

Linear Algebra and its Applications 297 (1999) 1-7

LINEAR ALGEBRA AND ITS APPLICATIONS

www.elsevier.com/locate/laa

Diagonability of idempotent matrices over noncommutative rings

Guangtian Song *, Xuejun Guo

Department of Mathematics, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China

Received 14 July 1998; accepted 7 March 1999

Submitted by R. Guralnick

Abstract

Let R be an arbitrary ring. In this paper, the following statements are proved: (a) Each idempotent matrix over R can be diagonalized if and only if each idempotent matrix over R has a characteristic vector. (b) An idempotent matrix over R can be diagonalized under a similarity transformation if and only if it is equivalent to a diagonal matrix. (a) and (b) generalize Foster's and Steger's theorems to arbitrary rings. We give some new results about 0-similarity of idempotent matrices over R . \odot 1999 Elsevier Science Inc. All rights reserved.

AMS classification: 15A18; 16D40

Keywords: Idempotent matrices over rings

1. Introduction

In 1945, Foster examined the following questions: for a commutative ring R , when can we find an invertible matrix P over R such that $PAP^{-1} =$ $diag\{e_1,\ldots,e_n\}$ for a given idempotent matrix A over R? The problem concerns not only matrix theory but also module theory and algebraic K-theory. He proved the following theorem (cf. [1, Theorem 10]).

^{*} Corresponding author.

E-mail address: songgt@ustc.edu.cn (G. Song)

^{0024-3795/99/\$ -} see front matter © 1999 Elsevier Science Inc. All rights reserved. PII: S 0 0 2 4 - 3795(99)00059-2

Foster's theorem. The following are equivalent for a commutative ring R with identity:

(a) Each idempotent matrix over R is diagonalizable under a similarity transformation.

(b) Each idempotent matrix over R has a characteristic vector.

In 1966, Steger in [2] (or, see [3, IV.52 Theorem]) utilized Foster's theorem to prove the following theorem.

Steger's theorem. Let R be a commutative ring with identity and A be an $n \times n$ idempotent matrix over R. If there exist invertible matrices P and Q such that PAO is a diagonal matrix, then there is an invertible matrix U over R such that UAU^{-1} is a diagonal matrix.

In this paper, we will demonstrate that Foster's theorem and Steger's theorem can be generalized to an arbitrary ring with identity.

Let R be a ring with identity, a and $b \in R$, we say that a is equivalent to b, denoted by $a \simeq b$, if there exist invertible elements u and $v \in R$ such that uav = b; a is called similar to b, denoted by $a \sim b$, if there exists an invertible element $u \in R$ such that $uau^{-1} = b$. Let $A \in R^{m \times n}$, $B \in R^{s \times t}$, we say that A is 0-equivalent to B, denoted by $A \stackrel{0}{\simeq} B$, if there exist sufficiently large integers $p \ge \max\{m, n\}$ and $q \ge \max\{n, t\}$, $P \in GL(p, R)$ and $Q \in GL(q, R)$ such that

$$
P\begin{pmatrix} A & 0 \\ 0 & 0 \end{pmatrix} Q = \begin{pmatrix} B & 0 \\ 0 & 0 \end{pmatrix}_{p \times q}.
$$

We say that A is 0-similar to B, denoted by $A \stackrel{0}{\sim} B$, if there exist sufficiently large integers $p \ge \max\{m, n, s, t\}$ and $P \in GL(p, R)$ such that

$$
P\begin{pmatrix} A & 0 \\ 0 & 0 \end{pmatrix} P^{-1} = \begin{pmatrix} B & 0 \\ 0 & 0 \end{pmatrix}_{p \times p}.
$$

By [4, Lemma 1.2.1], $A \stackrel{0}{\sim} B$ if and only if the corresponding finitely generated projective *-modules are isomorphic. One can find also the definition of 0*similarity in [3]. It is obvious that "similar \implies 0-similar" and "equivalent \implies 0-equivalent''. Theorems 10 and 11 give two equivalent conditions for two matrices to be 0-similar.

