϕ, (1 + x)α/2ψ

)
(τ )

∥∥
1,

M1(t)
2 :=

t∫
0

(1 + τ)ξ
∥∥(ϕx,ψx,ψxx)(τ )

∥∥2
a,β dτ.

Proposition 2.6. Suppose that the same assumptions as in (ii) of Proposition 1.1 hold. Let
(ϕ,ψ) ∈ X1

(1+x)α (0, T ) be a solution to (2.2), (2.3) and (2.4) for certain positive constants T

and α ∈ [2, α∗), where α∗ is defined in (1.15). Then there exist positive constants ε0 and C such
that if N1(T ) + δS < ε0, then the solution (ϕ,ψ) satisfies the estimate

(1 + t)α/2+ε
∥∥(ϕ,ψ)

∥∥2
1 +

t∫
(1 + τ)α/2+ε

∣∣(ϕ,ϕx)(τ,0)
∣∣2

dτ
0
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+
t∫

0

(1 + τ)α/2+ε
(‖ϕx‖2 + ‖ψx‖2

1

)
dτ

� C
∥∥(ϕ0,ψ0, ϕ0x,ψ0x)

∥∥2
a,α(1 + t)ε. (2.41)

In order to prove Proposition 2.6, we need to get a lower estimate for ũx .

Lemma 2.7. The stationary solution ũ(x) satisfies

ũx(x) � A

(
u+
ub

)γ+2 δ2
S

(1 + Bx)2
,

A := (γ + 1)ρ+
2μ

, B := δSA (2.42)

for x ∈ (0,∞).

Proof. Since we have F(1) = F ′(1) = 0 and 1 < w̃ < ub/u+, the function F(w̃) defined in (1.9)
satisfies

γ + 1

2
c2+ρ+

(
u+
ub

)γ+2

(w̃ − 1)2 � F(w̃) � γ + 1

2
c2+ρ+(w̃ − 1)2. (2.43)

Substituting the equality F(w̃) = μu+(w̃ − 1)x in (2.43) and solving the resultant differential
inequality with respect to w̃ − 1 yield

δS

|u+|
1

1 + Bx
� w̃(x) − 1 � δS

|u+|
1

1 + (u+/ub)γ+2Bx
. (2.44)

Then, substituting (2.44) in (2.43) with the aid of (1.8) gives the desired estimate (2.42). �
We also need the estimate for the Mach number M̃ on the stationary solution (ρ̃, ũ) defined

by

M̃(x) := |ũ(x)|√
p′(ρ̃(x))

. (2.45)

Lemma 2.8. There exists a positive constant C such that

γ + 1

2|u+|
δS

1 + Bx
− C

δ2
S

(1 + Bx)2
� M̃(x) − 1 � C

δS

1 + Bx
. (2.46)

Proof. Owing to M+ = 1 and (1.6), we see that the equality

M̃ − 1 = w̃(γ+1)/2 − 1 = γ + 1
(w̃ − 1) + (γ + 1)(γ − 1)

η(γ−3)/2(w̃ − 1)2 (2.47)

2 8
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holds for a certain η ∈ (1, w̃). Substituting (2.44) in (2.47) immediately yields the desired esti-
mate (2.46). �

By using Lemmas 2.7 and 2.8, we obtain the weighted L2 estimate of (ϕ,ψ).

Lemma 2.9. There exists a positive constant ε0 such that if N1(T ) + δS < ε0, then

(1 + t)ξ
∥∥(ϕ,ψ)

∥∥2
a,β +

t∫
0

(1 + τ)ξ
(
ϕ(τ,0)2 + βδ2

S

∥∥(ϕ,ψ)
∥∥2

a,β−2 + ‖ψx‖2
a,β

)
dτ

� C
∥∥(ϕ0,ψ0)

∥∥2
a,β + Cξ

t∫
0

(1 + τ)ξ−1
∥∥(ϕ,ψ)

∥∥2
a,β dτ + CδS

t∫
0

(1 + τ)ξ‖ϕx‖2 dτ (2.48)

for β ∈ [0, α] and ξ � 0.

