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Abstract

The general solutions in the models of closed and open superstring and superp-branes with exotic fractions of th
N = 1 supersymmetry are considered and the spontaneously broken character of theOSp(1,2M) symmetry of the models
is established. It is shown that extending these models by Wess–Zumino terms generates the Dirichlet boundary c
for superstring and superp-branes. Using the generalized Wess–Zumino terms newOSp(1,2M)-invariant superp-brane and
Dp-brane-like actions preserving(M − 1)/M fraction of supersymmetry are proposed. ForM = 32 these models suggest ne
superbrane vacua of M-theory preserving 31 from 32 global supersymmetries.
 2003 Published by Elsevier B.V. Open access under CC BY license.
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1. Introduction

Recently new progress in the tracing of M-theo
symmetries [1,2] based on the development of the g
eralized holonomy conception [3] has been achieve1

E-mail address: aaz@physto.se (A.A. Zheltukhin).
1 Let us note that this conception permits an extension

the lengthening of the spinor components of the connectionΩM .
An example of the extension has been studied in [4] forN =
1,2 supersymmetric electrodynamics, where the covariant de
tive DM lengtheningDM → ∇M = DM + iµW̃M with W̃M =
i
4 (0,−σµαα̇Fµα̇, σ̃µα̇αFµα) for theN = 1 spinor derivatives, and

with W̃M = − i
4(0,D

i
αW, D̄

α̇i W̄ ) for theN = 2 spinor derivatives,

were considered. The spinor components of the connectionW̃M
take into account the anomalous magnetic moment (AMM)µ of
charged and neutral particles with spin 1/2 and generate the Pau
term. Taking into account of the AMM ofN = 2 massive super
0370-2693  2003 Published by Elsevier B.V.
doi:10.1016/j.physletb.2003.07.056

Open access under CC BY lice
The generalized holonomy conception classifies v
uum states permitted by the centrally extended
persymmetry algebra [6,7] and introduces new hid
space–time symmetries. It was shown in [2] that
holonomy extension in M-theory to theSL(32,R) lo-
cal symmetry is necessary to include the fermionic
grees of freedom and to permit exotic vacuum sta
preserving 31 from 32 supersymmetries [8,9].

The string/brane description of the vacuum st
with the so high supersymmetry was given by
model [10] of tensionless superstring and superp-
brane. A connection of this model with the descr
tion [9] (see also [11]) of the BPS states in M-theo
was discussed in [12]. The model [10] develops

particles is necessary to restoreκ-symmetry in its interactions with
N = 2 extended Maxwell supermultiplet [5].
nse.
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approach [13–15] to the description of string/bra
dynamics in superspaces extended by the additio
tensor central charge (TCC) coordinates. The c
trally extended superspaces are characterized by
orthosymplectic symmetries and are closely conne
with gauge theory of massless fields with higher sp
[16,17] which already appear in the quantized sup
particle models with exotic supersymmetries [18,1

It was observed in [20] thatOSp(1,64) symme-
try is spontaneously broken inD = 11 supergravity
which is the low energy phase of M/string-theory co
taining massive higher spin states. This observa
gave a reason to suppose that the superbrane m
scopic structure also may be described in terms
the spontaneously broken orthosymplectic symmet
[17]. Taking into account the connection of tensionle
strings and branes with higher spin field theory [21,
it is important to understand whether theOSp(1,2M)
symmetry of the model [10] is spontaneously broke

Here we study this question for the case of clo
and open tensionless superstring and superp-brane
and find that theOSp(1,2M) symmetry of the mode
is spontaneously broken by the general static solut
of the brane equations of motion. This effect
similar to the partial supersymmetry breaking by
super four-brane [23] and the generalized coordin
of the model [10] are the Goldstone fields of t
OSp(1,2M) symmetry. These Goldstone fields m
be associated with effective long wave descript
of the vacua in microscopic higher spin theori
Also we construct new topological Wess–Zumi
like superstring and superp-brane actions generatin
the Dirichlet boundary conditions and spontaneou
breaking supersymmetry andOSp(1,2M) symmetry.
In addition we propose a new set of theOSp(1,2M)
invariant superp-brane and Dp-brane-like actions
preservingM−1

