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Abstract

Let R be an arbitrary ring. In this paper, the following statements are proved: (a)
Each idempotent matrix over R can be diagonalized if and only if each idempotent
matrix over R has a characteristic vector. (b) An idempotent matrix over R can be
diagonalized under a similarity transformation if and only if it is equivalent to a di-
agonal matrix. (a) and (b) generalize Foster’s and Steger’s theorems to arbitrary rings.
We give some new results about 0-similarity of idempotent matrices over R. © 1999
Elsevier Science Inc. All rights reserved.
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1. Introduction

In 1945, Foster examined the following questions: for a commutative ring R,
when can we find an invertible matrix P over R such that PAP!=
diag{ei,...,e,} for a given idempotent matrix 4 over R? The problem con-
cerns not only matrix theory but also module theory and algebraic K-theory.
He proved the following theorem (cf. [1, Theorem 10]).
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Foster’s theorem. The following are equivalent for a commutative ring R with
identity:

(a) Each idempotent matrix over R is diagonalizable under a similarity
transformation.

(b) Each idempotent matrix over R has a characteristic vector.

In 1966, Steger in [2] (or, see [3, IV.52 Theorem]) utilized Foster’s theorem
to prove the following theorem.

Steger’s theorem. Let R be a commutative ring with identity and A be an n X n
idempotent matrix over R. If there exist invertible matrices P and Q such that
PAQ is a diagonal matrix, then there is an invertible matrix U over R such that
UAU™" is a diagonal matrix.

In this paper, we will demonstrate that Foster’s theorem and Steger’s the-
orem can be generalized to an arbitrary ring with identity.

Let R be a ring with identity, ¢ and b € R, we say that a is equivalent to
b, denoted by a ~ b, if there exist invertible elements u and v € R such that
uav = b; a is called similar to b, denoted by a ~ b, if there exists an inv-
ertible element u € R such that wau' = bO. Let A € R™", B € R, we say
that A4 is 0-equivalent to B, denoted by A4 ~ B, if there exist sufficiently large
integers p > max{m,n} and g > max{n,t}, P € GL(p,R) and Q €GL(q,R)
such that

A 0 B 0
/(5 0)e= (0 0),,
Pxq
We say that 4 is 0-similar to B, denoted by 4 & B, if there exist sufficiently large
integers p > max{m,n,s,t} and P € GL(p,R) such that

4 0\, (B 0O
(6 0)r=(00),,
pXp

By [4, Lemma 1.2.1], 4 X B if and only if the corresponding finitely generated
projective R-modules are isomorphic. One can find also the definition of 0-
similarity in [3]. It is obvious that “similar => 0-similar” and “equivalent =
0-equivalent”. Theorems 10 and 11 give two equivalent conditions for two
matrices to be 0-similar.

2. Main results

Lemma 1. Let R be aring, a,b € R with a*> = a and aba = a, then a ~ ab ~ ba.
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Proof. Since (¢ — ab)’ = a — ab — aba + abab = 0, let t = 1 — a + ab, then ¢ is
invertible and ! =1+a—ab. So tabt™' = (1 —a+ ab)ab(1 +a — ab) = a,
hence a ~ ab. Similarly, it can be proved that a ~ ba. O

Theorem 2. Let R be a ring, a,b € R with a* = a and b> = b, then a ~ b if and
onlyifa~b.

Proof. It is only needed to prove that “a ~ b= a ~ b”. Suppose that there
exist invertible elements p and g € R such that pag = b. Let s = ¢g~'p~!, then
pap~' = paqqg'p~' = bs, so a~bs and bsb=b. By Lemma 1, bs~ b, so
a~bs~b O

Proposition 3. Let R be a ring and a, b be idempotents of R. If (a — b)2 =0, then
an~ ab~ ba~b.

