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Cognitive neuroscience has long sought to understand the biological foundations of human intelligence. Decades
of research have revealed that general intelligence is correlatedwith two brain-based biomarkers: the concentra-
tion of the brain biochemical N-acetyl aspartate (NAA) measured by proton magnetic resonance spectroscopy
(MRS) and total brain volume measured using structural MR imaging (MRI). However, the relative contribution
of these biomarkers in predicting performance on core facets of human intelligence remains to bewell character-
ized. In the present study,we sought to elucidate the role of NAA and brain volume in predicting fluid intelligence
(Gf). Three canonical tests of Gf (BOMAT, Number Series, and Letter Sets) and three working memory tasks
(Reading, Rotation, and Symmetry span tasks) were administered to a large sample of healthy adults (n =
211). We conducted exploratory factor analysis to investigate the factor structure underlying Gf independent
from working memory and observed two Gf components (verbal/spatial and quantitative reasoning) and one
workingmemory component. Our findings revealed a dissociation between two brain biomarkers of Gf (control-
ling for age and sex): NAA concentration correlated with verbal/spatial reasoning, whereas brain volume corre-
lated with quantitative reasoning and working memory. A follow-up analysis revealed that this pattern of
findings is observed for males and females when analyzed separately. Our results provide novel evidence that
distinct brain biomarkers are associated with specific facets of human intelligence, demonstrating that NAA
and brain volume are independent predictors of verbal/spatial and quantitative facets of Gf.

© 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Introduction

Research in the psychological and brain sciences has long sought to
elucidate the nature and mechanisms of human intelligence. Early re-
search by Charles Spearman (1904) provided the foundation for this en-
deavor, revealing that individuals' performance across a broad range of
cognitive tasks is positively correlated. This observation led Spearman
(1927) to propose that a general factor (g) accounts for performance
across the spectrum of cognitive ability — spanning attention,
boratory, Beckman Institute for
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perception, memory, language, and thought. Decades of research have
further demonstrated that the best measures of g involve tests of fluid
intelligence (Gf) — the capacity to solve novel problems through adap-
tive reasoning and goal-directed decisionmaking (Carroll, 1993; Cattell,
1971; Gray and Thompson, 2004; Horn and Cattell, 1966; Jensen, 1980).
Performance on tests of Gf is known to predict many aspects of life,
including educational and work achievement, and social well-being
(Colom and Flores-Mendoza, 2007; Gottfredson and Saklofske, 2009;
Jensen, 1998; Neisser et al., 1996).

Parallel developments in cognitive neuroscience have advanced our
understanding of the neurobiological foundations of Gf (Barbey et al.,
2014; Barbey et al., 2013a, 2013b; Jung and Haier, 2007). An emerging
area of research investigates the metabolic and biochemical corre-
lates of intelligence using magnetic resonance spectroscopy (MRS).
Accumulating evidence indicates that a specific biochemical marker
is associated with general intelligence: N-acetyl aspartic acid
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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(NAA) (Jung and Haier, 2007; Ross and Sachdev, 2004). NAA is a me-
tabolite of glucose that is produced in the neurons and represents an
important biochemical marker of energy production and neuronal
health (Barker et al., 2001; Nakashima et al., 2007). Several studies
have reported correlations between the concentration of NAA in
the brain and various domains of cognition and intelligence (Jung
and Haier, 2007; Ross and Sachdev, 2004), and the emerging evi-
dence frequently favors a positive relationship between NAA and
cognition.

Nevertheless, this literature exhibits some variability and inconsis-
tency (Patel et al., 2014). Positive correlations have been reported be-
tween Gf and NAA in occipital–parietal white matter (WM) (Jung
et al., 1999; Jung et al., 2005), the isthmus/splenium region of the corpus
callosum (Aydin et al., 2012), and deep cerebral WM (Charlton et al.,
2007). In contrast, NAA in frontalWMhas been found to negatively cor-
relate with Gf (Jung et al., 2005), while NAA in parietal WM has been
found to be uncorrelated with Gf (Ferguson et al., 2002). Another
study reported a positive correlation between a principle component
loading heavily on Gf and frontal WM NAA, but not with occipital–
parietal gray matter (GM) NAA (Ross et al., 2005). A multi-voxel
study using several tests of Gf found that NAA in right posterior GM
correlatedwith some— but not all— tests of Gf,whereas no relationship
with Gf and WM NAA in any region was found (Jung et al., 2009). An-
other recent multi-voxel study found that NAA in left frontal and parie-
tal regions is related to Gf (Nikolaidis et al., 2016).

One possible reason for disagreement across studies is that the
strength of NAA-intelligence correlations may depend upon the par-
ticular domain of intelligence measured. This would likely cause the
NAA-intelligence correlation to be contingent upon the particular
test(s) employed in a given study. Experiments relating Gf and
NAA have generally used performance factors from the WAIS, or
the Raven's progressive matrices (RPM). The RPM test is considered
to be one of the most fundamental and accurate tests of fluid reason-
ing ability (Jensen, 1998) and draws upon spatial reasoning ability
(Ackerman et al., 2002). Reasoning ability can also be manifest through
quantitative or numerical reasoning (Ackerman et al., 2002); however,
little is known whether these abilities relate to NAA concentration.

By characterizing sub-domains offluid intelligence, researchers have
revealed sex differences in quantitative and verbal reasoning abilities
(Halpern, 2013), and have demonstrated significant sex differences in
the neurocorrelates of intelligence (Burgaleta et al., 2012; Schmithorst,
2009; Witelson et al., 2006). It is therefore reasonable to expect that
examination of sex differences may be important for understanding
the Gf–NAA relationship (Pfleiderer et al., 2004). However, studies
reporting sex differences also exhibit inconsistent findings. Two studies
have found positive Gf–NAA correlations for females but not males
(Pfleiderer et al., 2004; Jung et al., 2005), but a study with a larger sam-
ple size reported similar Gf–NAA correlations for males and females
(Jung et al., 2009).

Disagreement across studies may also be due in part to interrelated
cognitive factors, or cognitive sub-components that drive performance
on tests of intelligence. For example, there is a long history of behavioral
evidence suggesting that Gf is closely related toworkingmemory capac-
ity (Kane et al., 2005; Kyllonen & Christal, 1990; Martinez et al., 2011).
More recent neuroimaging and cognitive neuroscience evidence
demonstrates a high degree of correspondence between the brain
structures supporting working memory and Gf (Barbey et al., 2014;
Gray et al., 2003; Kane & Engle, 2002), bolstering the behavioral ev-
idence and further indicating these two constructs are linked. There-
fore, evaluating the relationships between multiple cognitive
domains to NAAwithin a sample may be a key factor for understand-
ing MRS–intelligence relationships, and whether or not NAA is a spe-
cific marker for intelligence, or an array of cognitive abilities.