M
fraction of theN = 1 supersymmetry

2. A simple super p-brane model with extra
supersymmetry: the general solution and
symmetries

The exactly solvable supersymmetric model
closed tensionless superp-brane (p = 1,2,3, . . .)
with extraκ-symmetry

(1)Sp = 1
∫
dτ dpσ ρµ

(
UaW

ab
µ Ub

)

2

-

has been studied in [10]. This model includes
Cartan differential one-formWab

(2)Wab = dYab − 2i(dθa θb + dθb θa)
invariant under theN = 1 global supersymmetr
transformations

δεθa = εa, δεYab = 2i(θaεb + θbεa),
(3)δεUa = 0

of the generalized superspace composed by the s
tensor Yab, the Grassmannian Majorana spinorθa
and an auxiliary commuting Majorana spinorUa
[24] parametrizing the light-like density of the bra
momentum. The worldvolume densityρµ = (ρτ , 	ρ)
[25], invariant under theN = 1 supersymmetry (3)
provides reparametrization invariance ofSp (1). The
real symmetric spin-tensorYab

(4)Yab ≡ xab + zab
unifies the space–time coordinatesxm and the TCC
coordinateszkl...m

xab = xm
(
γmC−1)

ab
,

(5)
zab = izmn

(
γmnC−1)

ab
+ zmnl

(
γmnlC−1)

ab
+ · · ·

of the D-dimensional Minkowski space–time wit
D = 2,3,4 mod(8). The spin-tensorYab is a realiza-
tion of the symmetric matrix of generalized symplec
coordinates previously considered in [16,17]. The
tion Sp is invariant under the transformations of t
enhancedκ-symmetry

δκθa = κa, δκYab = −2i(θaκb + θbκa),
(6)δκUa = 0, δκρ

µ = 0,

with the parameterκ restricted by one real condition

(7)Uaκa = 0

and the superp-brane model (1) preservesM−1
M

fraction of theN = 1 supersymmetry, whereM is the
dimension of the Majorana spinorsθa andUa .

The action (1) is presented in the equivalent fo
[10]

Sp = i

2

∫
dτ dpσ ρµ

{[(
Ua∂µỸa

) − (
∂µU

aỸa
)]

(8)− η̃∂µη̃
}
,
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where the Majorana spinor̃Ya is defined by the
relation

(9)iỸa = YabUb − η̃θa
and is a new effective variable substituted forYab and
η̃

(10)η̃ = −2i
(
Uaθa

)
is the Lorentz-invariant Grassmannian field describ
the Goldstone fermion of the model. The action
is the component representation of theOSp(1,2M)-
invariant action

(11)Sp = 1

2

∫
dτ dpσ ρµ∂µY

ΛGΛΞY
Ξ,

whereYΛ = (iUa, Ỹa, η̃) is a realOSp(1,2M) super-
twistor andGΛΞ = (−1)ΛΞ+1GΞΛ is the invariant
supersymplectic metric previously considered in
perparticle dynamics [18]. The equations of moti
following from Sp (11)

2ρµ∂µY
Λ + ∂µρµYΛ = 0,

(12)∂τY
ΛGΛΞY

Ξ = 0, ∂	σ YΛGΛΞYΞ = 0

are invariant under the linearly realizedOSp(1,2M)
symmetry, worldvolume reparametrizations and
Weyl gauge symmetry [26]

(13)ρ′µ = e−2λ(τ,	σ)ρµ, Y ′Σ = eλ(τ,	σ)YΣ.
In the partially fixed reparametrization gauge [10

(14)ρi(τ, 	σ)= 0 (i = 1,2, . . . , p),

removingp of (p + 1) components of the worldvol
ume densityρµ(τ, 	σ) without breaking of the Wey
and OSp(1,2M) symmetries, the general solution
Eq. (12) is given by

YΛ(τ, 	σ)= 1√
ρτ (τ, 	σ )Y

Λ(	σ),

(15)ρi(τ, 	σ)= 0 (i = 1,2, . . . , p).