Proof. The equality (2.17) is written to

(WρE)t +
(

−WG1 − μWψψx + μ

2
Wxψ

2
)

x

+ μWψ2
x + WxG1 + G2

= WtρE − μ

ρ̃
Wũxxϕψ,

G2 := Wũx

(
ρψ2 + (

p(ρ) − p(ρ̃) − p′(ρ̃)ϕ
)) − μ

2
Wxxψ

2, (2.49)

where G1 is defined in (2.15) and W := (1 + Bx)β(1 + t)ξ . By the same computation as in
deriving (2.19), we rewrite the terms G1 and G2 to

G1 = F2 + R5, G2 = F3 + R6,

F2 :=
(

p′(ρ+)3/2

2ρ+
ϕ2 + ρ+

√
p′(ρ+)

2
ψ2

)
(M̃ − 1) + p′(ρ̃)

2ρ̃

(√
p′(ρ̃)ϕ − ρ̃ψ

)2
,

R5 := − ρ̃p′(ρ̃)ũ

2

(
1

ρ2
− 1

ρ̃2

)
ϕ2 − p(ρ̃)ũ

(
Φ

(
ρ̃

ρ

)
− γ

2

(
ρ̃

ρ
− 1

)2)

− (ρu − ρ̃ũ)E − (
p(ρ) − p(ρ̃) − p′(ρ̃)ϕ

)
ψ

+
{(

p′(ρ̃)3/2

2ρ̃
− p′(ρ+)3/2

2ρ+

)
ϕ2 +

(
ρ̃
√

p′(ρ̃)

2
− ρ+

√
p′(ρ+)

2

)
ψ2

}
(M̃ − 1),

F3 := Wũx

(
ρ+ψ2 + 1

2
p′′(ρ+)ϕ2

)
− μ

2
Wxxψ

2,

R6 := Wũx

{
(ρ − ρ+)ψ2 + 1

2

(
p′′(ρ̃) − p′′(ρ+)

)
ϕ2

}

+ Wũx

(
p(ρ) − p(ρ̃) − p′(ρ̃)ϕ − 1

p′′(ρ̃)ϕ2
)

. (2.50)

2
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By utilizing Lemmas 2.7 and 2.8 with the aid of the fact that β < α∗, we obtain the lower estimate
of WxF2 + F3 as

WxF2 + F3 �
Kγρ

γ−2
+ A

4

{
(γ + 1)β + 2

(
u+
ub

)γ+2

(γ − 1)

}
δ2

S(1 + t)ξ (1 + Bx)β−2ϕ2

+ ρ+A

4

{
4

(
u+
ub

)γ+2

− (γ + 1)β(β − 2)

}
δ2

S(1 + t)ξ (1 + Bx)β−2ψ2

− Cβδ3
S(1 + t)ξ (1 + Bx)β−3(ϕ2 + ψ2)

� cδ2
S(1 − CδS)(1 + t)ξ (1 + Bx)β−2(ϕ2 + ψ2) (2.51)

for β ∈ (0, α]. On the other hand, the estimates (1.11), (2.21) and (2.46) yield

|WxR5 + R6| � C
(
N1(t) + δ2

S

)
δS(1 + t)ξ (1 + Bx)β−2(ϕ2 + ψ2). (2.52)

Finally, integrate (2.49) over R+ × (0, t), substitute (2.51) and (2.52) in the resultant equality,
and take N1(t) and δS suitably small to satisfy N1(t) 
 δ2

S and δS 
 1. This procedure yields the
desired estimate (2.48) for β ∈ (0, α].

Next, we prove (2.48) for β = 0. Substituting W = (1 + t)ξ in (2.49) and integrating the
resultant equality over R+ × (0, t), we get

(1 + t)ξ
∥∥(ϕ,ψ)(t)

∥∥2 +
t∫

0

(1 + τ)ξ
(
ϕ(τ,0)2 + ‖ψx‖2)dτ

� C
∥∥(ϕ0,ψ0)

∥∥2 + Cξ

t∫
0

(1 + τ)ξ−1
∥∥(ϕ,ψ)

∥∥2
dτ

+ C

t∫
0

(1 + τ)ξ

∞∫
0

|ũxxϕψ |dx dτ. (2.53)

Here, we have used the fact that G2 � 0 holds. Applying the Poincaré type inequality (2.38) to
the third term on the right-hand side of (2.53) with the aid of (1.11b), we obtain the estimate
(2.48) for the case of β = 0. �

In order to complete the proof of Proposition 2.6, we need to obtain the weighted estimate of
(ϕx,ψx).

Lemma 2.10. There exists a positive constant ε0 such that if N1(T ) + δS < ε0, then

(1 + t)ξ
∥∥(ϕx,ψx)

∥∥2
a,β +

t∫
(1 + τ)ξ

(
ϕx(τ,0)2 + ∥∥(ϕx,ψxx)(τ )

∥∥2
a,β

)
dτ
0
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� C
∥∥(ϕ0,ψ0, ϕ0x,ψ0x)

∥∥2
a,β + Cξ

t∫
0

(1 + τ)ξ−1
∥∥(ϕ,ψ,ϕx,ψx)(τ )

∥∥2
a,β dτ (2.54)

for β ∈ [0, α] and ξ � 0.