Results across studies may also prove to be more consistent by re-
ducing variability in methodology. First, improved quantification can
be achieved by applying corrections for tissue fractions (Gussew et al.,
2012); however, this is not performed in all studies (Patel et al.,
2014). Second, targeting regions of the brain that can be reliably posi-
tioned and scanned using MRS is critical, as it is possible to obtain
intra-subject coefficients of variation as low as 5% for the most easily
measured metabolites (Brooks et al., 1999; Terpstra et al., 2015). How-
ever, selecting brain regions that are related to the cognitive domains of
interest must be balanced with this requirement. The precuneus and
posterior cingulate cortex (PCC) are excellent locations for high quality
spectra, and have been used extensively in previous MRS studies. The
PCC is involved in a wide range of cognitive functions, from internal
awareness, to attention regulation. This region has strong reciprocal
connections to the ACC andDLPFC, which are critical for executive func-
tion and fluid reasoning. It also has an exceptionally high basalmetabol-
ic rate, and given that PCC connectivity and activity specifically declines
with age (Andrews-Hanna et al., 2007; Leech and Sharp, 2014) and sev-
eral disease states such as Alzheimer's disease (Minoshima et al., 1997),
traumatic brain injury (Nakashima et al., 2007), and schizophrenia
(Haznedar et al., 2004), NAA in the PCCmay be a good marker for over-
all brain metabolic health that is readily measurable via MRS.

Another obstacle to obtaining reproducible results across studies is
small sample sizes (Patel et al., 2014). Typical samples range between
30 and 80 subjects, with the largest including 88 subjects (Ferguson
et al., 2002). Results obtained with these small sample sizes are difficult
to interpret — especially after dividing the sample into smaller subsets
based on individual subject characteristics, such as sex (Jung et al.,
2009). More generally, correlation coefficients tend to lack stability in
samples smaller than about 100 subjects when effect sizes are small or
moderately sized (Schönbrodt and Perugini, 2013). Given that the rela-
tionships between Gf and NAA are small-moderate in effect, establish-
ing solid relationships between Gf and NAA requires the use of much
larger sample sizes.

The use of larger sample sizes together with collection of a wide
range of both MRI and behavioral data should also allow researchers
to control for other factors related to intelligence, thereby elucidating
the unique contribution of NAA to Gf, and disentangling the Gf–NAA
empirical landscape from possible confounding variables. One of the
most well-established neurocorrelates of intelligence is total brain vol-
ume (Ivanovic et al., 2004; Ritchie et al., 2015; for reviews, see Luders
et al., 2009; McDaniel, 2005; Rushton and Ankney, 2009). This relation-
ship is likely due to an increased number of neurons (Rushton and
Ankney, 2009) or more efficient neuronal metabolism in larger brains
(Gignac et al., 2003; Haier et al., 1995). Because NAA is a measure of
neuronal density, viability, or efficiency, it is reasonable to expect that
NAA–intelligence correlations may not be independent of brain size. A
positive correlation between NAA and total WM volume has also been
previously reported (Jung et al., 2005); however, two other studies
showed that the NAA–intelligence relationship persists when brain
size is covaried (Aydin et al., 2012; Nikolaidis et al., 2016). Further in-
vestigation is needed to understand whether NAA and brain volume in-
dependently account for variance in intelligence scores, or if their
predictive power overlaps.

The present study seeks to characterize the roles of NAA concentra-
tion and brain volume in predicting Gf, and whether or not these two
markers are independent predictors of Gf. Our study investigated a sam-
ple size of over 200 participants, more than doubling the largest sample
size reported in the literature to date. Additionally, we measured both
Gf and working memory using three unique, well-established tests in
order to investigate how NAA and brain volume relate to underlying
sub-factors of fluid reasoning, and whether those relationships depend
upon working memory. Our estimates of brain volume include total
brain volume as well as tissue specific, total gray and total white matter
volumes. Ourmeasurements of NAA are obtained from a single voxel in
medial parietal cortex extending inferiorly into the posterior cingulate
cortex — an excellent region for obtaining high quality spectra that
has been widely used and validated in prior research. Furthermore,
our analysis of the relationship between Gf and NAA takes into account
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age and sex for the assessment of Gf, aswell as tissue composition in es-
timating NAA concentration.

Method

Participants

Participants were recruited from the Urbana-Champaign communi-
ty as part of a larger cognitive training intervention study designed to
assess the efficacy of different intervention modalities on cognitive
performance in healthy adults. All data reported here were collected
as part of the baseline, pre-intervention assessment, which included a
battery of cognitive tests and an MRI session. The University of Illinois
Urbana-Champaign Institutional Review Board approved all aspects of
the study and participants provided informed consent at enrollment.
A total of 225participants from that sample underwent anMRI scanning
session includingMRS during baseline (i.e., pre-intervention) testing; of
those, 211 participants had complete MRS (7 excluded due to MRI/MRS
quality), behavioral (one excluded due to missing), and demographic
(six excluded due to missing) data. All participants: were right-
handedwith normal or corrected-to-normal visionwithout color blind-
ness; reported no previous neurological injuries, disorders, or surgeries;
were on no medications affecting central nervous function; were not
pregnant; had no head injury or loss of consciousness in the past
2 years; and were proficient in English. Participants received monetary
compensation for their participation. Basic demographics were collect-
ed via self-report and are summarized in Table 1. There was no signifi-
cant difference between males and females in age (t(209) = 0.57,
p=0.57). Although a higher proportion of females were college gradu-
ates than males (Table 1), approximately 75% of males and females re-
ported having some college or graduated college; therefore, males and
females were roughly equally educated.

Cognitive testing procedures

All cognitive tests were computer administered in a quiet room. Test
administrators provided general instruction and oversight during the
approximately three hour testing session and test-specific instructions
were provided through on-screen prompts. Participants wore head-
phones during the session and made responses with the mouse or
keyboard.

The pre-intervention cognitive battery included a total of 12 tests:
three unique tests for each cognitive construct including Gf, working
memory, executive function, and episodic memory. Gf and working
memory are included in all analyses herein. (Although performance
on executive function and episodic memory is not within the scope of
the present manuscript, interested readers may find analyses including
these tasks in supplementary materials.)

Fluid intelligence
Because fluid reasoning can manifest in a broad array of abilities in-

cluding spatial, quantitative, and verbal (Ackerman et al., 2002), our
tests were selected to tap into each. The three Gf tests included the
BOMAT, Number Series, and Letter Sets.
Table 1
Sample demographics.