The static fieldsYΛ(	σ) in (15) are restricted by thep
initial data constraints

(16)∂	σYΛ(	σ)GΛΞYΞ(	σ)= 0,

which are the invariants of the Weyl andOSp(1,2M)
symmetries. In the case of closed superp-brane
the components ofYΛ(	σ) andρτ (τ, 	σ) are periodic
functions ofσ i

YΛ(σ i + 2π)= YΛ(σ i),
(17)ρτ (τ, σ i + 2π)= ρτ (τ, σ i).

The components of the arbitrary supertwistorYΛ(	σ)
in the general solution (15) are the invariants of
Weyl gauge symmetry (13) due to the presence
the ρτ (τ, 	σ ) factor. However, they form the linea
representation of theOSp(1,2M) group, becauseρτ is
the invariant of this group. Theρτ (τ, 	σ )-factor in (15)
concentrates all dependence of the general solutio
the evolution parameterτ and it may be removed b
the additional to (14) gauge fixing

(18)∂τρ
τ (τ, 	σ )= 0.

The gauge condition (18) breaks the Weyl symme
but preserves theOSp(1,2M) symmetry and simpli-
fies the general solution (15) to the pure static form

YΛ(τ,σ i)= YΛ0 (σ i),
∂τ ρ

τ (τ, 	σ )= 0,

(19)ρi(τ, 	σ)= 0 (i = 1,2, . . . , p),

whereρτ (τ, 	σ) = ρτ0(σ ) was moved inYΛ0 (σ
i). One

remarks that the solutions (15) and (19) are equiva
on the classical level, because of a correlation betw
the Weyl and space–time conformal symmetries on
quantum level of the tensionless string treatment [2

The components of the static fieldYΛ0 (σ
i) describe

the shape of the superp-brane. The superbrane h
a freedom to choose any shape restricted by the
tial data constraints (16) and this shape will rema
frozen during the evolution. Any other shape obtain
from the initially randomly chosen by any transfo
mation belonging to theOSp(1,2M) group will have
the same rights. However, a fixing of the brane sh
by any fixed initial data forYΛ0 (σ

i) will break the
OSp(1,2M) symmetry. From the point of view of th
general theory of system with broken global symm
try [28] fixing of the form ofYΛ0 (σ

i) may be inter-
preted as a choice of the vacuum state of the unde
ing field system with the spontaneously broken glo
OSp(1,2M) symmetry. As a result, the static field
YΛ0 (σ

i) are interpreted similarly to [23] as the Gol
stone fields associated with the spontaneously bro
OSp(1,2M) symmetry and the action (11) is an e
fective long wave action for the Goldstone fields
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sociated with the superp-brane. It proves the sponta
neously broken character of theOSp(1,2M) symme-
try as the symmetry of the brane action (11).

Using the supersymmetry laws (3) and the defi
tions (9), (10) of the components of the supertwis
YΛ = (iUa, Ỹa, η̃) we find the transformation prope
ties of the Goldstone fields under the supersymm
transformations fromOSp(1,2M)

δεỸa = 2iη̃εa, δεη̃= −2iUaεa,

(20)δεUa = 0, δερ
µ = 0.

The N = 1 supersymmetry transformations (20) a
nonlinear, as it have to be for the spontaneously bro
symmetries [28], because the original Goldstone fie
θa are presented in (20) by only one their project
(Uaθa). The absence of otherM − 1 projections of
θa onM − 1 basis spinors means the disappeara
of M − 1 Goldstone fermions corresponding to t
unbroken fractions of theN = 1 supersymmetry
because of the presence of the enhancedκ-symmetry
(6) restricted by the condition (7)

Uaκa = 0.

