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Background and Purpose: The Cilostazol Stroke Prevention Study II has shown a similar efficacy in stroke pre-
vention but markedly fewer hemorrhagic events with the phosphodiesterase inhibitor cilostazol versus aspi-
rin. The purpose of this study is therefore to investigate how cilostazol affects cerebral hemodynamics and
whether it prevents hemorrhagic transformation induced by recombinant tissue plasminogen activator
(rtPA) in a mouse model of focal ischemia/reperfusion. Particular emphasis will be placed on the plasma-
microvessel interface.
Methods: After receiving food containing 0.3% cilostazol or standard food for 7 days, adult C57BL/6 J mice
were subjected to middle cerebral artery occlusion/reperfusion with or without rtPA (10 mg/kg) intrave-
nously administered prior to reperfusion. Cerebral blood flow was monitored at several time points by
laser speckle imaging in the 24 hour period post reperfusion, before neurobehavioral and histological assess-
ment. The long-term effect of cilostazol on cerebral ischemia was analyzed in the non-rtPA cohort.

Results: In the non-rtPA cohort, pretreatment by cilostazol significantly decreased the endothelial expression
of adhesion molecules (P-selectin and intercellular adhesion molecule-1) and prevented platelet aggregation
and leukocyte plugging in the microvessels after cerebral ischemia/reperfusion in the acute phase. Cilostazol
significantly reduced mortality rate and improved motor function at 7 days post-ischemia/reperfusion. In the
rtPA cohort, cilostazol significantly suppressed edema formation and hemorrhagic transformation with re-
duced density of microglial cells positive for matrix metalloproteinase-9 in the cerebral cortex and the stria-
tum. In both cohorts, cilostazol significantly suppressed focal no-reflow, mitigated cerebral infarct, and
improved neurological outcome.
Conclusions: Cilostazol may possess protective properties against cerebral ischemic injury by preventing no-
reflow and hemorrhagic transformation, via maintenance of microvascular integrity.
© 2011 Elsevier Inc.Open access under CC BY-NC-ND license.
M
Introduction

Virchow's triad has been proposed to describe the vascular basis of
ischemic injury in the central nervous system (del Zoppo, 2008). The
triad elements consist of injury to vascular endothelium, abnormalities
of hemorrheology, and reduction of flowwithin vascular bed. Their tar-
gets are blood vessels, blood elements (i.e., leukocytes, platelets, and co-
agulation/fibrinolysis system), and blood flow, respectively.
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Virchow's multifactorial conceptualization suggests that agents that
simultaneously affect more than one element of the triad could be bene-
ficial in reducing the consequences of ischemic injury instead of targeting
just one element of the triad. In support of this hypothesis, targeting just
one element–inhibition of platelet activation using an αIIbβ3 inhibitor
resulted in symptomatic hemorrhage in rodent or nonhuman primate
focal ischemia models (Abumiya et al., 2000). Thus, compounds that
not only affect platelet function directly, but also indirectly, via action
at the vascular wall, may prove useful. For instance, dipyridamole can in-
hibit platelet aggregation by direct action through a mechanism involv-
ing phosphodiesterase-5 but also indirectly by increasing endothelial
cell-dependent adenosine concentrations (FitzGerald, 1987). According-
ly, the ESPRIT study indicated that the combination regimen of aspirin
plus dipyridamole was superior to aspirin alone as antithrombotic ther-
apy after cerebral ischemia of arterial origin (Halkes et al., 2006).

Another phosphodiesterase inhibitor, cilostazol, acts as an antiplate-
let agent and has other pleiotropic effects based on phosphodiesterase-
3-dependent mechanisms (Liu et al., 2001). Increasing evidence sug-
gests that cilostazol offers endothelial protection, via an inhibition of
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apoptosis in endothelial cells (Kim et al., 2002), attenuates the pheno-
typic modulation of vascular smooth muscle cells (Fujita et al., 2008),
and sustains blood flow by endothelium-independent vasodilation
(Tanaka et al., 1989). This suggests that cilostazol can affect not only
blood elements, such as platelets, but also blood flow and blood vessel
integrity, namely all the three elements of Virchow's triad. The recently
published Cilostazol Stroke Prevention Study (CSPS)-II showed that
cilostazol was, at least, noninferior to aspirin in the prevention of recur-
rent stroke in patients who had noncardioembolic stroke, andwas safer
than aspirin; however, cilostazol showed significantly increased side ef-
fects, i.e. diarrhea, headache, dizziness, palpitations, as compared to as-
pirin when used in secondary stroke prevention (Shinohara et al.,
2010). Notably, patients taking cilostazol were significantly (54%) less
likely to suffer a bleeding event, strengthening the notion that the
drug not only has antiplatelet effects but also multifunctional roles
that affect more than one target of Virchow's triad with respect to cere-
bral ischemia.

This study was therefore sought to address the mechanisms be-
hind cilostazol's effect on Virchow's triad and any resultant neurovas-
cular dysfunction after focal ischemia. We therefore assessed whether
and, if so, how cilostazol improves the no-reflow phenomenon and
how cilostazol prevents recombinant tissue plasminogen activator
(rtPA)-induced hemorrhagic transformation in a mouse model of
focal ischemia. Particular emphasis was given to the elements of the
triad and the plasma-microvessel interface.