2. Main results

Lemma 1. Let R be a ring, $a, b \in R$ with $a^2 = a$ and $aba = a$, then $a \sim ab \sim ba$.

Proof. Since $(a - ab)^2 = a - ab - aba + abab = 0$, let $t = 1 - a + ab$, then t is invertible and $t^{-1} = 1 + a - ab$. So $tabt^{-1} = (1 - a + ab)ab(1 + a - ab) = a$, hence $a \sim ab$. Similarly, it can be proved that $a \sim ba$. \Box

Theorem 2. Let R be a ring, $a, b \in R$ with $a^2 = a$ and $b^2 = b$, then $a \sim b$ if and only if $a \simeq b$.

Proof. It is only needed to prove that " $a \simeq b \implies a \sim b$ ". Suppose that there exist invertible elements p and $q \in R$ such that pa $q = b$. Let $s = q^{-1}p^{-1}$, then $pap^{-1} = paqq^{-1}p^{-1} = bs$, so $a \sim bs$ and $bsb = b$. By Lemma 1, $bs \sim b$, so $a \sim bs \sim b. \quad \Box$

Proposition 3. Let R be a ring and a, b be idempotents of R. If $(a - b)^2 = 0$, then $a \sim ab \sim ba \sim b$.

Proof. Since $(a - b)^2 = a^2 - ab - ba + b^2 = 0$, so we have $a + b = ab + ba$ and $a(a + b) = a²b + aba$, i.e., $a + ab = ab + aba$ which implies $a = aba$. Similarly, we have $b = bab$. So by Lemma 1, $a \sim ab \sim ba \sim b$. \Box

Theorem 4. Let A be an idempotent matrix over a ring R . If A is equivalent to a block diagonal matrix $B = \text{diag}\{B_1, B_2, \ldots, B_m\}$, then for any $1 \leq i \leq m$, there exist matrices S_{ii} such that $A \sim D = \text{diag}\{B_1S_{11}, B_2S_{22}, \ldots, B_mS_{mm}\}\$. Moreover, 1. $B_i \neq 0 \Longleftrightarrow B_i S_{ii} \neq 0, \quad i = 1, 2, \ldots, m.$ 2. If $B_i^2 = B_i$, S_{ii} can be chosen to be the identity matrix.

Proof. Assume that there exist $P, Q \in GL(n, R)$ such that $PAQ = B$. Let $S = Q^{-1}P^{-1} \in GL(n, R)$, then $P^{-1}AP = PAQQ^{-1}P^{-1} = BS$. Let $S = (s_{ij})_{m \times m}$ be the block matrix with the same block type of B, then $A \sim BS$ and $(BS)^2 = BS$, $BSB = B$. So we have $B_i S_{ii} B_i = B_i$, $B_i S_{ii} B_i = 0$, $1 \le i \ne j \le n$. Let $D = \text{diag}\{B_1S_{11}, \ldots, B_mS_{mm}\}\$, then $D^2 = D$ and $DB = B$, $BSD = D$. Since $(D - BS)^2 = D^2 - DBS - BSD + (BS)^2 = 0$, $(I - (D - BS))^{-1} = I + (D - BS)$. So let $T = I - (D - BS)$, then $T\overline{BST}^{-1} = (I - (D - BS))\overline{BS}(I + (D - BS)) = D$ which implies $A \sim BS \sim D$.

Observe that $B_i S_{ii} B_i = B_i$, so $B_i \neq 0 \iff B_i S_i \neq 0$. To show (2), since $B_i^2 = B_i$, by Lemma 1, $B_i \sim B_i S_{ii}$. So S_{ii} can be changed as an identity matrix. \Box

The following corollary is a generalization of Steger's theorem.