The non-zero projection(Uaεa) of the supersymmetr
parameterεa

(21)Uaεa = 0

defines the direction of the spontaneously broken1
M

fraction of theN = 1 supersymmetry which cannot b
compensated any of theM − 1 κ-symmetry transfor-
mations. So, the condition (21) is antipodal to the c
dition (7) in the correspondence with the aforesaid
the Goldstone fermioñη has a non-zero shift (21).

It is easy to check that the actionSp (8), and
respectively (11), are invariant under theN = 1 global
supersymmetry transformations (20), because of
cancellation between the contributions given byỸa
and the fermionic Goldstone field̃η

δεSp = −
∫
dτ dpσ ρµ

{[
Ua∂µη̃− ∂µUaη̃

]
εa

(22)− [
Ua∂µη̃− η̃∂µUa

]
εa

} = 0.

An interesting and open question is to clarify t
effect of the boundary terms for the dynamics of
open superp-branes and we turn to this questi
below.
3. Boundary conditions for the open
super p-brane

Here we study the case of open superp-brane (11).
The contribution of the boundary terms in the variat
of Sp (11) is given by

(23)δSp
∣∣
Γ

=
∮
dsµ ρ

µYΛGΛΞδY
Ξ ,

wheredsν = 1
p!ε

νµ1µ2...µp dSµ1µ2...µp . Here, we con-
sider the variational problem with the fix initial (τ =
τi ) and final (τ = τf ) data, so the integral along the s
perp-brane profile forτ = (τi, τf ) does not contribute
to δSp |Γ (23)

(24)
∫
sτ

dsτ ρ
τYΛGΛΞδY

Ξ

∣∣∣∣
τf

τi

= 0.

As a result, the variationδSp |Γ (23) is filled out by
the integrals along thep-dimensional boundaries o
the brane worldvolume containing theτ -direction

(25)δSp
∣∣
Γ

=
i=p∑
i=1

∫
si

dsi ρ
iYΛGΛΞδY

Ξ

∣∣∣∣
σ i=π

σ i=0
.

In the case of variational problem with free ends, i
when the field variations on thep-brane boundarie
are arbitrary, the vanishing of these hypersurface te
in δSp |Γ (25) gives the open superp-brane boundary
conditions

(26)ρiYΛ
∣∣
σ i=0,π = 0 (i = 1,2, . . . , p).

One of the solutions of (26) is

(27)ρi(τ, 	σ)∣∣
σ i=0,π = 0 (i = 1,2, . . . , p).

The second possibility to satisfy the bounda
conditions (26) implies the zero boundary conditio
for the supertwistorYΛ = (iUa, Ỹa, η̃) values on the
boundaries

(28)YΛ(τ,σ )
∣∣
σ i=0,π = 0 (i = 1,2, . . . , p),

or, equivalently, in terms of the supertwistor comp
nents

Ua
∣∣
σ i=0,π = 0, Ỹa

∣∣
σ i=0,π = 0,

(29)η̃
∣∣
σ i=0,π = 0 (i = 1,2, . . . , p).
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The boundary conditions (27) forρi and (28) forYΛ

are invariant under the Weyl symmetry (13),N = 1
global supersymmetry (20) and other homogene
transformations ofOSp(1,2M). The boundary condi
tions (27) will be automatically satisfied in the inva
ant gauge (14)

ρi(τ, 	σ)= 0 (i = 1,2, . . . , p).

As a result, the general solution (15) for the clos
superp-brane in this gauge gives also the gene
solution of the boundary problem (12), (27) for t
open superp-brane.