Male Female Total

n 121 90 211
Mean age (range) 24.07 (18–44) 24.57 (18–44) 24.28 (18–44)

Highest level of education (proportion of sample)
High school graduate 0.08 0.03 0.06
Some college 0.6 0.44 0.53
College graduate 0.15 0.31 0.22
Master's or higher 0.17 0.22 0.19
BOMAT. In this task (Hossiep et al., 1999; Jaeggi et al., 2008; Moody,
2009), which is similar to RPM but has greater difficulty levels to
avoid ceiling effects, participants were presented a series of 5 × 3matri-
ces that each depict a pattern (29 differentmatrices in total with 45min
to complete the test), with each matrix missing one cell. The
participant's task was to select one of six possible answers that com-
plete the matrix pattern.

Number Series. In the Number Series task (Harrison et al., 2013;
Thurstone, 1938), participants were shown a series of arithmetic num-
ber patterns that follow an arithmetic sequence, and their task was to
select the next number in the series from five possible answer options
(10 trials in total with 5 min granted to complete the test).

Letter Sets. In the Letter Sets task (Ekstrom et al., 1976; Harrison et al.,
2013), participants were shown five sets of letters with four letters in
each set. Four of the five letter sets followed a common rule, and the
participants' task was to select the letter set that is different from the
other four (15 trials in total with 7 min to complete the test).

Working memory
Theworkingmemory tests included reading span, rotation span, and

symmetry span. For all three tasks, shortened versions were adminis-
tered, which have been verified to retain the psychometric properties
of the longer versions (Foster et al., 2015; Oswald et al., 2015).

Reading span. During the first practice phase, participants were shown a
series of simple four letterwords (nouns/verbs) each for 1 s, afterwhich
they were asked to recall which ones they saw in the correct order from
a selection offifteenwords. In the next practice phase, participantswere
shown a series of short sentences and were tasked to select whether or
not they are understandable or nonsensical (e.g., “We were two lawns
out at sea before we lost sight of land.”) The nonsensical sentences por-
tion always came from changing one word (e.g., lawns for miles) at the
beginning, middle, or end of the sentence. Roughly half of the presented
sentences were nonsensical. Finally, during test trials, participants
would characterize the sentences and were immediately shown a
four-letter word for 1 s. After going through the entire set (set size
range from 2 to 10), participants were given a recall cue and needed
to identify the words they saw in correct order. Participants were told
to maintain accuracy of characterizing the sentences correctly at 85%
or higher. The time limit for evaluating sentences was individualized
and determined by practice phase performance. There were 8 test trials
in total.

Rotation span. Participants were asked to recall a sequence of short and
long arrows radiating from the center of the screen against a back-
ground letter-rotation task. The letter-rotation task presented a normal
or mirror-reversed G, F, or R, rotated at 0°, 45°, 90°, 135°, 180°, 225°,
270°, or 315°. The task was to mentally rotate the letter, and then to in-
dicate whether the letter was normal (True— approximately 50% of tri-
als) or mirror reversed (False — also approximately 50% of trials).
Immediately after a response, the participant pressed a key clearing
the screen for 0.5 s and was presented a short or long arrow rotated at
0°, 45°, 90°, 135°, 180°, 225°, 270°, or 315°. After 1 s, the arrow disap-
peared and another letter or the recall cue appeared instructing the par-
ticipant to recall all of the arrows from the preceding displays in the
order they appeared. Participants were told to maintain accuracy on
the letter-rotation task at 85% or higher. The time limit for the rotated
letter judgment was individualized and determined by practice phase
performance. Set sizes ranged from two to nine letter/arrow displays
per trial (8 trials total).

Symmetry span.On each trial a 4 × 4 grid was presented in which one of
the 16 possible locations was filled in red (650 ms each for 3–6 loca-
tions). Participants were asked to remember the location of the red
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squares. Between each location presentation, participants were shown
an 8 × 8 grid of black and white rectangles. They were asked to deter-
mine whether or not the grid was symmetric about the vertical axis
(i.e., left half matches right). After all spatial locations were presented,
participants were asked to reproduce the spatial locations in the order
in which they were presented. Participants are told to maintain accura-
cy of identifying symmetry at 85% or higher andwere shown their accu-
racy at the end of each trial. The time limit for the symmetry judgment
was individualized and determined by practice phase performance.
There were a total of 8 trials.

MRI data acquisition and processing

Acquisition
All subjects were scanned on a Siemens 3TMagnetom Trio. Anatom-

ical information was obtained using a high resolution 3D structural
MPRAGE scan (0.9 mm isotropic, TR: 1900 ms, TI: 900 ms, TE =
2.32 ms, with GRAPPA and an acceleration factor of 2).

The anatomical scan was used to position a single voxel spectros-
copy (SVS) scan in the parietal cortex extending into posterior cin-
gulate cortex (voxel size: (20 mm)3, TR: 3000 ms, TE: 30 ms, 40
averages, BW: 2000 Hz, vector size: 1024). The voxel straddled the
midline, including equal portions of the right and left hemispheres
as shown in Fig. 1. Weak water suppression was employed and six
regional saturation bands were placed around the voxel to reduce
contamination from subcutaneous fat. An additional scan was per-
formed without water suppression to aid with quantification. Im-
mediately following the spectroscopy acquisition, a T2-weighted
overlay scan was performed with the same center location and ori-
entation as the spectroscopy scan (TR = 5000 ms, TE = 84 ms,
slice thickness 2 mm with 0.5 mm of spacing, FOV: 240 × 240 mm,
128 × 128 matrix size, GRAPPA acceleration factor: 2, 35 slices).
Fig. 1. Left: example placement ofMRS voxel spanning precuneus and extending into posterior c
example MRS spectrum output from LCModel (thin black line is original data; thick overlaid li
MRI data processing
Metabolite quantitationwas performed using tissuewater as a refer-

ence (Gasparovic et al., 2006). This approach is commonly used in stud-
ies that relate metabolite concentration to intelligence (Charlton et al.,
2007; Jung et al., 1999; Jung et al., 2009; Jung et al., 2005; Kochunov
et al., 2010; Ross et al., 2005). Metabolite ratios have also been used in
similar studies; however, use of water scaling facilitates the interpreta-
tion of results and the separation of contributions from the different
metabolites.

Water-scaled spectra were analyzed using LCModel software (Ver-
sion 6.3-1H; Provencher, 1993). No correction was performed to ac-
count for relaxation of metabolite signal. Because NAA and NAAG are
difficult to differentiate (Edden et al., 2007), here we analyze the com-
bined concentration of NAA + NAAG, labeled herein as NAAt with a
peak appearing at 2.02 ppm.