Materials and methods

Animals, treatments, and surgical procedures

The experimental protocol is described in Fig. 1. A total of 79 male
C57BL/6 J mice (10–12 weeks old, weighing 24–29 g; CLEA Japan, Inc.,
Tokyo, Japan) were fed with the pelleted food containing 0.3% cilosta-
zol (cilostazol-treated mice, n=39) or pelleted food only (vehicle-
treated mice, n=40) for 7 days before the operation. All procedures
were performed in accordance with the guidelines for animal exper-
imentation from the ethical committee of Kyoto University. The
Fig. 1. Experimental protocol. MCAO, middle cerebral artery occlusion; CBF, cerebral blood fl

munohistochemistry; EB, Evans blue; MMP-9, matrix metalloproteinase-9. Exp. 1: total n=
n=6). Exp. 3: total n=12 (cilostazol, n=6; vehicle, n=6). Exp. 4: total n=25 (cilostazol
mice were given access to food and water ad libitum. We performed
middle cerebral artery occlusion/reperfusion (MCAO/R) without
blockade of either common carotid artery or pterygopalatine artery
blood flow. Detailed surgical procedures of MCAO/R are as follows:
Mice were subjected to middle cerebral artery occlusion/reperfusion
(MCAO/R) surgery after being anesthetized with 1.5% isoflurane in
air. Body temperature was maintained at 37.0±0.5 °C with the aid
of feedback warming pad during operation. A midline incision was
made in the neck, and the right common carotid artery (CCA), exter-
nal carotid artery and internal carotid artery were isolated from the
vagus nerve. Occipital, superior thyroid, lingual, maxillary arteries,
and the external carotid artery were cauterized and cut so that the in-
ternal carotid artery and pterygopalatine artery (PPA) were visual-
ized. The stump of the external carotid artery was cut and a
filament made of 15 mm of 8–0 nylon string coated with silicon
(180–200 μm diameter) was carefully advanced to 11 mm from the
carotid artery bifurcation, or until resistance was encountered. We
performed MCAO without blockade of either CCA or PPA blood flow
(Chen et al., 2008). Approximately 60% reduction of CBF was
achieved, as shown previously (Chen et al., 2008). After 45 or 90 mi-
nutes of MCAO, the filament was carefully withdrawn to induce vas-
cular re-canalization/reperfusion.

Recombinant tissue plasminogen activator administration

rtPA (10 mg/kg alteplase dissolved with 150 μl of normal saline;
Mitsubishi Tanabe Pharma Corporation, Osaka, Japan) was adminis-
tered through tail vein immediately before reperfusion (45-minute
MCAO/R plus rtPA, total n=12 (cilostazol, n=6; vehicle, n=6),
90-minute MCAO/R plus rtPA, total n=12 (cilostazol, n=6; vehicle,
n=6)). The dose was in accordance with previous studies (Kollmar
et al., 2004).

Measurement of cerebral blood flow

Relative CBF was determined by laser speckle perfusion imaging
(Omegazone, Omegawave, Inc., Tokyo, Japan), which obtains high-
ow; rtPA, recombinant tissue plasminogen activator; IF, immunofluorescence; IHC, im-
20 (cilostazol, n=10; vehicle, n=10). Exp. 2: total n=12 (cilostazol, n=6; vehicle,
, n=12; vehicle, n=13).
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resolution, two-dimensional imaging and has a linear relationship
with absolute CBF values (Fujita et al., 2010). Recordings were per-
formed through the skull under 1.5% isoflurane anesthesia. The peri-
osteum, which adheres to the skull, was widely removed with fine-
tip forceps. For each recording, the skull surface was wiped with
saline-soaked gauze and then covered with a thin layer of gel (Aqua-
sonic, Parker Laboratories, Inc., Fairfield, NJ) to prevent drying. Cali-
bration was carried out with a calibration reference device
(Calibrator S/N 080715-5, Omegawave, Inc., Tokyo, Japan) before
each test. The mean CBF was measured in identically sized regions
of interest (900 pixels) located 3 mm posterior and 2.5 mm lateral
from the bregma. Five recordings of CBF were averaged and CBF
values were expressed as a percentage of the preoperative value.

Motor function assessment

Twenty four hours after the surgery, mice (45-minute MCAO/R,
total n=20 (cilostazol, n=10; vehicle, n=10), 45-minute MCAO/R
plus rtPA, total n=12 (cilostazol, n=6; vehicle, n=6), 90-minute
MCAO/R plus rtPA, total n=10 (cilostazol, n=5; vehicle, n=5))
were examined for neurological deficits using a 5-point scale (Chan,
1994). Normal motor function was scored as 0, flexion of the contra-
lateral torso and forelimb on lifting the animal by the tail as 1, circling
to the contralateral side but normal posture at rest as 2, leaning to the
contralateral side at rest as 3, and no spontaneous motor activity as 4.
Scoring was performed by observers blinded to the procedure con-
ducted on the animals. Data were analyzed by analysis of variance,
followed by Mann–Whitney U analysis.