Proof. Since the derivation of the estimate (2.54) is similar to that of (2.23) and (2.31), we only
give the outline of the proof. Multiplying (2.26) by W = (1 + Bx)β(1 + t)ξ , we have

{
W

(
μ

2
ϕ2

x + ρ2ϕxψ

)}
t

+
{
W

(
μ

2
uϕ2

x − ρ2ϕtψ

)}
x

+ ρp′(ρ)Wϕ2
x

= Wt

(
μ

2
ϕ2

x + ρ2ϕxψ

)
+ Wx

(
μ

2
uϕ2

x − ρ2ϕtψ

)
+ W(μR2 + R3). (2.55)

Integrating (2.55) over R+ × (0, t) and substituting (2.48) gives the estimate for ϕx as

(1 + t)ξ‖ϕx‖2
a,β +

t∫
0

(1 + τ)ξ
(
ϕx(τ,0)2 + ‖ϕx‖2

a,β

)
dτ

� C
∥∥(ϕ0,ψ0, ϕ0x)

∥∥2
a,β + Cξ

t∫
0

(1 + τ)ξ−1
∥∥(ϕ,ψ,ϕx)

∥∥2
a,β dτ

+ C
(
N1(t) + δS

)
M1(t)

2. (2.56)

Here, we have used the inequalities

{
(1 + Bx)β

}
x

∣∣∣∣μ2 uϕ2
x − ρ2ϕtψ

∣∣∣∣ � CδS(1 + Bx)βϕ2
x + C(1 + Bx)βψ2

x

+ Cβ(1 + Bx)β−2(ϕ2 + ψ2), (2.57)

(1 + Bx)β |μR2 + R3| � (ε + CδS)(1 + Bx)βϕ2
x + Cε(1 + Bx)β

(
ψ2

x + |ψx |ϕ2
x

)
+ CεδS(1 + Bx)β−4(ϕ2 + ψ2), (2.58)

where ε an arbitrary positive constant. We note that the third term on the right-hand side of (2.58)
is estimated by applying Poincaré type inequality (2.38) for the case of β = 0. In deriving (2.56),
we have also used the estimate for |ψx |ϕ2

x as

∞∫
0

(1 + Bx)β |ψx |ϕ2
x dx � C‖ψx‖1‖ϕx‖2

a,β � CN1(t)
∥∥(ϕx,ψx,ψxx)

∥∥2
a,β .

Next, we prove the estimate for ψx . Multiply (2.32) by W = (1 + t)ξ (1 + Bx)β to get

(
1

2
Wρψ2

x

)
− (Wρψxψt )x + μWψ2

xx = 1

2
Wtρψ2

x − Wxρψxψt + WR4. (2.59)

t
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Integrate (2.59) in R+ × (0, t) and substitute (2.48) and (2.56) in the resultant equality with using
the inequalities

{
(1 + Bx)β

}
x
|ρψxψt | + (1 + Bx)β |R4|

� ε(1 + Bx)βψ2
xx + Cε(1 + Bx)β

(
ϕ2

x + ψ2
x + ψ4

x + ϕ2
xψ2

x

) + CεδS(1 + Bx)β−4(ϕ2 + ψ2)
and

∞∫
0

(1 + Bx)β
(
ψ4

x + ϕ2
xψ2

x

)
dx � C‖ψx‖2

1

∥∥(ϕx,ψx)
∥∥2

a,β � CN1(t)
∥∥(ψx,ψxx)

∥∥2
a,β .

This procedure yields

(1 + t)ξ‖ψx‖2
a,β +

t∫
0

(1 + τ)ξ‖ψxx‖2
a,β dτ

� C
∥∥(ϕ0,ψ0, ϕ0x,ψ0x)

∥∥2
a,β + Cξ

t∫
0

(1 + τ)ξ−1
∥∥(ϕ,ψ,ϕx,ψx)

∥∥2
a,β dτ

+ C
(
N1(t) + δS

)
M1(t)

2. (2.60)

Finally, adding (2.56) to (2.60) and taking N1(t) + δS suitably small give the desired estimate
(2.54). �

By the same inductive argument as in deriving (2.8), we can prove Proposition 2.6 which
immediately yields the decay estimate (1.16).
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