Concerning the boundary conditions (28), one c
note that the zero boundary valuesUa|σ i=0,π = 0 (29)
result in some problem in the geometric interpretat
of the auxiliary spinor fieldUa as a basic constituen
of the local spinor repere attached to the superp-
brane worldvolume. For example, in the case of
4-dimensional Minkowski space, whereUa is treated
[24] as one of the components of the Newma
Penrose dyads [29], these boundary conditions re
in the condition

(30)

(
Ua(τ, 	σ )Va(τ, 	σ )

)∣∣
σ i=0,π = 0 (i = 1,2, . . . , p),

which breaks the basis relationUaVa = 1 defining
the dyadsUa,Va [29]. To preserve this condition th
spinor fieldVa should be singular on the brane/stri
boundaries and it signals on some instabilities on
brane boundaries. Therefore, the solution (27) hav
be choosen for the considered simple model (11)
in this case the open and closed superp-brane are
described by the same general solution (15) for
static Goldstone fields. This result is based on us
the gauge condition (14) for the auxiliary fieldρµ.

To overcome the problem of the singular charac
of the boundary conditions (28) we need to extend
simple action (11) and to this end we may genera
the topological actions studied in [11,27]. An exam
of that generalization will be done in the next secti
where we will present of a topological action whi
yields the Dirichlet boundary conditions for ope
superstring, resulting to the spontaneous breakdow
theOSp(1,2M) symmetry andN = 1 supersymmetry
4. A topological action generating the Dirichlet
boundary conditions for the superstring

The superstring action with enhanced supersym
try given by

(31)SWZ = β

2

τf∫
τi

π∫
0

GΛΞ dY
Λ ∧ dYΞ

contributes only on the superstring ends and yields
Dirichlet boundary conditions similar to those for t
Nambu strings [30]. The integrand in the integralSWZ
(31) is a total derivative and is presented in the fo
of the integral along the one-dimensional boundary
the superstring worldsheet

(32)SWZ = −β
2

∮
dYΛGΛΞ Y

Ξ .

The integral (31) is similar to the curvature integral
the open string

(33)SR = − C

4π

τf∫
τi

π∫
0

R
√−g dτ dσ,

whereR/2 is the Gauss curvature of the string wor
sheet. It was shown in [31] that taking into accou
of the nonlinear boundary conditions generated bySR
reveals a topological structure of the string action
trema. To find the effect resulted in bySWZ (31) one
notes that the integrand ofSWZ (32) coincides with the
differential form(UaWab

µ Ub) in (1) and thereforeSWZ
is invariant of the original symmetries of the acti
(11) besides of the Weyl gauge symmetry (13). T
latter restriction follows from the absence of theρµ

density in the integral (32) which results in it chang

(34)S′
WZ = −β

2

∮
e2λ dYΛGΛΞY

Ξ

under the Weyl transformation (11). It means that
Weyl symmetry is explicitly broken by the bounda
terms, already on the classical level unlike the Gre
Schwarz superstring, where the breakdown app
only on the quantum level.
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The variation of the Wess–Zumino term (32) giv

δSWZ = −β
∮
dYΛGΛΞδY

Ξ

− β

2

∮
d
(
δYΛGΛΞY

Ξ
)

(35)= β
τf∫
τi

∂τ Y
ΛGΛΞδY

Ξ

∣∣∣∣
σ=π

σ=0
,

where the initial and final variational condition
δYΞ (τi, σ ) = 0, δYΞ(τf , σ ) = 0 have been used
Next, taking into account the freedom in the variatio
δYΛ(τi, σ )|σ=0,π on the string ends we obtain the fo
lowing boundary conditions

(36)∂τY
Λ(τ, σ )

∣∣
σ=0,π = 0,

presented in the component form as

∂τU
a
∣∣
σ=0,π = 0, ∂τ Ỹa

∣∣
σ=0,π = 0,

(37)∂τ η̃
∣∣
σ=0,π = 0.