Latex perfusion method to assess arterial trunk patency

Mice (45-minute MCAO/R, total n=10 (cilostazol, n=5; vehicle,
n=5)) were deeply anesthetized with sodium pentobarbital
(50 mg/Kg body weight) and a flexible catheter was inserted from
the cardiac apex to the aorta. A mixture of 1 ml carbon black (Bokusai,
Osaka, Japan), 10 ml LATEX (Chicago Latex, Crystal Lake, IL), and
10 ml normal saline was prepared and 4 ml infused through a flexible
catheter at a constant pressure of 80 mmHg for 60 minutes after the
surgery.

FITC-dextran injection to assess microvascular patency

To examine the patency of the cerebral microvessels, mice (45-mi-
nute MCAO/R, total n=10 (cilostazol, n=5; vehicle, n=5)) were
deeply anesthetized with sodium pentobarbital (50 mg/Kg body
weight) and transcardially perfused with 0.1 g of FITC-dextran (2 x
106 molecular weight, Sigma, St. Louis, MO) diluted in 7.5 ml of nor-
mal saline at the pressure of 120 mmHg. The brains were then re-
moved and fixed in 4% paraformaldehyde (PFA) in 0.1 mol/L PB
(pH 7.4). Twenty μm-thick frozen coronal brain sections were made
and examined under the fluorescence microscopy (BZ 9000; Keyence,
Osaka, Japan).

Evaluation of brain edema and intracerebral hemorrhage

At 24 hours after MCAO/R with rtPA administration, mice (45-mi-
nute MCAO/R plus rtPA, total n=10 (cilostazol, n=5; vehicle, n=5),
90-minute MCAO/R plus rtPA, total n=10 (cilostazol, n=5; vehicle,
n=5)) were injected with 2% Evans blue dye (Nacalai Tesque, Inc.,
Kyoto, Japan; diluted in 500 μl of normal saline) intraperitoneally.
Two hours later, mice were deeply anesthetized with sodium pento-
barbital (50 mg/Kg body weight) and perfused transcardially with
normal saline until colorless perfusion fluid was obtained from the
right atrium. The brains were then removed and fixed in 4% PFA in
0.1 mol/L PB (pH 7.4). Both the whole brain and 1.0 mm-thick
coronally-cut brain sections were analyzed using IVIS® imaging
system (Xenogen Caliper Life Sciences, Hopkinton, MA) (605 nm ex-
citation and 680 nm emission) for quantitative analysis of Evans
blue extravasation as an estimate of brain edema.

Using the same sections, the volume of intracerebral hemorrhage
in every coronal section was calculated by the ABC/2 method
(Kothari et al., 1996), as follows (mm3): themajor axis of the hemorrhage
(mm) x minor axis of the hemorrhage (mm) x 1 mm (thickness) x 1/2.
The volume in each section was then summed to calculate volume
of intracerebral hemorrhage in each brain.

The evaluation was performed by an experimenter blind to the
animal's group assignment.

Histopathology and immunohistochemistry

Animals were deeply anesthetized with sodium pentobarbital
(50 mg/Kg body weight) and purfused transcardially at 20 ml/min
with 0.01 mol/L PBS followed by 4% PFA. The brains were dissected
out, and the coronally-cut brains were postfixed for 24 hours in 4%
PFA in 0.1 mol/L PBS (pH 7.4). Fixed brains were dehydrated and em-
bedded in paraffin. Six μm-thick brain sections were made, and anti-
gen retrieval was performed by the following protocol: 15 minutes
boiling in citrate buffer, pH 6.0 for intercellular adhesion molecule-1
(ICAM-1) and P-selectin, or autoclave at 121 °C for 30 minutes in cit-
rate buffer, pH 6.0 for matrix metalloproteinase-9 (MMP-9), or auto-
clave at 121 °C for 10 minutes in citrate buffer, pH 6.0 for ionized
calcium binding adapter molecule-1 (Iba-1). The sections were trea-
ted with primary antibodies against ICAM-1 (1:100, R&D systems,
Minneapolis, MN), P-selectin (1:50, Santa Cruz Biotechnology, Santa
Cruz, CA), MMP-9 (1:50, Santa Cruz) and Iba-1 (1:200, Wako, Osaka,
Japan) overnight, followed by incubation with an appropriate second-
ary antibody (biotinylated anti-IgG; 1:100, Vector Laboratories, Bur-
lingame, CA) for 1 hour and visualization with ABC Kit (Vector
Laboratories).

Densitometric analysis for intercellular adhesion molecule-1
(ICAM-1) and P-selectin was carried out after immunohistochemistry
(cilostazol, n=6; vehicle, n=6). Three different ROIs (0.4 mm2)were
drawn in the penumbral cortex and caudoputamen in close proximity
to the lateral ventricle. After images of ICAM-1- and P-selectin-stained
sections were captured, ICAM-1- and P-seleectin-positive capillaries
were counted in each ROI and averaged.

The numerical density of the Iba-1-positive microglial cells and
MMP-9-positive glial cells were counted in the whole cerebral cortex
and the striatum of the brain section coronally cut at the bregma. The
Iba-1-positive microglial cells with the minimal diameter of their cell
bodies exceeding 7 or 10 μm were counted to assess the degree of ac-
tivation of the microglial cells. The MMP-9-positive glial cells were
also counted. After images of MMP-9- and Iba-1-stained sections
were captured, areas (mm2) of the cerebral cortex or striatum were
measured by a computerized image system (ImageJ). The density of
MMP-9- and Iba-1-positive cells was then calculated per area of the
cerebral cortex or the striatum (/mm2) (90-minute MCAO/R plus
rtPA, total n=12 (cilostazol, n=6; vehicle, n=6)).