Corollary 5. Let A be an $n \times n$ idempotent matrix over a ring R. If A is equivalent to a diagonal matrix, then A is similar to a diagonal matrix.

Using Theorem 4, we obtain the following corollaries about the diagonability of idempotent matrices.

Corollary 6. Let A be an $n \times n$ idempotent matrix over a ring R. If A has an invertible $k \times k$ submatrix, $1 \leq k \leq n$, then $A \sim \text{diag}\{I_k, B\}$.

Proof. By elementary transformations, the invertible $k \times k$ submatrix can be put at the left-up corner of A, so A is equivalent to diag $\{I_k, B\}$. By Theorem 4, A is similar to diag $\{I_k, B_1\}$. \Box

Corollary 7. Let R be a ring, and

$$
A = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix}
$$

be a block idempotent matrix over R with $A_{11}^2 = A_{11}$, then $A \simeq diag{A_{11}, A_{22}^2}$ moreover $A \sim \{A_{11}, B_{22}\}\,$, where B_{22} is an idempotent matrix.

Proof. Since $A^2 = A$, so $A_{12}A_{21} = 0$, $A_{22}^2 - A_{12} - A_{21}A_{12} = 0$. We have

$$
\begin{pmatrix} I & 0 \ -A_{21} & I \end{pmatrix} \begin{pmatrix} A_{11} & A_{12} \ A_{21} & A_{22} \end{pmatrix} \begin{pmatrix} I & 0 \ -A_{21} & I \end{pmatrix} = \begin{pmatrix} A_{11} & A_{12} \ 0 & A_{22} - A_{21}A_{12} \end{pmatrix}
$$

and

$$
\begin{pmatrix} I & -A_{12} \ 0 & I \end{pmatrix} \begin{pmatrix} A_{11} & A_{12} \ 0 & A_{22} - A_{21}A_{12} \end{pmatrix} \begin{pmatrix} I & -A_{12} \ 0 & I \end{pmatrix} = \begin{pmatrix} A_{11} & 0 \ 0 & A_{22} - A_{21}A_{12} \end{pmatrix},
$$

so $A \simeq diag\{A_{11}, A_{22}^2\}$ then, by Theorem 4, the second part follows. \square

Corollary 8. Let A be an idempotent matrix over a ring R , and let

$$
A \sim \begin{pmatrix} B_{11} & 0 \\ B_{21} & B_{22} \end{pmatrix}.
$$

Then

$$
A \sim \begin{pmatrix} B_{11} & 0 \\ 0 & B_{22} \end{pmatrix}
$$

Proof. Since $A^2 = A$, $B_{11}^2 = B_{11}$ and $B_{22}^2 = B_{22}$. By Corollary 7, $B \simeq$ diag ${B_{11}, B_{22}^2}$ = diag ${B_{11}, B_{22}}$, then, by Theorem 4, $A \sim diag{B_{11}, B_{22}}$. \Box

Let R be an arbitrary ring. Recall that $\alpha = (a_1, \ldots, a_n) \in \mathbb{R}^n$ is called a right unimodular vector if there exists $(b_1, \ldots, b_n) \in R^n$ such that $a_1b_1 + \cdots + a_nb_n = 1$. A right unimodular vector (a_1, a_2, \ldots, a_n) in R^n is completable if it can be seen as the first row of some invertible matrix over R. Let A be an $n \times n$ matrix over R, recall that α is a characteristic vector of A if $\alpha \in \mathbb{R}^n$ is a completable right unimodular vector and $\alpha A = \lambda \alpha$ for some λ in R (we call λ the characteristic value of α). The following theorem is a generalization of Foster's theorem.

Theorem 9. The following are equivalent for an arbitrary ring R with identity:

- 1. Each idempotent matrix over R is diagonalizable under a similarity transformation (i.e. R is a projectively trivial ring).
- 2. For each nonzero projective left R-module P, there exist nonzero idempotent e_1, e_2, \ldots, e_t in R such that $P \simeq Re_1 \oplus Re_2 \oplus \cdots \oplus Re_t$.
- 3. Each idempotent matrix over R has a characteristic vector.