Proof. Since (a — b)* = a® — ab — ba + b* = 0, so we have a + b = ab + ba and
a(a+b) = a*b + aba, i.e., a + ab = ab + aba which implies a = aba. Similarly,
we have b = bab. So by Lemma 1, a ~ ab ~ ba ~b. [

Theorem 4. Let A be an idempotent matrix over a ring R. If A is equivalent to a
block diagonal matrix B = diag{B,,B,,...,B,}, then for any 1<i<m, there
exist matrices S; such that A ~ D = diag{B,S11,B25%, ..., BuSum}. Moreover,
1. B;#0 <= BS; #0, i=1,2,...,m.

2. If B> = B;, S; can be chosen to be the identity matrix.

Proof. Assume that there exist P,Q € GL(n,R) such that P40 =B. Let
S=Q'P' € GL(n,R), then P~'AP = PAQQ"'P~' = BS. Let S = (s;)),., be
the block matrix with the same block type of B, then 4 ~ BS and (BS)” = BS,
BSB=B. So we have BS;B;=B;, BS;B;j=0, 1<i#j<n Let
D = diag{BSi1,...,BuSum}, then D> =D and DB =B, BSD=D. Since
(D — BS)* = D> — DBS — BSD + (BS)> =0, (I— (D —BS))"' =1+ (D— BS).
So let T =1— (D — BS), then TBST~' = (I — (D — BS))BS(I + (D — BS)) = D
which implies 4 ~ BS ~ D.

Observe that B;S;B; = B;, so B; # 0 <= B;S; # 0. To show (2), since Bl.2 = B;,
by Lemma 1, B; ~ B;S;;. So S; can be changed as an identity matrix. [

The following corollary is a generalization of Steger’s theorem.

Corollary 5. Let A be an n x n idempotent matrix over a ring R. If A is equiv-
alent to a diagonal matrix, then A is similar to a diagonal matrix.
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Using Theorem 4, we obtain the following corollaries about the diago-
nability of idempotent matrices.

Corollary 6. Let A be an n x n idempotent matrix over a ring R. If A has an
invertible k x k submatrix, 1 <k <n, then A ~ diag{l,, B}.

Proof. By clementary transformations, the invertible & x k& submatrix can be
put at the left-up corner of 4, so A4 is equivalent to diag{/;, B}. By Theorem 4,
A is similar to diag{/;,B,}. O
Corollary 7. Let R be a ring, and
An A
A =

<A21 Az
be a block idempotent matrix over R with A}, = Ay, then A ~ diag{4,,,43,}
moreover A ~ {Ay1,Bxn}, where By, is an idempotent matrix.

Proof. Since 4% = A4, s0 A1p42 =0, A3, — A12 — An A1, = 0. We have

1 0 Al] A]z 1 0 _ Al] A12
—Ay 1)\ A4y Ax —Ay 1 0 Ay —A4y4n
I —Ap) (An A I =4\  [(An 0
0 I 0 Apy—A42412/\0 1 0 Ay —Andp)’

so A ~ diag{4,,,43,} then, by Theorem 4, the second part follows. [

and

Corollary 8. Let A be an idempotent matrix over a ring R, and let

A~ .
<le Bzz)

Proof. Since 4>=4, B}, =B;; and B, =By. By Corollary 7, B~
diag{B1,B3,} = diag{B1, B»}, then, by Theorem 4, 4 ~ diag{By;,B»}. O

Let R be an arbitrary ring. Recall that « = (ay,...,a,) € R" is called a right
unimodular  vector if there exists (by,...,b,) €ER" such that
aby +---+a,b, = 1. A right unimodular vector (aj,as,...,a,) in R" is
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completable if it can be seen as the first row of some invertible matrix over R.
Let A be an n x n matrix over R, recall that o is a characteristic vector of A4 if
o € R" is a completable right unimodular vector and a4 = Ao for some 4 in R
(we call /4 the characteristic value of «). The following theorem is a general-
ization of Foster’s theorem.

Theorem 9. The following are equivalent for an arbitrary ring R with identity:

1. Each idempotent matrix over R is diagonalizable under a similarity transfor-
mation (i.e. R is a projectively trivial ring).

2. For each nonzero projective left R-module P, there exist nonzero idempotent
e, e, ... e in R such that P ~ Rey ® Re; @ ---® Re,.