Immunofluorescent staining

The brains that were fixed in 4% PFA in 0.1 mol/L PB and stored in
20% sucrose in 0.1 mol/L PBS (pH 7.4) after FITC-dextran injection
were snap-frozen and 20 μm-thick brain sections weremade. The sec-
tions were treated with antibodies against ICAM-1 (1:100), P-selectin
(1:50), CD45 (1:50, BD Biosciences, San Jose, CA), and CD41 (1:50, BD
Biosciences) overnight followed by incubation with rhodamine-
conjugated rabbit polyclonal antibody to goat IgG H&L (1:50, Abcam,
Cambridge, UK) for CD45 and CD41 or DyLight TM 405-conjugated
rabbit polyclonal anti-rat IgG H&L (1:50, ROCKLAND, Gilbertsville,
PA) for ICAM-1 and P-selectin. By using paraffin embedded brains,
6 μm-thick coronal brain sections were made, and antigen retrieval



Fig. 2. Cilostazol suppressed no-reflow phenomenon. A, Representative images of cerebral blood flow (CBF) at the indicated time points pre- and post-MCAO/R in vehicle- and
cilostazol-treated mice. Arrows indicate suppression of no-reflow phenomenon with cilostazol. B, Temporal profile of CBF of vehicle- and cilostazol-treated mice after 45-minute
MCAO/R. CBF was expressed as a ratio to the baseline level (n=5 each, Pb0.05).

526 Y. Hase et al. / Experimental Neurology 233 (2012) 523–533
was performed by autoclave at 121 °C for 30 minutes in citrate buffer,
pH 6.0 for MMP-9 and Iba-1. Double immunofluorescent staining was
performed using primary antibodies against MMP-9 (1:50, Santa
Cruz) and Iba-1 (1:200, Wako) with appropriate fluorescence-
labeled secondary antibodies: Alexa Fluor 647 donkey polyclonal
anti-goat IgG H&L (1:500, Invitrogen, Carlsbad, CA) for MMP-9 and
DyLight TM 488-conjugated donkey polyclonal anti-rabbit IgG H&L
(1:400, Jackson Immunoresearch, West Grove, PA) for Iba-1.

Densitometric analysis for microthrombi (CD41) and leukocytes
(CD45) in the microvessels was carried out using immunofluorescent
staining (cilostazol, n=6; vehicle, n=6). Three different ROIs
(0.4 mm2) were drawn in the penumbral cortex and caudoputamen
in close proximity to the lateral ventricle. After images of CD41- and
CD45-stained sections were captured, the density of CD41-positive
microthrombi was measured by a computerized image system (Ima-
geJ) and CD45-positive leukocytes inside the capillaries were counted
in each ROI and averaged.

The co-localization ratio of MMP-9 (red) with Iba-1-positive
microglia (green) was calculated in the cerebral cortex and caudopu-
tamen at 24 hours after 90-minute MCAO/R plus rtPA (cilostazol,
n=6; vehicle, n=6). Three different ROIs were drawn in the cerebral
cortex and caudoputamen, where MMP-9 was well expressed. Thus,
the ratio of MMP-9 positivity among the Iba-1-positive microglia
was measured in each ROI and averaged.
Fig. 3. Cilostazol preservedmicrovascular patency by suppressing platelet aggregation and leuk
sections of the brain perfusedwith FITC-dextran (green) of vehicle- (A) and cilostazol-treatedm
or the striatum of the vehicle-treatedmice (A, arrows). C, Densitometric analysis of the brain pe
(n=5 each). D, E, G, and H, Representative images of immunofluorescent staining for CD41 (D
vehicle- (D, G) and cilostazol-treated (E, H) mice. Capillary is visualized with FITC-dextran (D
CD41-positive micro-thrombi (F) and CD45-positive leukocytes (I) in the cerebral cortex (Cx)
J and K, Densitometric analysis of vessels positive for P-selectin (J) and ICAM-1 (K) (n=6 eac
Nissl staining

Four serial 2-mm-thick coronal sections between bregma coordi-
nates +2 and −4 were obtained in a cutting block. Each block was
embedded in paraffin and 6 μm-thick sections were cut from the cau-
dal side of the block before being subjected to Nissl staining. Images
were captured and infarct area was measured (mm2) in each slice
by a computerized image system (ImageJ). The infarction area in
each slice x distance between slices (2 mm) were summed to approx-
imate volume of infarct in each brain (mm3).

Assesment of long-term effect of cilostazol against cerebral ischemia

After 45-minute MCAO/R, mice (total n=25 (cilostazol, n=12;
vehicle, n=13)) were observed for 28 days to analyze survival rate.
Seven days after the surgery, tight rope (Gerber et al., 2001) and cor-
ner turn (Zhang et al., 2002) tests were carried out to analyze any
subtle differences in motor coordination (45-minute MCAO/R, total
n=12 (cilostazol, n=8; vehicle, n=4)).