The boundary conditions (36) and (37) are the eq
tions of motion of the string ends and they are inva
ant under theOSp(1,2M) symmetry and supersym
metry transformations, because of their global cha
ter. However, the general solution of these equatio

(38)YΛ(τ,σ )
∣∣
σ=0 =AΛ, YΛ(τ,σ )

∣∣
σ=π = BΛ,

which contains the integration constantsAΛ andBΛ,
defined by the initial data

AΛ ≡ (
iUaA, ỸAa, η̃A

)
,

(39)BΛ ≡ (
iUaB, ỸBa, η̃B

)
,

defining the position of string ends in the symplec
superspace. The choice of different values for
constant supertwistorsAΛ andBΛ means the choic
of different vacuum states breaking theOSp(1,2M)
symmetry. Note thatAΛ andBΛ have dimensionL1

and their choice define a length scale in the mo
fixing the scale ofβ in (31). Let us note the particula
solution of Eq. (38) fixed by the zero values of t
Goldstone fermion on the string ends

(40)η̃A = 0, η̃B = 0.

The solution (40) will partially preserve the supersy
metry if the conditions

(41)UaAεa = 0, UaBεa = 0
for the projection(Uaεa) on the superstring ends a
satisfied, as it follows from the transformation ru
(20). The conditions (41) impose two real conditio
for the supersymmetry parametersεa resulting to the
breaking of 2

M
fraction ofN = 1 supersymmetry or, in

the special case

(42)UaA =UaB,
to the breaking only1

M
fraction ofN = 1 supersym-

metry.

5. The superstring model with the Wess–Zumino
term

Here we show that the addition of the Wes
Zumino term (31) in the original action remov
the problem of the singular character of the sec
solution (28) of the boundary conditions (26). T
extended action

S = S1 + SWZ

= 1

2

τf∫
τi

π∫
0

dτ dσ ρµ∂µY
ΛGΛΞY

Ξ

(43)+ β

2

τf∫
τi

π∫
0

GΛΞ dY
Λ ∧ dYΞ

modifies the boundary conditions (26) to the con
tions

(44)
[
ρσYΛ + β∂τYΛ(τ,σ )

]∣∣
σ=0,π = 0.

Conditions (44) are invariant under theOSp(1,2M)
symmetry similarly to (27) and (28) and their gene
solution

YΛ(τ,σ )
∣∣
σ=0 = exp

{
−

τ∫
τi

ρσ (τ,0)

β

}
AΛ,

(45)YΛ(τ,σ )
∣∣
σ=π = exp

{
−

τ∫
τi

ρσ (τ,π)

β

}
BΛ,

includes the arbitrary integration constantsAΛ, BΛ
similar to (39). So, one can see that the bound
conditions (45) are not singular whenρσ |0,π = 0. A
fixing of the constantAΛ andBΛ means a vacuum
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state choice and shows the spontaneously bro
character of theOSp(1,2M) symmetry of the action
(43).

The action (43) differs from the Wess–Zumino li
action (31) by the presence of the equations of mo
(12) having the general solution (15)

(46)YΛ(τ,σ )= 1√
ρτ (τ, σ )

YΛ0 (σ ), ρσ (τ, σ )= 0

if the gauge (14) (forp = 1) is choosen. The subst
tution of (46) in the boundary conditions (44) wi
ρσ = 0 results in the boundary conditions

(47)∂τρ
τ (τ, σ )

∣∣
σ=0,π = 0

which are satisfied by the additional gauge fixing (1

∂τρ
τ (τ, σ )= 0.

In this gauge the general solution (46) coincides w
the static solution (19) describing the above stud
closed and opened superstrings

(48)YΛ(τ,σ )= YΛ0 (σ ),
but has the Dirichlet boundary conditions (38). O
notes that the initial dataYΛ0 (σ ) (48) are restricted by
the constraint (16)

(49)Y ′Λ
0 (σ )GΛΞY

Ξ
0 (σ )= 0.

The matching (45) and (48) confirms that the integ
tion constantsAΛ,BΛ coincide with theYΛ0 (σ ) values
taken on the string endsσ = 0,π

(50)AΛ ≡ YΛ0 (0), BΛ ≡ YΛ0 (π).
We conclude that the superstring action (43) with
Dirichlet boundary conditions (45) describes a sta
BPS state with the spontaneously brokenOSp(1,2M)
symmetry.