Proof. By Lemma 1.2.1 of [4], " $(1) \implies (2)$ " is easily got.

 $(1) \implies (3)$. Since there exists an invertible matrix P over R such that $PA = \text{diag}\{\lambda_1, \ldots, \lambda_n\}P$, the first row of P is a characteristic vector of A.

 $(3) \implies (1)$. Let A be an idempotent matrix over R with a characteristic vector α : $\alpha A = \lambda \alpha$, then α can be completed to $P \in GL(n, R)$, so

$$
PA = \begin{pmatrix} \lambda & 0 \\ * & * \end{pmatrix} P.
$$

Since A is idempotent, by Corollary 8, $A \sim \text{diag}\{\lambda, B_2\}$, then by induction, the theorem is proved. \square

Finally, let us discuss the 0-similarity of idempotent matrices.

Theorem 10. Let $A \in M_m(R)$, $B \in M_n(R)$ be idempotent matrices. Then $A \stackrel{0}{\sim} B$ if and only if there exist $m \times n$ matrix P and $n \times m$ matrix Q over R such that $PQ = A$, $QP = B$.

Proof. If there exists $T \in GL(k, R)$, $k \geq \max\{m, n\}$, such that

$$
T\begin{pmatrix} A & 0 \\ 0 & 0 \end{pmatrix} T^{-1} = \begin{pmatrix} B & 0 \\ 0 & 0 \end{pmatrix}.
$$

Decompose T and T^{-1} into blocks corresponding to diag{A, 0} as

$$
T = \begin{pmatrix} P_{11} & P_{12} \\ P_{21} & P_{22} \end{pmatrix}, \quad T^{-1} = \begin{pmatrix} Q_{11} & Q_{12} \\ Q_{21} & Q_{22} \end{pmatrix}.
$$

Then we have $Q_{11}AP_{11} = B$, $P_{11}BQ_{11} = A$. Let $P = AP_{11}B$ and $Q = BQ_{11}A$, then P is an $m \times n$ matrix, Q is an $n \times m$ matrix and $PQ = A$, $QP = B$.

On the other hand, if there exist $m \times n$ matrix P and $n \times m$ matrix Q over R such that $PQ = A$, $QP = B$. Let

$$
T = \begin{pmatrix} 1 - A & AP \\ BQ & 1 - B \end{pmatrix}.
$$

It is easy to verify that

$$
T^{2} = \begin{pmatrix} (1-A)^{2} + APBQ & (1-A)AP + AP(1-B) \ BQ(1-A) + (1-B)BQ & BQAP + (1-B)^{2} \end{pmatrix} = \begin{pmatrix} I_{m} & 0 \ 0 & I_{n} \end{pmatrix}.
$$

Since $PQP = AP$ and $PQP = PB$, we have $AP = PB$. Similarly, we have $BQ = QA = QPQ$. So

$$
T\begin{pmatrix} A & 0 \ 0 & 0 \end{pmatrix} T^{-1} = \begin{pmatrix} 1 - A & AP \ BQ & 1 - B \end{pmatrix} \begin{pmatrix} A & 0 \ 0 & 0 \end{pmatrix} \begin{pmatrix} 1 - A & AP \ BQ & 1 - B \end{pmatrix}
$$

$$
= \begin{pmatrix} 0 & 0 \ BQA & 0 \end{pmatrix} \begin{pmatrix} 1 - A & AP \ BQ & 1 - B \end{pmatrix}
$$

$$
= \text{diag}\{0, BQAAP\} = \text{diag}\{0, B\}.
$$

Hence diag $\{A, 0\} \sim \text{diag}\{0, B\} \sim \text{diag}\{B, 0\}$. \Box

Let R be a Dedekind infinite ring (i.e., there exist a and $b \in R$ such that $ab = 1$, $ba = e \neq 1$, then by Theorem 10, 1 is 0-similar to e, but it is obvious that 1 is not similar to e .