Tight rope test: Mice were taken by the tail and placed with their
front paws in the middle of a 60 cm-long tight rope about 60 cm
above the floor. A box with a padded floor was placed beneath the
rope to prevent falling mice being injured. Healthy mice placed on
the rope attempted to reach one end of the rope, usually by using
ocyte plugging inmicrovessels. A and B, Representative fluorescent images of the coronal
ice (B) after 45-minuteMCAO/R. Note the limited perfusion of FITC-dextran in the cortex
rfusedwith FITC-dextran of vehicle- and cilostazol-treatedmice after 45-minuteMCAO/R
and E, red), CD45 (G and H, red), P-selectin (D and E, blue), and ICAM-1 (G and H, blue) of
, E, G, and H, green). F and I, Histograms showing the densitometric quantification of the
and in the caudoputamen (CP) of the vehicle- and cilostazol-treated mice (n=5 each).

h). Scale bars, 1 mm in A and B, 30 μm in D, E, G, and H.

image of Fig.�2
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their hind paws and tail for climbing. A tight rope test performance
score was given based on whether the animal reached the end of
the rope and the time required. A mouse climbing the platform at
the side of the rope within 6 s received a score of 0. For each addition-
al 6 s necessary to reach the platform, mice received one additional
point. Mice hanging for 60 s at the rope without reaching the plat-
form received a score of 10. Mice that fell from the rope before 60 s
received one additional point for each 6 s missing from 60 s (i.e., a
mouse unable to stay at the rope received a score of 20); thus, a
low score indicated good performance in the tight rope test. All

image of Fig.�3


Fig. 4. Cilostazol reduced infarct volume and ameliorated neurological deficits. A and B,
Representative images of Nissl staining of the brain of vehicle-treated (A) and
cilostazol-treated (B) mice after 45-minute MCAO/R. C and D, Histograms showing
the infarct volume (mm3) (C) (cilostazol, n=6; vehicle, n=9) and the neurological
deficit score (D) (n=10 each) of the vehicle- or cilostazol-treated mice at 24 hours
after 45-minute MCAO/R. Scale bars, 1 mm.
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mice were tested twice per time point and their respective scores
were used for statistical analysis.

Corner turn test: In the home cage, a mouse was placed between
two boards each with dimension of 30 cm x 20 cm x 1 cm. The
edges of the two boards were attached at a 30° angle with a small
opening along the joint between the two boards to encourage entry
into the corner. The mouse was placed between the two angled
boards facing the corner and half way to the corner. When entering
deep into the corner both sides of the vibrissae were stimulated to-
gether. The mouse then rears forward and upward, then turns back
to face the open end. The model predicts that the non-ischemic
mouse turn either left or right, but the ischemic mouse preferentially
turns toward the non-impaired, ipsilateral (right) side. Turning
movements that were not part of a rearing movement were not
scored. The turns in one versus the other direction were recorded
from ten trials for each test and the number of right turns was
calculated.

Statistical analysis

All values are expressed as means±SD in the text and figures.
Unpaired t-test or one-way ANOVA was used to evaluate significant
differences among groups, except where stated, followed by post-
hoc Tukey's test or Tukey-Kramer's test. Temporal profiles of CBF
were analyzed by two-way repeated measures ANOVA followed by
a post-hoc Tukey's test. Differences with Pb0.05 were considered
statistically significant in all analyses.

Results

Mortality rate was less than 10% in the non-rtPA and the rtPA cohort at
24 hours after the surgery

In the non-rtPA cohort, the mortality rate was 9.1% (1 of 11) in
vehicle-treated mice and 0% (0 of 10) in cilostazol-treated mice at
24 hours after the surgery. In the rtPA cohort, all of the 24 mice sur-
vived until 24 hours after the surgery.

Cilostazol suppressed no-reflow phenomenon in 45-minute MCAO/R

In both vehicle- and cilostazol-treated mice, CBF decreased to ap-
proximately 40% of its preoperative level during MCAO (Figs. 2A, B).
Ten minutes after reperfusion, CBF recovered to around 80% of its pre-
operative level. However, beginning at 20 minutes after reperfusion,
CBF gradually decreased despite vascular recanalization in vehicle-
treated mice (n=5), indicative of no-reflow phenomenon. In
cilostazol-treated mice, the no-reflow phenomenon was significantly
suppressed; the degree of CBF reduction was also less apparent dur-
ing the 60 minute period after reperfusion. CBF began to recover at
3 hours after reperfusion and continued at least until 24 hours after
reperfusion. The CBF recovery was significantly greater in the
cilostazol-treated group (Pb0.05). CBF recovered to approximately
80% of its preoperative level in the cilostazol-treated mice, but to
70% in vehicle-treated mice at 24 hours after reperfusion.

Cilostazol preserved microvascular blood flow in ischemic area by
preventing microvascular obstruction by leukocytes and microthrombi
in 45-minute MCAO/R

Latex perfusion analyses showed that the main MCA trunk was pat-
ent both in the vehicle- and cilostazol-treated mice, after MCAO/R.
Therefore, the cilostazol-induced suppression of the no-reflowphenom-
enon is not considered to be linked to occlusion or stenosis of the main
trunk of MCA; this therefore led us to focus on plasma-microvessel in-
terface. In vehicle-treated mice, capillaries in ischemic regions were
not sufficiently perfused with FITC-dextran with perfusion pressure
reaching 120 mmHg. In cilostazol-treated mice, however, a greater
number of capillaries were filled with FITC-dextran (Figs. 3A–C).
Cilostazol-treated mice exhibited less capillary micro-thrombi forma-
tion in the striatum (Figs. 3D–F) and fewer lodged leukocytes in the cap-
illaries of the cerebral cortex (Figs. 3G–I). Moreover, cilostazol-treated
mice exhibited less expression of endothelial adhesion molecules, such
as intercellular adhesion molecule-1 (ICAM-1) and P-selectin, in the is-
chemic cerebral cortex (Figs. 3J, K).