6. Wess–Zumino actions of higher orders

Using theOSp(1,2M) invariant character of th
differential one-form YΛGΛΞ dYΞ and two-form
dYΛGΛΞdY

Ξ one can construct more generalOSp(1,
2M) invariant superp-brane actions with enhance
supersymmetry. At first, we note that the closedn-
differential formΩ2n = (GΛΞ dYΛ ∧ dYΞ)n
Ω2n = d ∧Ω(2n−1)

≡GΛ1Ξ1 dY
Λ1 ∧ dYΞ1 ∧ · · ·

(51)∧GΛnΞn dYΛn ∧ dYΞn,
which is not equal to zero, because of the symple
character of the supertwistor metricGΛΞ , can be
used to generate the Dirichlet boundary terms for
open superp-brane(p = 2n − 1) described by the
generalized action (43)

(52)S = S2n−1 + β(2n−1)

∫
M2n

Ω2n.

Similarly to the open superstring case (32), the We
Zumino integral in (52) is transformed to the integ
along the(2n − 1)-dimensional boundaryM2n−1 of
the super(2n− 1)-brane worldvolume∫
M2n

Ω2n =
∮

M2n−1

GΛ1Ξ1Y
Λ1 ∧ dYΞ1 ∧ · · ·

(53)∧GΛnΞn dYΛn ∧ dYΞn.
The sufficient conditions for the vanishing of th
variations of the integral (53) with the fix initial an
final data are the conditions

(54)∂τY
Λ(τ, σ )

∣∣
σ i=0,π = 0 (i = 1,2, . . . ,2n− 1)

generalizing the Dirichlet boundary condition (36
Therefore, in the gauge (14) and (18) this open su
p-brane is described by the pure static solution

(55)YΛ(τ,σ )= YΛ0 (σ i) (i = 1,2, . . . ,2n− 1)

generalizing the superstring static solution (48).
the other hand, the integrals (53)

S(2n−2) = β(2n−2)

∫
M2n−1

Ω2n−1,

(56)

Ω2n−1 ≡GΛ1Ξ1Y
Λ1 dYΞ1 ∧ · · ·

∧GΛnΞn dYΛn ∧ dYΞn
can be considered as theOSp(1,2M) invariant actions
for the new models of superp-branes(p = 2n − 2)
with enhanced supersymmetry. Forn = 1 we get the
known action [18] for superparticles, but forn = 2,3
we find the new actions for the supermembrane
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S2 = β2

∫
M3

Ω3

(57)= β̃2

∫
dτ d2σ εµνρYΛ∂µYΛ∂νY

Ξ∂ρYΞ ,

or a domain wall in the symplectic superspace, and
the super four-brane

(58)

S4 = β4

∫
M5

Ω5

= β̃4

∫
dτ d4σ εµνρλφYΛ∂µYΛ∂νY

Ξ∂ρYΞ

× ∂λYΣ∂φYΣ.
We shall analyse these models in another place.

7. The Weyl symmetry restoration for the
Wess–Zumino actions

A characteristic feature of the proposed We
Zumino actions is the explicit breaking of the We
gauge symmetry (13). When the Wess–Zumino te
are considered as the boundary terms generating
Dirichlet boundary conditions for the superstring (3
and superp-branes (54) the breaking of the Weyl sym
metry is localized at the boundaries. It shows that
spontaneous breaking of theOSp(1,2M) symmetry on
the boundaries is accompanied by the explicit bre
down of the Weyl gauge symmetry on the boundar
Because the Dirichlet boundary conditions are as
ciated with the Dp-branes attached on their boun
aries [30], a question on the action of Dp-branes in
the symplectic superspaces considered here app
It implies the correspondent generalization of the p
posed Wess–Zumino actions. One of the possible g
eralizations is rather natural and is based on the
servation that the Weyl invariance of the conside
Wess–Zumino actions may be restored by the m
mal lengthening of the differentialsd →D = d − A,
where the worldvolume one-formA is the gauge field
associated with the Weyl symmetry. The covariant d
ferentialsDYΣ are homogeneously transformed u
der the Weyl symmetry transformations (13)(
DYΣ

)′ ≡ (
(d −A)YΣ)′ = eλDYΣ,

(59)A′ =A+ dλ.
.