Accurate water scaling requires corrections for the tissue compo-
sition of the voxel. Using the high resolution structural scan, we cal-
culated the volume fractions of gray matter (GM), white matter
(WM), and cerebral spinal fluid (CSF) within each voxel using
Matlab scripts (MathWorks, Natick, MA) that called functions from
SPM8 (Wellcome Trust Centre for Neuroimaging). First, we segment-
ed the MPRAGE using SPM8 to obtain tissue probability maps of GM,
WM and CSF. We then created a mask in the space of the T2 overlay
corresponding to the location of the spectroscopy scan. This mask
has the same center and orientation as the T2-overlay but higher res-
olution (0.5 × 0.5 × 0.5 mm). We then registered the MPRAGE to the
T2 overlay. The rotations and translations required for the registra-
tion were then applied to the tissue probability masks. We resliced
the tissue probability maps into space of the mask, and used the
mask to calculate the volume fractions of GM, WM, and CSF within
the volume of the spectroscopy voxel (see the white box shown in
Fig. 1). These tissue fractions were later used to statistically correct
ingulate (bilaterally) for a single subject's sagittal (top) and coronal (bottom) views. Right:
ne is LCModel data).



Table 2
Descriptive test statistics reporting mean (SD) for each.

All subjects Males Females

BOMAT 14.99 (4.22) 15.02 (4.3) 14.97 (4.19)
Number Series 6.93 (2.04) 7.32 (2.01) 6.41 (1.99)
Letter Sets 10.80 (2.27) 10.69 (2.35) 10.95 (2.16)
Reading span 18.77 (9.33) 18.41 (9.69) 19.26 (8.85)
Rotation span 12.67 (6.74) 13.17 (6.79) 12.00 (6.66)
Symmetry span 18.49 (7.87) 19.19 (8.19) 17.54 (7.36)
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NAAt for tissue volume-fraction dependencies (see MRS metabolite
correction section).

Total brain volume was estimated from the MPRAGE image using
the FSL FAST segmentation tool (Jenkinson et al., 2012; Zhang et al.,
2001). This approach yields probabilistic segmented imageswith values
ranging from 0 to 1 in every voxel for GM,WM, and CSF. Final tissue as-
signment in each voxel was accomplished by selecting the maximum
probability value of the three tissue types, guaranteeing that only one
tissue is assigned to each voxel uniquely. Total GM and WM volumes
were calculated separately by summing the volume across voxels
assigned each tissue type, respectively. Total brain volume was taken
as the sum of the GM and WM volumes.

Statistical analysis of behavioral and MRS data

All statistical analyses were carried out using R version 3.1.1 (www.
r-project.org).

Fluid intelligence composite and factor score construction
Behavioral performance on the Gf tests and working memory tests

was analyzed in two ways. First, each of the tests of Gf and working
memorywere standardized before being summed to create a composite
Gf and composite working memory score (Baniqued et al., 2014). Sec-
ond, all six Gf and working memory tests were submitted together to
an exploratory factor analysis to characterize sub-domains of Gf and
working memory (via PCA; Abdi and Williams, 2010; Jolliffe, 2002).
Use of an exploratory factor analysis allows us to investigate the interre-
latedness of the tests, the cognitive factors, and to probe sub-domains of
Gf in greater detail. Factor scores for each retained componentwere cal-
culated after applying a rotation (both oblique and orthogonal rotations
were tested — see PCA of Gf and working memory tests section). We
compared results from the factor analysis to those of the standardized
composite Gf score.

MRS metabolite correction
Subjects with spectroscopy data were excluded if the full width at

half maximum (FWHM) reported by LCModel was greater than 10 Hz
(an effective cutoff for identifying subjects with poor spectral quality;
five subjects excluded) or the segmentations in SPM8 failed (two sub-
jects excluded).

Calculated metabolite concentrations depend on the volume frac-
tions of brain tissues within the single voxel spectroscopy scan
(e.g., NAAt is known to be greater in GM than in WM (Gasparovic
et al., 2006; Pfefferbaum et al., 1999). We observed highly significant
(two-tailed) correlations between NAAt and GM [r(209) = 0.66,
p b 0.001] and CSF [r(209) = −0.79, p b 0.001] volume fractions
within the SVS volume. Because of this observed systematic depen-
dence, we corrected the water-scaled concentration values for tissue
fraction by implementing a statistical correction. We fit a multiple re-
gression model predicting the metabolite NAAt by GM and CSF frac-
tions, and then computed the residuals from that model to use as our
metabolite corrected for tissue fractions. This procedure de-correlates
the metabolite with respect to the tissue fractions (all p-values
N0.99), and controls for the possibility that relationships observed be-
tween NAAt and cognitive variables are simply a byproduct of differ-
ences in tissue volume fractions. Concentrations of NAAt measured
with this technique are referred to as NAAt-corrected.

Models of interest
The relationship between cognitive factors and metabolites was

first assessed using Pearson's correlation, and then tested further
via multiple linear regression including other covariates. Perfor-
mance on Gf tests tasks may vary with age (Horn and Cattell, 1967)
and sex (Irwing and Lynn, 2005); thus, including these as covariates
in amore detailed analysis provides more information about the nature
of the NAA–intelligence relationship. The regression model predicted
cognitive factor scores (dependent variable) from the metabolite con-
centration, estimated brain volume (independent variables) and age
and sex (covariates). Finally, we re-computed all statistical tests for
males and females separately to determine if the magnitude of correla-
tions differs across sexes.

Results

PCA of Gf and working memory tests

To perform dimensionality reduction with PCA, one common ap-
proach is to retain enough components to explain a fixed amount of
the total variance, typically in the range of 70% to 95% (Jolliffe, 2002).
We conservatively set our a priori inclusion criterion at 70% of the vari-
ance explained (i.e., our factor solution should explain a minimum of
70% of the variance in the data). Initially we performed an oblique rota-
tion because this solution does not impose orthogonality on the recov-
ered components, and previous work suggests that Gf and working
memory are correlated. To meet our criterion, three components were
retained accounting for 75% of the variance in the data. The largest cor-
relation between factors was 0.344 (between components one and
two),which is just above the 0.32 cut off recommended for determining
whether factors are orthogonal (Tabachnick and Fidell, 2007). This sug-
gests that the components are not sufficiently orthogonal to justify
using an orthogonal (varimax) rotation. However, we also applied a
varimax rotation (Supplementary Table 1) to further corroborate the
factor structure and to help confirm our interpretation of the Gf and
working memory factors.