Theorem 11. Let $A \in M_m(R)$, $B_1 \in M_{n_1}(R)$ and $B_2 \in M_{n_2}(R)$ be idempotent matrices over a ring R. Then A is 0-similar to $B = \text{diag}\{B_1, B_2\}$ if and only if A can be decomposed into the sum of two order m orthogonal idempotent matrices $A_1, A_2, i.e., A = A_1 + A_2,$ moreover $A_1 \stackrel{0}{\sim} B_1, A_2 \stackrel{0}{\sim} B_2.$

Proof. If $A \stackrel{0}{\sim} B$, by Theorem 10, there exist matrices P and Q such that $PQ = A$ and $QP = B$. Decompose P, Q into blocks as

$$
P = (P_1 \quad P_2), \quad Q = \begin{pmatrix} Q_1 \\ Q_2 \end{pmatrix}
$$

then

$$
PQ = (P_1 \quad P_2) \begin{pmatrix} Q_1 \\ Q_2 \end{pmatrix} = P_1 Q_1 + P_2 Q_2 = A,
$$

and

$$
QP = \begin{pmatrix} Q_1 \\ Q_2 \end{pmatrix} (P_1 \quad P_2) = \begin{pmatrix} Q_1 P_1 & Q_1 P_2 \\ Q_2 P_1 & Q_2 P_2 \end{pmatrix} \begin{pmatrix} B_1 & 0 \\ 0 & B_2 \end{pmatrix}.
$$

So $Q_1P_1 = B_1$, $Q_1P_2 = 0$, $Q_2P_1 = 0$ and $Q_2P_2 = B_2$. From $A^2 = A$, we have $P_1Q_1 + P_2Q_2 = (P_1Q_1)^2 + (P_2Q_2)^2$. Times P_1Q_1 on the two sides of the equation, we have $(P_1Q_1)^2 = (P_1Q_1)^3$, so $(P_1Q_1)^2 = (P_1Q_1)^4$. Similarly we have $(P_2Q_2)^2 =$ $(P_2Q_2)^4$. Let $A_1 = (P_1Q_1)^2$, $A_2 = (P_2Q_2)^2$. Then A_1 and A_2 are orthogonal idempotent matrices, $A = A_1 + A_2$. Since $A_1 = (P_1Q_1P_1)Q_1$ and $B_1 = Q_1(P_1Q_1P_1)$, by Theorem 10, $A_1 \overset{0}{\sim} B_1$, $A_2 \overset{0}{\sim} B_2$.

Inversely, assume that $A = A_1 + A_2$, where A_1 and A_2 are orthogonal idempotent matrices, moreover $A_1 \overset{0}{\sim} B_1$, $A_2 \overset{0}{\sim} B_2$. Let

$$
S=(A_1 \quad A_2), \quad T=\begin{pmatrix} A_1 \\ A_2 \end{pmatrix}.
$$

Then $ST = A_1 + A_2 = A$ and $TS = diag\{A_1, A_2\}$. By Theorem 10,

$$
A \stackrel{0}{\sim} \text{diag}\{A_1, A_2\} \stackrel{0}{\sim} B. \square
$$

References

- [1] A.L. Foster, Maximal idempotent sets in a ring with units, Duke J. Math. 13 (1946) $247-258$.
- [2] A. Steger, Diagonability of idempotent matrices, Pac. J. Math. 19 (3) (1966) 535–541.
- [3] B.R. McDonald, Linear Algebra over Commutative Rings, Marcel Dekker, 1984.
- [4] J. Rosenberg, Algebraic K-Theory and Its Applications, GTM 147, Springer, Berlin, 1995.