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Abstract The ferrous iron and 2-oxoglutarate (2OG) depen-
dent oxygenases catalyse two electron oxidation reactions by
coupling the oxidation of substrate to the oxidative decarboxyl-
ation of 2OG, giving succinate and carbon dioxide coproducts.
The evidence available on the level of incorporation of one atom
from dioxygen into succinate is inconclusive. Here, we demon-
strate that five members of the 2OG oxygenase family, AlkB
from Escherichia coli, anthocyanidin synthase and flavonol syn-
thase from Arabidopsis thaliana, and prolyl hydroxylase domain
enzyme 2 and factor inhibiting hypoxia-inducible factor-1 from
Homo sapiens all incorporate a single oxygen atom, almost
exclusively derived from dioxygen, into the succinate co-product.
� 2005 Federation of European Biochemical Societies. Published
by Elsevier B.V. All rights reserved.
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1. Introduction

Iron(II) and 2-oxoglutarate (2OG) dependent oxygenases

form a ubiquitous family of oxidative enzymes that catalyse

a diverse range of reactions, most commonly hydroxylations,

but other types of reaction including desaturations, epimerisa-

tions and rearrangements have also been observed [1–3]. The

2OG oxygenases are found in organisms ranging from bacteria

to mammals and play a wide variety of biological roles [4]. All

require ferrous iron, dioxygen, and 2OG for full activity; in

some cases LL-ascorbic acid also is required or beneficial for

activity, at least in vitro [5]. During each reaction cycle the

2OG co-substrate is oxidatively decarboxylated to give a suc-

cinate co-product and a ferryl species that is proposed to effect

two-electron oxidation of the substrate (Fig. 1) [6,7]. The

incorporation of oxygen from dioxygen into the alcohol prod-

uct during hydroxylation reactions by this class of enzymes is

well documented [8]. Further, incubations of prokaryotic 2OG

oxygenases under an 18O2 atmosphere have demonstrated that,
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during hydroxylation reactions, a less than stoichiometric

incorporation of oxygen into the hydroxyl group of the prod-

uct can occur in some cases (e.g., hydroxylation of some

substrates catalysed by clavaminic acid synthase and deace-

toxy/deacetyl cephalosporin C synthase) [9,10]. This is thought

to be due to solvent exchange of one of the reactive iron–

oxygen intermediates, although the identity of the particular

intermediate(/s) that undergo exchange has not been defined.

Results with some eukaryotic 2OG dependent hydroxylases,

such as thymine 7-hydroxylase (T7H) [11], mammalian type I

prolyl 4-hydroxylase [12], enzymes of flavonoid biosynthesis

[13] and human prolyl and asparaginyl hydroxylases involved

in hypoxic sensing, PHD1 [14] and FIH [15], show that

>90% incorporation of oxygen from dioxygen occurs on

hydroxylation of their substrates (in the case of some reactions

catalysed by the flavonoid oxygenases exchange may occur

after initial hydroxylation by a non-oxidative process [13]).

This contrasts with results for eukaryotic lysyl hydroxylase

where only approximately 10% of 18O was reported to be

incorporated into the peptide product [16] (data reviewed in

[8]). In the case of taurine dioxygenase and 2,4-dichloro-

phenoxyacetate oxygenase where inactivating self-hydroxy-l-

ation of the protein occurs, it was found that no oxygen from

dioxygen was incorporated into the modified protein when the

reaction was carried out under 18O2 gas. This was proposed to

be the result of a relatively long-lived intermediate, which ex-

changes with or reacts with water before carrying out the

self-hydro-xylation reaction [17,18].

There is less available data on the incorporation, or other-

wise, of the other atom of dioxygen into the succinate co-prod-

uct. The enzymes thymine-7-hydroxylase and c-butyrobetaine
hydroxylase have been reported to incorporate >95% and

68% 18O from 18O2 into succinate, respectively [11,19]. These

data were obtained by mass spectrometric analysis of the suc-

cinate co-product derivatised with bis(trimethylsilyl)trifluoro-

acetamide to give the bis-trimethylsilyl ester. In the case of

the enzyme deacetoxy/deacetyl cephalosporin C synthase,

greater than 90% 18O incorporation into succinate from 18O2

was observed in experiments analysing the shift in 13C reso-

nance of succinate by NMR spectroscopy [20].