Descriptive statistics for each test appear in Table 2, and Table 3
shows the rotated pattern matrix for the three retained components.
Note that this pattern matrix was qualitatively identical using either
an oblique or orthogonal rotation scheme (see Supplementary Table 1
for the orthogonal rotation patternmatrix).We observed a clear separa-
tion between the working memory and Gf tests. All three working
memory tests largely load onto only the first component whereas the
Gf tests split between the second and third components. Number Series
and Letter Sets clearly load onto different Gf factors (see Table 3);
BOMAT loads somewhat on bothGf factors, though itmost strongly con-
tributes to the second component. For clarity and ease of understanding
— together with the observed numerical loadings—we refer to the first
factor as working memory, the second as verbal/spatial reasoning and
the third as quantitative reasoning. Our factor structure implies that
the two Gf factors we observe are both separable fromworking memo-
ry; such a separation between Gf and workingmemory has been previ-
ously observed in a factor analysis that used tests similar to those used
here (Foster et al., 2015).

Both Gf factor scores are positively correlated with the composite Gf
score: verbal/spatial factor, r(209) = 0.823, p b 0.001 or 67.8% shared
variance; quantitative factor, r(209)= 0.693, p b 0.001, or 48.0% shared
variance. The working memory factor score is very highly correlated
with the working memory composite score: r(209) = 0.998, p b 0.001.

Bivariate correlations between Gf and brain biomarkers

Weobserved that NAAt-corrected is positively correlatedwith verbal/
spatial reasoning (Fig. 2), but not correlated with quantitative reasoning

http://www.r-project.org
http://www.r-project.org


Fig. 2. Scatter plot of NAAt-corrected and the verbal/spatial Gf component. Dashed lines
represent 90% confidence interval of prediction.

Table 3
Rotated pattern matrix (oblique rotation).

Working memory Verbal/spatial Quantitative

BOMAT 0.05 0.66 0.38
Number Series 0.02 −0.01 0.95
Letter Sets 0.01 0.92 −0.1
Reading span 0.71 0.19 −0.15
Rotation span 0.89 −0.11 0.03
Symmetry span 0.78 0.03 0.08
Proportion variance explained 0.33 0.23 0.19

Note: Numbers in bold correspond to variables with largest loadings and therefore princi-
pally associated with each pattern.
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(see Table 4).1 In contrast, brain volume is strongly correlatedwith quan-
titative, but not verbal/spatial reasoning. These results therefore reveal a
striking dissociation: brain volume is amarker of the quantitative reason-
ing factor, and NAAt-corrected is amarker of the verbal/spatial reasoning
factor. Theworkingmemory factor largely reflects the results of the quan-
titative reasoning factor: it is positively correlated with total brain vol-
ume, GM volume, and WM volume, but not NAAt-corrected.

Furthermore, the correlations between the Gf factors and bio-
markers are substantially stronger than the correlations between the
composite Gf score and biomarkers (see Table 4). This underscores the
power of the factor analytic approach employed here: the observed
specificity of these empirically derived factors of fluid intelligence for
very different brain biomarkers is lost when using a simple composite
score. Finally, the observed relationship between brain volume and
the quantitative factor score is not overwhelmingly driven by a single
tissue type as both GM and WM volumes are significantly correlated
with the quantitative factor score. Neither GM volume norWM volume
were significantly correlated with the verbal/spatial factor score.

Note that three subjects' original NAAt values fall outside 3 standard
deviations from the mean NAAt value. We therefore removed these
three data points and re-calculated all bivariate correlations. The pat-
tern of results and significance were qualitatively unchanged; thus, all
subjects are included here and in all subsequent analyses.

Confirmatory modeling: cognitive factors and brain biomarker models
controlling for covariates

To assess the robustness of each Gf–biomarker relationship, we fit a
regression model that simultaneously included both biomarkers, NAAt-
corrected and brain volume, while also including age and sex as covar-
iates. To ensure ourmeasured biomarkers are not systematically related
to each other and are independently predicting variance in the full mul-
tiple regression model, we first computed the correlations between
NAAt-corrected and brain volume. No linear relationship between the
biomarkers was observed (p = 0.96, two-tailed). Similarly no relation-
ship was observed between NAAt-corrected and total whitematter vol-
ume (p = .41, two-tailed) or total gray matter volume (p= 0.64, two-
tailed); because GM and WM volume correlations were similar to total
brain volume (see Table 4), and total brain volumewas highly correlat-
ed with both GM and WM (both r N 0.97), only total brain volume was
included in the regression analyses.

This model was fit separately for each of the cognitive factor
scores as well as the cognitive composite scores; the standardized re-
gression parameter estimates and p-values for each biomarker ap-
pear in Table 5. After controlling for covariates, the composite Gf z-
score is significantly correlated with NAAt-corrected, and has a
trending positive correlation with brain volume. However, the disso-
ciation between NAAt-corrected and brain volume with the verbal/
1 Creatine (Cr) and Choline (Cho) are common metabolites typically estimated in the
spectra togetherwithNAAt. Correlations between all cognitive data and thosemetabolites,
as well as ratios of those metabolites, are reported in Supplementary Table 2.
spatial component and the quantitative component persists, sug-
gesting that both NAAt and brain volume independently correlate
with different facets of Gf even after controlling for performance dif-
ferences driven by age, sex, and education. Brain volume remained
the only biomarker significantly related to the working memory
composite and factor scores.

For conciseness, the covariates' parameter estimates are not pre-
sented in Table 5. However, the following covariates were trending or
significant predictors in the models: age had a trending negative rela-
tionship with working memory (p = 0.076), and a significant negative
relationship with quantitative reasoning (p= 0.03); similarly sex had a
trending relationship with quantitative reasoning (p = 0.084).

Sex differences in NAA and Gf

Descriptive statistics and PCA of Gf tests
Descriptive statistics for both males and females on each Gf test are

presented in Table 2. Males and females performed equivalently on
BOMAT and Letter Sets; however, males performed significantly better
than females on Number Series in the present sample, t(209) = 3.28,
p = 0.001. Descriptive statistics for the working memory tests also ap-
pear in Table 2. There were no significant sex differences in any of the
working memory tests.

Our data reveal some sex differences in the biomarkers. Males have
higher brain volume, t(209) = 8.92, p b 0.001 two-tailed, whereas fe-
males exhibit higher levels of NAAt (uncorrected for tissue fractions),
t(209) = −3.6, p b 0.001 two-tailed. However, no sex differences are
apparent in NAAt after performing the statistical correction for tissue
volume fractions (p= 0.15 two-tailed); thus, this difference is spurious
and likely driven by male/female differences in tissue volume fractions
within the MRS imaging volume.