Cilostazol reduced infarct volume and improved motor function after
45-minute MCAO/R

Cilostazol-treated mice showed significantly less infarct volume
(Figs. 4A–C) and better motor function (Fig. 4D).

Cilostazol promoted faster CBF recovery after 45-minute MCAO/R plus
rtPA

After 45-minute MCAO/R plus rtPA, CBF decreased to approxi-
mately 40% of its preoperative level during MCAO in both vehicle
and cilostazol-treated mice. At 10 minutes after reperfusion, CBF re-
covered to approximately 70% of its preoperative level in cilostazol-
treated mice, but remained below 60% in vehicle-treated mice
(Fig. 6A). Beginning at 20 minutes, CBF gradually decreased despite
vascular recanalization at least until 1 hour after reperfusion. Howev-
er, cilostazol-treated mice exhibited slightly increased CBF during this
period. At 3 hours after reperfusion, the downward trend was re-
versed, with cilostazol-treated mice showing faster CBF recovery.
Cilostazol-treated mice showed significantly better recovery of CBF
(Pb0.05).

Cilostazol ameliorated brain edema and hemorrhagic transformation after
45- or 90-minute MCAO/R plus rtPA

Using the IVIS® imaging system, whole brain analysis of extrava-
sated Evans blue dye was conducted. Cilostazol-treated mice
showed a nonsignificant trend toward less rtPA-induced brain
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edema after 45-minute MCAO/R and significantly less brain edema
after 90-minute MCAO/R (Figs. 5A–C). rtPA administration induced
intracerebral hemorrhage in most of the vehicle-treated mice after
45-minute (in 4 out of 5 mice) and 90-minute (in all 5 mice)
MCAO/R. Cilostazol almost completely prevented the hemorrhagic
transformation and significantly reduced the volume of rtPA-
induced hemorrhage in both cohorts (Figs. 5D–F).
Fig. 5. Cilostazol reduced rtPA-induced brain edema and hemorrhagic transformation.
A and B, Representative IVIS® images of coronal brain sections of vehicle-treated
(A) and cilostazol-treated (B) mice injected with Evans blue at 24 hours after
90-minute MCAO/R plus rtPA. Insets show representative dorsal view of the
brain. C, Histogram showing ipsilateral-to-contralateral ratio of Evans blue extrav-
asation of vehicle-treated and cilostazol-treated mice at 24 hours after 45-minute
(n=5 each) or 90-minute (n=5 each) MCAO/R plus rtPA. D and E, Representative
images of coronal brain sections of vehicle-treated (D) and cilostazol-treated
(E) mice at 24 hours after 90-minute MCAO/R plus rtPA. Insets show representa-
tive laterodorsal view of the brain. F, Histogram showing hemorrhagic volume of
vehicle-treated and cilostazol-treated mice at 24 hours after 45-minute (n=5
each) or 90-minute (n=5 each) MCAO/R plus rtPA. Scale bars, 1 mm.
Cilostazol suppressed microglial activation and MMP-9 expression in the
microglia

After 90-minute MCAO/R plus rtPA, activated microglial cells
expressed matrix metalloproteinase-9 (MMP-9) in ischemic areas of
both the cerebral cortex and caudoputamen in vehicle-treated mice
(Figs. 6B, D). Cilostazol significantly attenuated such microglial acti-
vation (Figs. 6C, G, and H) and MMP-9 expression compared to
vehicle-treated mice (Figs. 6E, F).

Cilostazol reduced infarct volume and improvedmotor function after 45- or
90-minute MCAO/R with rtPA administration

Cilostazol-treated mice showed significantly less infarct volume
(Figs. 7A–E) and better motor function at 24 hours after 45- or
90-minute MCAO/R plus rtPA (Fig. 7F).

Cilostazol reduced a mortality rate during the 28-day period after
45-minute MCAO/R

In vehicle-treated mice, the mortality rate was 69% (9 of 13) at
7 days, and 85% (11 of 13) at 28 days after 45-minuteMCAO/R. Howev-
er, in cilostazol-treated mice, the mortality rate was 25% (3 of 12) at
7 days, and 33% (4 of 12) at 28 days after surgery. Cilostazol significant-
ly reduced a mortality rate until 28 days after 45-minute MCAO/R
(Kaplan-Meier survival analysis, log-rank Pb0.01) (Fig. 8A).

Cilostazol improved motor function at 7 days after 45-minute MCAO/R

The performance in the tight rope test was significantly improved
in cilostazol-treated mice compared to vehicle-treated mice at 7 days
after 45-minute MCAO/R (Fig. 8B). In the corner turn test, cilostazol-
treated mice showed a significant decrease in the right turns com-
pared to vehicle-treated mice at 7 days after 45-minute MCAO/R
(Fig. 8C).