3. Each idempotent matrix over R has a characteristic vector.

Proof. By Lemma 1.2.1 of [4], ““(1) = (2)” is easily got.

(1) = (3). Since there exists an invertible matrix P over R such that
PA = diag{4y,..., A, }P, the first row of P is a characteristic vector of 4.

(3) = (1). Let 4 be an idempotent matrix over R with a characteristic
vector o: o4 = Aa, then o can be completed to P € GL(n,R), so

pA:(i 0>p
* ok

Since 4 is idempotent, by Corollary 8, 4 ~ diag{/, B,}, then by induction, the
theorem is proved. [

Finally, let us discuss the O-similarity of idempotent matrices.

Theorem 10. Let 4 € M,,(R), B € M,,(R) be idempotent matrices. Then A LB if
and only if there exist m x n matrix P and n x m matrix Q over R such that
PO = 4, OP = B.

Proof. If there exists 7 € GL(k,R), k = max{m,n}, such that

(i =)

Decompose T and 7! into blocks corresponding to diag{4,0} as

T— Py P 7= On On
Py Py )’ On On)’
Then we have Q14P,; = B, P);BQ;| = A. Let P = AP;B and Q = BQ 4, then P
is an m X n matrix, Q is an n X m matrix and PQ = 4, QP = B.

On the other hand, if there exist m x n matrix P and n X m matrix Q over R
such that PQ = 4, OP = B. Let
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-4 4P
T_< BO 1—3)‘

It is easy to verify that

Tz_( (1 —4)* + APBQ (l—A)AP+AP(1—B)>_<Im 0)
~ \BO(1—4)+(1-B)BQ  BQOAP + (1 —B)’ S\0 L)

Since POP = AP and PQP = PB, we have AP = PB. Similarly, we have
BQO = 04 = QPQ. So

A 0 1—-4 AP A 0 1—-4 AP
T 7' =
00 Bo 1-B)\0 0/\ BO 1-B
0 0 1—-4 4P
“\Bo4a 0)\ Bo 1-B
= diag{0, BOAAP} = diag{0, B}.
Hence diag{4,0} ~ diag{0, B} ~ diag{B,0}. O
Let R be a Dedekind infinite ring (i.e., there exist ¢ and b € R such that

ab =1, ba = e # 1), then by Theorem 10, 1 is O-similar to e, but it is obvious
that 1 is not similar to e.

Theorem 11. Let A € M, (R), B; € M,,(R) and B, € M,,(R) be idempotent
matrices over a ring R. Then A is 0-similar to B = diag{B,, B,} if and only if A
can be decomposed into the sum of two order m orthogonal idempotent matrices
Ay, A4y, ie., A = Ay + Ay, moreover A, 2 By, 4, L B>.

Proof. If 4 2 B, by Theorem 10, there exist matrices P and Q such that PQ = 4
and QP = B. Decompose P, Q into blocks as

P=(P P), Q(g;)
then

PO= (P, Pz)(%

_ (O _(OP OP\(B O
QP—<Q2>(P1 PZ)_(QzPI Q2P2><O Bz).

) =P O +P0, =4,

and
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So Q1P1 :B1, Q1P2 = 0, Q2P1 =0 and Q2P2 =B,. From Az ZA, we have
PO+ PO, = (P, Q1)2 + P2Q2)2. Times P; 0, on the two sides of the equation,
we have (PIQI)2 = (PQ1), so (P1Q1)2 = (P1Q1)4. Similarly we have (P2Q2)2 =
(P2Q2)4. Let 4, = (PIQI)Z, Ay = (P2Q2)2. Then A4; and A, are orthogonal id-
empotent matrices, 4 = A, + A,. Since 4, = (PL01P1)Q; and B, = O, (PO P),
by Theorem 10, 4, L By, 4> 2 Bs.

Inversely, assume that 4 = 4, + A,, where 4, and 4, are orthogonal idem-
potent matrices, moreover A4, 2 B, A ~ B>. Let

S=(4, 4y), T= <j;>

Then ST = 41 + 4, = 4 and TS = diag{4,,4,}. By Theorem 10,

AR diag{d,, 4.} ~B. O
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