We conducted exploratory PCA to further examine the factor
structure of Gf in males versus females: as before, an oblique rotation
was used and three factors were retained for both groups explaining
a total of 75% and 73% of the variance, respectively (Table 6). Notably,
the factor structure and loadings for males qualitatively replicates
that observed for the entire sample (i.e., including bothmales and fe-
males); however, the factor loadings for females are slightly differ-
ent. Although Number Series and Letter Sets still load most heavily
on separate components, BOMAT shares its heaviest loading with
Number Series for females (Table 6). Therefore, for females only,
we refer to the first reasoning factor as “quantitative/spatial” and
the second factor as “verbal.” As in the full sample, the working
memory tests loaded most heavily on a distinct and separate compo-
nent for both males and females.



Table 4
Bivariate correlations between cognitive scores and brain biomarkers (n = 211). All p-values are two-tailed.

NAAt-corrected Brain volume GM volume WM volume

Gf-composite 0.128 (p = 0.063) 0.15 (p = 0.026) 0.16 (p = 0.02) 0.136 (p = 0.049)
WM-composite 0.074 (p = 0.3) 0.204 (p = 0.003) 0.206 (p = 0.003) 0.19 (p = 0.006)
Working mem 0.063 (p = 0.361) 0.211 (p = 0.002) 0.213 (p = 0.002) 0.197 (p = 0.004)
Verbal/spatial 0.211 (p = 0.002) 0.009 (p = 0.895) −0.001 (p = 0.989) 0.003 (p = 0.961)
Quantitative −0.048 (p = 0.484) 0.237 (p b 0.001) 0.256 (p b 0.001) 0.208 (p = 0.002)
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Bivariate correlations between Gf and brain biomarkers
We investigatedwhether the correlations between brain biomarkers

and eachGf factor score are retainedwithin each sex. Table 7 reports the
correlations for each Gf component separately formales and females. As
before, the composite Gf score shows weaker correlations across both
biomarkers. Males demonstrate significant correlations between
NAAt-corrected and verbal/spatial as well as between brain volume
and quantitative reasoning, echoing the double dissociation reported
for the full sample. Although females demonstrate non-significant cor-
relations of lesser magnitude, the pattern is still consistent with the
full sample's pattern of results.

The slightly larger sample of males yieldedmore power to detect ef-
fects; however, the observedmagnitude of correlations were not statis-
tically different between males and females. Both the correlation
between NAAt-corrected and the principally verbal component as well
as the correlation between brain volume and the principally quantita-
tive component were not significantly different between males and fe-
males (z = 0.13, p = 0.897; z = 0.31, p = 0.757, respectively).
Similarly, the correlation between brain volume and theworkingmem-
ory component was not significantly different between males and fe-
males (z = −0.54, p = 0.59).

Discussion

To our knowledge, the present data set is the largest sample relat-
ing Gf to both NAA and brain volume. Here, we showed that NAA
(measured in the posterior cingulate cortex (PCC) and parietal cor-
tex) and brain volume are dissociable predictors of two distinct com-
ponents derived from our Gf tests: NAA predicts our verbal/spatial
reasoning component, whereas brain volume predicts our quantita-
tive reasoning component. Importantly, the biomarkers are more
strongly correlated with those factor components than with a com-
posite Gf score, indicating that our use of an empirical factor analytic
approach offers a more nuanced, rich view of this particular data set,
suggesting that the biomarkers exhibit specificity for separate, mea-
surable sub-domains of fluid intelligence independent of working
memory. Our data further show that this pattern of results replicates
for males and females.

Brain biomarkers of fluid intelligence and working memory

The positive correlation between Gf andNAAobserved here is in line
with many previous MRS-cognition studies (Ross and Sachdev, 2004)
and is congruent with the hypothesis that NAA is a marker for general
Table 5
Standardized regression coefficients.

NAAt-corrected Brain volume

b-Estimate SE p b-Estimate SE p

Gf-composite 0.154 0.07 0.029 0.139 0.081 0.086
WM-composite 0.098 0.07 0.16 0.225 0.08 0.006
Working memory 0.09 0.07 0.198 0.228 0.08 0.005
Verbal/spatial 0.208 0.07 0.003 0.057 0.081 0.483
Quantitative 0.001 0.069 0.984 0.15 0.079 0.058
neuronal health or density (Moffett et al., 2007), but independent of
brain volume, and perhaps reflective of capacity for cognitive perfor-
mance. The magnitude of the Gf–NAA correlation value reported here
is lower than those typically reported (see Patel et al., 2014). This is con-
sistent with the fact that large studies tend to report smaller effect sizes
(Patel et al., 2014), likely because the positive NAA–cognition relation-
ships are somewhat over-estimated in smaller samples.

Similarly, the observed positive correlations between brain volume
and intelligence in the present study are consistent with a large litera-
ture demonstrating similar results (McDaniel, 2005). The underlying
factors driving the well-established brain volume-intelligence relation-
ship are largely unknown. One possibility is that the correlation is driv-
en by gene–environment interactions, suggesting more complex, bi-
directional causality in the relationship between intelligence and brain
volume (Rushton and Ankney, 2009). Another possibility is that a larger
brain size is advantageous for intelligence because of fundamental ar-
chitectural, histological, and/or biochemical properties of the brain.
One study has reported a positive relationship between white matter
volume and NAA (Jung et al., 2005), suggesting that brain biochemistry,
metabolism and volume may be interrelated. However, two studies
have reported positive NAA–intelligence relationshipswhile controlling
for brain size, suggesting that NAA and brain volume are independent
predictors of intelligence (Aydin et al., 2012, Nikolaidis et al., 2016).