Discussion

This study using a mouse model of focal cerebral ischemia showed
that cilostazol: (1) preservedmicrovascular patency by decreasing the
endothelial expression of P-selectin and ICAM-1 and therefore pre-
vented platelet aggregation and leukocyte plugging in microvessels
in the acute phase in the non-rtPA cohort, which subsequently lead
to a reduced mortality rate and improved motor function in a later
phase; (2) ameliorated rtPA-induced brain edema and hemorrhagic
transformation at least partially due to suppression of microglial
MMP-9 expression in the rtPA cohort; (3) suppressed focal no-
reflow,mitigated cerebral infarct, and improved neurological outcome
in both cohorts. Such pleiotropic effects of cilostazol, that are at least
partially exerted by vascular protection, may explain the effectiveness
of CSPS (Gotoh et al., 2000), CASISP (Huang et al., 2008), and CSPS-II
(Shinohara et al., 2010).

Early restoration of antegrade flow is expected to enhance the
functional recovery after stroke. However, recent studies have dem-
onstrated that successful reopening of an occluded artery with rtPA
does not necessarily lead to clinical improvement (Alexandrov et al.,
2004); such phenomenon is explained by several potential mecha-
nisms, including edema formation (von Kummer et al., 2001), hemor-
rhagic transformation (Alexandrov and Grotta, 2002), no-reflow
phenomenon (del Zoppo and Hallenbeck, 2000), proximal reocclu-
sion (Alexandrov and Grotta, 2002), and reperfusion injury
(Uematsu et al., 1989). Such predisposing factors warrant treatment
as delayed recovery of brain function may still occur in these patients
with ‘ischemic stunning of the brain’ (Alexandrov et al., 2004). Such
predisposing factors may be closely linked with the three elements
of the Virchow's triad: 1) blood vessels are linked with edema/
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Fig. 6. Cilostazol promoted faster recovery of cerebral blood flow and reduced MMP-9 positive activated microglia after MCAO/R plus rtPA. A, Temporal profile of cerebral blood flow
(CBF) of vehicle- and cilostazol-treated mice after 45-minute MCAO/R plus rtPA (n=5 each, Pb0.05). The preoperative CBF value was set as 1. B–D, Representative images of im-
munofluorescent staining for MMP-9 (red) and Iba-1-positive microglia (green) in ischemic cortical hemisphere of vehicle-treated (B, D) and cilostazol-treated (C) mice at 24 hours
after 90-minute MCAO/R plus rtPA. An enlarged microglial cell with thickened processes secretes MMP-9 around a vessel (D, asterisk). Nuclei are stained with DAPI (D, blue). E and
F, Histograms showing the density of MMP-9-positive cells per mm2 (E) and co-localization ratio of MMP-9 with Iba-1-positive microglial cells (F) in the cerebral cortex (Cx) and
the caudoputamen (CP) of the vehicle-treated and cilostazol-treatedmice at 24hours after 90-minuteMCAO/Rplus rtPA (n=6each). G andH,Histograms showing the density (/mm2) of
‘activated’microglia, with a cell body size exceeding 7 μm (G) and ‘highly activated’microglia, with a cell body size exceeding 10 μm (H) in the ischemic cerebral cortex (Cx) and caudo-
putamen (CP) of the vehicle- or cilostazol-treated mice after 90-minute MCAO/R plus rtPA (n=6 each). Scale bars, 40 μm (B, C), 10 μm (D).
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Fig. 7. Cilostazol reduced infarct volume and ameliorated neurological deficits after MCAO/R plus rtPA. A–D, Representative images of Nissl staining of the coronally-cut brain of the
vehicle-treated (A, C) or cilostazol-treated (B, D) mice at 24 hours after 45-minute (A, B) or 90-minute (C, D) MCAO/R in combination with rtPA. E and F, Histograms showing the
infarct volume (mm3) (E) (45-minute MCAO/R plus rtPA, n=5 each; 90-minute MCAO/R plus rtPA, n=5 each) and the neurological deficit score (F) (45-minute MCAO/R plus rtPA,
n=6 each; 90-minute MCAO/R plus rtPA, n=5 each) of the vehicle- or cilostazol-treated mice at 24 hours after 45-minute or 90-minute MCAO/R plus rtPA.
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hemorrhage formation or reperfusion injury; 2) blood flow is associ-
ated with no-reflow phenomenon; and 3) blood elements are associ-
ated with proximal reocclusion. Therefore, these three elements
would be a suitable starting point when considering a combination
therapy with rtPA. In addition, platelet hyperaggregability may
ensue after rtPA therapy (Ohlstein et al., 1987), providing a rationale
of using antiplatelet drug such as cilostazol to salvage ischemic stun-
ning of the brain after rtPA therapy.