Then the generalizedOSp(1,2M) invariant two and
one-forms(
eφDYΣGΣΞDY

Ξ
)′ = eφDYΣGΣΞDYΞ ,

(60)
(
eφYΣGΣΞDY

Ξ
)′ = eφYΣGΣΞDYΞ

become the invariants of the Weyl symmetry al
where the compensating scalar fieldφ, with the
transformation low

(61)φ′ = φ − 2λ,

was introduced. Then the closed 2n-differential form
Ω2n = (GΛΞ dYΛ ∧ dYΞ)n may be changed by th
Weyl invariant 2n-differential formΩ̃2n = (eφGΛΞ ×
DYΛ ∧DYΞ)n
Ω̃2n ≡ enφGΛ1Ξ1DY

Λ1 ∧DYΞ1 ∧ · · ·
(62)∧GΛnΞnDYΛn ∧DYΞn,

andΩ2n−1 by Ω̃2n−1

(63)

Ω̃2n−1 ≡ enφYΛ1 ∧DYΛ1 ∧ · · · ∧DYΛn ∧DYΛn .

As a result, the actions (53) is transformed to the n
super(2n− 1)-brane action

S̃(2n−1) = β(2n−1)

∫
M2n

Ω̃2n

= β(2n−1)

∫
enφGΛ1Ξ1DY

Λ1 ∧DYΞ1 ∧ · · ·
(64)∧GΛnΞnDYΛn ∧DYΞn

invariant under theOSp(1,2M) and Weyl symmetries
Respectively, the action

(65)

S̃(2n−2) = β(2n−2)

∫
M2n−1

Ω̃2n−1

= β(2n−2)

∫
enφYΛ1 ∧DYΛ1 ∧ · · ·
∧DYΛn ∧DYΛn

will describe a newOSp(1,2M) and Weyl invariant
super-(2n− 2)-brane. These actions may be presen
in the Dp-brane like form, e.g.,

S̃p = β̃p
∫
dτ dpσ e

(p+1)
2 φ

×
√∣∣det

[
(∂µ −Aµ)YΛGΛΞ(∂ν −Aν)YΞ

]∣∣
(66)(p = 2n− 1),
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whereβ̃p is the Dp-brane tension.

8. Conclusion

We considered the general solutions of the eq
tions of motion in the simple model of closed a
open tensionless superstring and superp-branes and
found that these static solutions spontaneously b
the OSp(1,2M) symmetry andN = 1 supersymme
try. Next, we generalized this model to the higher
ders in the derivatives of the Goldstone fields and c
structed the new Wess–Zumino like actions suppo
to describe tensile superp-branes. These actions ge
erate the Dirichlet boundary conditions which,
particular, break the Weyl gauge symmetry. The
troduction of additional vector and scalar fields
stores the Weyl symmetry and results in the W
andOSp(1,2M) invariant Dp-brane like actions. The
open problem is to find supersymmetric YM field th
ories having the considered superbranes as vac
states spontaneously breaking theOSp(1,2M) sym-
metry. One can conjecture that these branes ap
as supersymmetric solutions ofD = 11 supergravity
[1,2], where theOSp(1,64) symmetry is also sponta
neously broken [20]. Then a connection between
R31 holonomy and space–time symmetries [1,2] w
the local Abelian shifts of the space–time and TC
brane coordinates by the null multivectors [26] m
appear. We will study these problems in another pla
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