Brain volume, but not NAA, is also significantly correlated with the
working memory factor in our analysis. While previous research has
shown positive correlations between working memory and brain vol-
ume (Wickett et al., 2000),MRS-cognition studieswithmemory are rel-
atively small in number and, as with intelligence, report disparate
results. One study reported a positive correlation between NAA (as a
ratio to choline) and tests of memory in the medial temporal lobes
(Giménez et al., 2004) and another study reported that NAA in frontal
WM is positively correlated with working memory (Yeo et al., 2000).
In contrast, onemultiple single-voxelMRS study reported no significant
correlations with working memory in either occipital–parietal WM or
frontal WM (Jung et al., 2005), and a recent multi-voxel study reported
no significant correlation with working memory (Nikolaidis et al.,
2016). Our data suggest that NAA is a specific marker for Gf, whereas
NAA/Cr is related to working memory (Supplementary Table 2). Our
data also suggest that workingmemory is only weakly related to Gf. Al-
though much psychometric evidence suggests a strong relationship be-
tween Gf and working memory, there is an active debate regarding the
nature and strength of this relationship (Ackerman et al., 2005;
Chuderski, 2013; Colom et al., 2015; Conway et al., 2003; Kane et al.,
2005) — for example, one study (Chuderski, 2013) has argued that Gf
and working memory are only strongly related when time pressure is
applied in Gf tests. Appealing to relationships with brain biomarkers
may help to further disentangle under what psychometric conditions
working memory and Gf are related. Minimally, our results hint that
the relationship between verbal/spatial reasoning and NAA is not de-
pendent on working memory, but the relationship between quantita-
tive reasoning and brain volume could partly depend on working
memory.

Our results clearly demonstrate that NAA and brain volume (includ-
ing segmented GMandWMvolumes) are independent, dissociable pre-
dictors of separable sub-components of fluid intelligence, suggesting
that a more thorough understanding of the neural mechanisms of Gf



Table 6
Gf factor description by sex.

Males Females

Working memory Verbal/spatial Quantitative Working memory Quantitative/spatial Verbal

BOMAT 0.11 0.74 0.17 0.01 0.67 0.49
Number Series 0 0.03 0.97 0.04 0.91 −0.18
Letter Sets −0.03 0.93 −0.04 0.07 −0.08 0.9
Reading span 0.74 0.17 −0.14 0.64 0.04 0.15
Rotation span 0.88 −0.14 0.09 0.89 −0.04 −0.02
Symmetry span 0.78 0.1 0.01 0.82 0.05 −0.02
Proportion variance explained 0.33 0.25 0.17 0.32 0.22 0.19

208 E.J. Paul et al. / NeuroImage 137 (2016) 201–211
may require tests and analysis techniques (e.g., exploratory factor anal-
ysis) sensitive to identifying various sub-domains of intelligence.

Varieties of intelligence have been psychometrically describedwith-
in several frameworks and taxonomies. The Cattel–Horn–Carrol (CHC)
framework (Carroll, 1993; Horn and Noll, 1997; McGrew, 2009) is per-
haps the most widely accepted psychometric-based theory of intelli-
gence and posits at least nine broad domains of intelligence (including
Gf),withdozens of narrowdomainsnested under them.Our factor anal-
ysis reveals that tests of quantitative and verbal reasoning split into sep-
arate factors, which is consistent with the specification of quantitative
reasoning as a narrow ability feeding into Gf in the CHC framework
(McGrew, 2009). Moreover, re-analysis of theWAIS-IV intelligence bat-
tery using a 5-factor (instead of 4-factor) structure (Benson et al., 2010;
van Aken et al., 2015;Weiss et al., 2013)matches this psychometric de-
scription, revealing a quantitative reasoning sub-factor nested beneath
Gf (Benson et al., 2010; Weiss et al., 2013).

The exploratory factor analysis we present here bears some resem-
blance to the CHC framework: BOMAT and Letter Sets together may re-
semble a more broad Gf factor combining verbal and spatial reasoning
(this factor accounts for the most variance in our Gf test battery);
Number Series primarily contributes to a quantitative reasoning fac-
tor (although not explicitly nested beneath the first factor, it ac-
counts for less total variance in the Gf test battery). In the full
sample, BOMAT loads primarily with Letter Sets, but also with Number
Series (Table 3). This is consistent with previous results demonstrating
that the Raven's Progressive Matrices (RPM), which is similar to the
BOMAT, shares variance with both Letter Sets (Hambrick, 2003) and
Number Series (Ackerman et al., 2002). Because the BOMAT has shared
variance with both our spatial and quantitative reasoning components,
it is likely that both are necessary for performing this test. Upon splitting
our sample betweenmales and females, BOMAT loads less on quantita-
tive reasoning in males, but more on quantitative reasoning in females.
Table 7
Bivariate correlations between Gf and brain biomarkers by sex. All p-values are two-tailed.

NAAt-correcte

Males n = 121 Gf-composite 0.144
(p = 0.115)

Working memory-composite 0.111
(p = 0.226)

Working memory 0.093
(p = 0.313)

Verbal/spatial 0.212
(p = 0.019)

Quantitative −0.026
(p = 0.775)

Females n = 90 Gf-composite 0.12
(p = 0.258)

Working memory-composite 0.056
(p = 0.598)

Working memory 0.048
(p = 0.652)

Verbal 0.195
(p = 0.065)

Quantitative/spatial 0.018
(p = 0.863)
Previous studies suggest that males perform better on quantitative rea-
soning (Geary et al., 2000), whereas females exhibit an advantage in
verbal reasoning (Halpern, 2013). These relative strengths may even
exist on an androgynous continuum, in which the degree of testoster-
one exposure in infancy predicts whether the pattern of cognitive per-
formance is more male-like with higher quantitative performance, or
more female-like with higher verbal performance (Luxen and Buunk,
2005). In our sample, althoughmales showed an advantage in quantita-
tive reasoning ability, results from both sexes demonstrate that the
quantitative reasoning is positively correlated with brain volume,
specifically gray matter (GM) volume. Some research has reported evi-
dence that intelligence ismore strongly related to graymatter structure
in males and white matter structure in females (Gur et al., 1999; Haier
et al., 2005); however, our data did not reveal this pattern of results,
and instead suggest that the largestmagnitude of correlation is between
quantitative reasoning and GM volume for both males and females
(Table 7).

While the CHC framework describes domains of intelligence de-
rived from a broad array of tests, sub-domains of Gf have been previ-
ously characterized through factor analysis of item-level responses
on the RPM. In addition to a perceptual or Gestalt factor, two distinct
analytical factors have been identified (Lynn and Irwing, 2004;
Mackintosh and Bennett, 2005). The first of these factors relates to
verbal-analytic reasoning and exhibits no sex differences. The sec-
ond analytic factor exhibits a male advantage (Mackintosh and
Bennett, 2005). Interestingly, performance on this factor correlates
with math ability in males but not in females, suggesting that
males may solve these particular problems by employing specific
cognitive processes related to mathematical reasoning or translation
of problems into mathematical terminology, whereas females may
employ more general cognitive abilities (Plaisted et al., 2011).
These findings suggest that the verbal-analytic factor may provide
d Brain volume GM volume WM volume

0.129
(p = 0.16)

0.143
(p = 0.117)

0.103
(p = 0.26)

0.178
(p = 0.051)

0.178
(p = 0.051)

0.164
(p = 0.072)

0.176
(p = 0.053)

0.178
(p = 0.051)

0.161
(p = 0.078)

0.045
(p = 0.625)

0.047
(p = 0.606)

0.039
(p = 0.673)

0.186
(p = 0.041)

0.212
(p = 0.02)

0.144
(0.115)

0.143
(p = 0.178)

0.141
(p = 0.186)

0.133
(p = 0.212)

0.251
(p = 0.017)

0.239
(p = 0.023)

0.241
(p = 0.022)

0.249
(p = 0.018)

0.239
(p = 0.023)

0.238
(p = 0.024)

0.068
(p = 0.527)

0.026
(p = 0.808)

0.108
(p = 0.311)

0.143
(p = 0.178)

0.175
(p = 0.099)

0.095
(p = 0.372)
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a more representative, global measurement of Gf, characterizing rea-
soning abilities that do not differ by sex (Plaisted et al., 2011).