Several studies have reported the neuroprotective roles of cilosta-
zol in acute brain injury in experimental rodent models of MCAO/R.
Following 2-hour MCAO/R in Sprague–Dawley rats, post-ischemic ad-
ministration of cilostazol resulted in reduction of infarct volume with
reduced apoptosis and upregulated bcl-2 (Choi et al., 2002; Lee
et al., 2004). Another study showed cilostazol, given immediately
after 45-min MCAO/R, mitigated infarction and enhanced neuro-
genesis in C57BL/6 mice (Tanaka et al., 2010). This protection was
achieved by a cAMP response-element-binding protein-mediated
signaling pathway, without CBF changes at 1, 3, and 7 days after re-
perfusion (Tanaka et al., 2010). Thus, cilostazol may protect against
ischemic neuronal damage through its cAMP-elevating activity
even without CBF changes. However, since the above studies did
not evaluate CBF within 1 day after reperfusion, there is still a pos-
sibility that cilostazol exerted a neuroprotective role by restoring
CBF in an earlier phase after reperfusion. By monitoring CBF in
the 24 hours, our study showed that cilostazol suppressed the no-
reflow phenomenon by restoring microvascular circulation at an
earlier phase. In accordance with this result, in a different experi-
mental paradigm using photothrombotic permanent MCAO in
spontaneously hypertensive rats, cilostazol given 2 hours before
or 30 min after MCAO significantly reduced infarct volume; this
was accompanied by increased CBF at 1- and 2-hour post-MCAO
(Ito et al., 2010).

A recent study has reported that cilostazol prevented rtPA-induced
hemorrhagic transformation, brain edema, and endothelial injury at
18 hours after reperfusion in ddY mice with 6-hour MCAO/R
(Ishiguro et al., 2010). Although CBFwas not examined in the previous
study, the notable effects of cilostazol were explained by reduced
MMP-9 activity and restored claudin-5 expression. This is consistent
with our results, which showed that cilostazol may protect the
blood–brain barrier (BBB) by downregulating the microglial MMP-9
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Fig. 8. Cilostazol reduced a mortality rate and improved motor function. A, Kaplan-Meier survival analysis after 45-minute MCAO/R, showing that cilostazol significantly reduced a
mortality rate during the following 28 days (cilostazol, n=12; vehicle, n=13; log-rank Pb0.01). B and C, Histograms showing the score of the tight rope test (B) and the number of
right turns in the corner turn test (C) at 7 days after 45-minute MCAO/R (cilostazol, n=8; vehicle, n=4).
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expression. Alternatively, cilostazolmay have a direct protective effect on
vasculature given the absence of any difference in brain edema but the
presence of significant difference in hemorrhagic volume between
vehicle- and cilostazol-treated groups after 45-minuteMCAO/R plus rtPA.

Previous reports indicate that cerebral ischemia activates MCP-1
production via NF-κB signaling pathway (Liu et al., 2001) or activates
mitogen-activated protein kinases (Maddahi et al., 2009), both leading
toMMP-9 activation. rtPA is also known to increaseMMP-9 through in-
duction of low-density lipoprotein receptor-related protein (Wang
et al., 2003). Given that cAMP suppresses NF-κB, MCP-1, and mitogen-
activated protein kinases (Tsai et al., 2008), cilostazol may prevent
BBB leakage viaMMP-9 inhibition. Thus, besides its antiplatelet activity,
cilostazol has a role in restoring CBF and protecting endothelial func-
tion, making it a candidate drug for a combination therapy with rtPA.

The long-termeffects of cilostazolwarrant further investigation using
a focal ischemia model of 45-minute MCAO/R. Previous reports indicate
that amortality rate at 7 days is more than 50% after 60-minuteMCAO/R
(Komine-Kobayashi et al., 2004) and 100% after 6-hour MCAO/R
(Ishiguro et al., 2010). As expected, in vehicle-treated mice, a mortality
rate was high, measuring 69% at 7 days, and 85% at 28 days after 45-
minute MCAO/R, in accordance with the previous report (Komine-
Kobayashi et al., 2004). However, in cilostazol-treated mice, the mortal-
ity ratewas 25% at 7 days, and 33% at 28 days after the surgery. Cilostazol
significantly reduced the mortality rate during 28 days after 45-minute
MCAO/R; this could thus be deduced as a neuroprotective effect of cilos-
tazol. Because a high mortality rate was anticipated after 45-minute
MCAO/R, neurobehavioral assessment was carried out at 7 days after
the surgery. Cilostazol-treated mice showed significantly better perfor-
mance in the tight rope test and the corner turn test although confound-
ed by a survival bias. Thus, long-term effect of cilostazol against ischemic
stroke was demonstrated.

A limitation of this study is that cilostazol was administered prior
to induction of MCAO/R to obtain its stable blood concentration.
However, cilostazol is known to show maximal plasma levels at 2 to
4 hours after oral administration in rats, and pre-ischemic and post-
ischemic administration of cilostazol were almost equally effective
to mitigate infarction in permanent MCAO model (Ito et al., 2010).
Therefore, post-ischemic administration of cilostazol might be also ef-
fective against no-reflow phenomenon in transient focal ischemia. If
extrapolated clinically, the current study suggests that cilostazol
could be a promising drug for secondary prevention of stroke by min-
imizing focal brain ischemia and rtPA-induced BBB leakage in prepa-
ration for any subsequent stroke. In acute clinical settings, however, it
remains to be elucidated whether post-ischemic administration of
cilostazol, with or without concomitant rtPA, ameliorates the no-
reflow phenomenon.

In conclusion, cilostazol can be considered a safe and beneficial
vasculo- and neuroprotective agent that affects different components
of the ischemic cascade and enhances the therapeutic effects of
thrombolysis by restoring the integrity of the plasma-vessel interface.
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