A comparison between this literature and our results reveals similar
patterns. As with the second analytic component (Mackintosh and
Bennett, 2005), sex differences are observed in our sample for theNum-
ber Series test, which principally contributes to our quantitative reason-
ing Gf factor. Moreover, factor analysis for males only showed that
performance on the Number Series test is distinct from performance
on the BOMAT, whereas for females the Number Series test loaded
with the BOMAT (Table 6). The BOMAT is closely related to the RPM,
which is believed to be an accurate measurement of a general cognitive
process that underscores intelligence (Jensen, 1998). These results
therefore support the possibility that females may have beenmore like-
ly to use general fluid reasoning processes to complete the Number Se-
ries test, whereas males may have employed more specific cognitive
processes related to mathematical reasoning, though further experi-
ments designed to specifically test this hypothesis are necessary.

In contrast to the Number Series test, the Letter Sets test and the
BOMAT test exhibit no sex differences and contribute to the verbal/
spatial reasoning component. This component resembles the verbal-
analytic reasoning factor derived from the RPM, which does not exhibit
sex differences and may reflect a more general cognitive process
(Plaisted et al., 2011). In our data, we observe positive correlations be-
tween NAA and verbal/spatial reasoning; thus, NAA concentration
may be sensitive to general cognitive processes that underscore fluid in-
telligence. In our data, brain volume correlated positively with the
quantitative reasoning factor; thus, brain size may be more sensitive
to specific cognitive processes that differ between sexes and that do
not contribute significantly to general intelligence (Burgaleta et al.,
2012).

Our measurements of NAA were taken from medial parietal gray
matter and the posterior cingulate cortex (PCC). The current results sug-
gest that the oxidative metabolism in the PCC may also be sensitive to
fluid cognitive processes. The Parieto-Frontal Integration Theory of in-
telligence proposes a four-stage information processing model of intel-
ligence (Colom et al., 2010; Jung & Haier, 2007). In the first two stages,
sensory information is initially processed, integrated across modalities,
and abstracted. In the final two stages the frontal and parietal regions
interact to form hypotheses and form and inhibit responses. The rela-
tionship of the PCC to regions involved in these final two stages, in con-
cert with our results demonstrating PCC NAA to predict fluid reasoning
ability, suggest that oxidative metabolism in the PCC may be reflective
of high functioning in the frontal–parietal network responsible for hy-
pothesis and response formation. Furthermore, our results provide pre-
liminary evidence that this network of brain regionsmay be less related
to quantitative reasoning and more exclusively related to verbal and/or
spatial reasoning processes (perhaps depending on sex). Recent work
suggests that subcomponents of intelligence are indeed fractioned
across different, unique brain networks (Hampshire et al., 2012).

Limitations and future directions

The additional domains of cognition measured by our battery may
provide clues about the relationship of NAA to Gf. However, our battery
did not include other cognitive faculties that may be of particular rele-
vance for understanding the NAA–Gf relationship. For example, some
evidence suggests that NAA may be sensitive to processing speed as
measured by performance on timed tests (Jung et al., 1999), owing to
its role as a precursor for myelin in WM (Moffett et al., 2007), though
a recent report did not find support for this hypothesis (Patel et al.,
2014). It is possible that different processing speed demands, or interac-
tions between NAA concentration and processing speed demands may
factor into our reported dissociation. Without processing speed mea-
sures, our data cannot account for this possibility; thus, future studies
will benefit from including a wider array of tests to help account for
these and other possibilities.
Future studies may also benefit from experiments designed to more
fully characterize the water signal that is used to normalize the NAA
signal. Such experiments are motivated by the fact that creatine and
choline, which also show weak correlations with verbal/spatial reason-
ing, are normalized by the same water signal. To learn whether this
water signal may be contributing to the observed correlations, future
experiments can include directmeasurements of the relaxation proper-
ties of the water and the volume of NMR-visible water in the voxel
(Gasparovic et al., 2009), thereby avoiding the need to assume the
same literature values for these properties in all subjects. Additionally,
future studies will benefit from multi-voxel MRS techniques providing
measurement of NAA in a variety of brain regions (Jung et al., 1999;
Nikolaidis et al., 2016). This information should be combined with
other types of imaging data including regionally specific MRI measures
of volumetrics in brain regions specifically linked to intelligence, struc-
tural white matter integrity between such regions (via DTI), or perhaps
functional connectivity between regions (via resting state fMRI) to dis-
entangle how regional neurometabolites, structure, and function to-
gether support Gf.

Finally, studies seeking to better understand intelligence and its re-
lationship to brain metabolites should investigate whether controlled
interventions can produce changes in NAA concentration, and critically,
whether these changes are associated with improvements in intelli-
gence. Whether or not such interventions are efficacious may further
inform the clinical relevancy of these biomarkers to diseases such as
Alzheimer's disease and autism spectrum disorder, in which both
brain volume and NAA concentrations are altered (Corrigan et al.,
2013; Fox and Schott, 2004; Pfefferbaum et al., 1999; Piven et al., 1995).
Conclusion

To our knowledge, this is the largest study investigating the relation-
ship between the concentration of the brainmetabolite NAA andGf. De-
spite years of research consistently demonstrating positive correlations
between brain volume and intelligence, our results showed that NAA
concentration and brain volume are dissociable biomarkers of facets of
Gf independent of working memory: NAA positively correlated with
verbal/spatial Gf whereas brain volume correlated with quantitative
Gf. Additionally, this pattern of results was observed for males and fe-
males separately. This finding suggests that different brain biomarkers
may uniquely reflect different aspects of human cognition, and that a
complete understanding of the neurobiological bases of intelligence re-
quires a complete characterization of such biomarkers.
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