A related reaction to the 2OG dependent dioxygenases is

carried out by 4-hydroxyphenylpyruvate dioxygenase, which

incorporates both atoms of oxygen from the dioxygen cosub-

strate into its product, homogentisate (although exchange
blished by Elsevier B.V. All rights reserved.
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Fig. 1. Outline reaction cycle for a 2OG dependent oxygenase (adapted from [3]). R–H = prime substrate, R–OH = prime product. The resting
enzyme binds iron(II) using the 2His-1-carboxylate motif common to the 2OG dependent dioxygenase family. 2OG and dioxygen occupy the final
three coordination sites on the iron(II) and form a cyclic intermediate which collapses with the loss of CO2 to give the reactive ferryl intermediate that
carries out the oxidation reaction and the succinate product with one atom from the dioxygen. There are two possibilities for the oxidation, either a
stepwise hydroxylation or direct insertion of the oxygen atom into the C–H bond. The choice of pathway followed in these enzymes is unknown, as is
the exact timing of CO2 dissociation and occupation of the vacant sites by water.
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occurs of the phenolic oxygen occurs after its introduction)

[21].

Here, we report the results of experiments analysing the

extent of incorporation of an 18O label from 18O2 and H2
18O

into succinate with various iron(II) and 2OG dependent oxy-

genases.We selected enzymes from bacteria, plants and humans

to provide a representative range of members of the ubiquitous

superfamily of 2OG oxygenases. These were the Escherichia coli

DNA repair enzyme AlkB [22,23], two Arabidopsis thaliana

enzymes involved in flavonoid biosynthesis [anthocyanidin

synthase (ANS) [24] and flavonol synthase (FLS) [13]] and

human enzymes involved in oxygen sensing [prolyl hydroxylase

domain 2 (PHD2) and factor inhibiting hypoxia-inducible

factor (FIH)]. The results demonstrate that in all cases the

predominant product is that resulting from greater than 90%

incorporation of a single oxygen atom from dioxygen into

succinate.
2. Materials and methods

Chemicals were purchased from Sigma Chemical Company, Poole,
UK, except for Tris base (ICN Biomedicals), di-ammonium iron(II)
sulphate (BDH). Argon was from BOC and 18O2 was from CK Gases.
Synthetic peptides were from Peptide Protein Research Ltd, Fareham,
UK.
Enzymes were purified according to reported procedures: AlkB [25],
FLS [13], ANS [24], FIH [15], N-terminally truncated PHD2 [26].
Standard assay conditions for each enzyme were used, the method

used for excluding 16O2 is described below [13,15,24–26]. AlkB assays
were carried out using 1-methyladenosine as a substrate. FLS assays
were carried out using (±)-trans-dihydroquercetin (DHQ) substrate.
ANS assays were carried out with both (±)-naringenin and (±)-trans-
DHQ as substrates, whereas FIH and PHD2 assays were carried out
using synthetic peptides corresponding to the target regions of their
protein substrate, hypoxia-inducible factor (DESGLPQLTSYDC-
EVNAPI for FIH and DLDLEMLAPYIPMDDDFQL for PHD2).
Reactions carried out under 18O2 (g) were set up in a Belle Technol-

ogy glove box under an atmosphere of argon (0.4–0.8 ppm O2). Buffer,
water, solid 2OG, LL-ascorbate and (NH4)2SO4 Æ FeSO4 Æ 6H2O and all
required plastics were ported into the box at least 16 h before use. En-
zyme was thawed from �80 �C and ported into the box just prior to
setting up incubations. Assays were set up in 5 mL polycarbonate
tubes in two drops, one containing enzyme-Fe(II), the other containing
LL-ascorbate, 2OG and substrate. Tubes were then sealed with a rubber
vaccine closure, allowing removal and evacuation of these tubes, fol-
lowed by refilling with 18O2 gas by injection of a syringe of gas through
the vaccine closure. 18O2 gas was collected in a glass cylinder, sealed at
one end with a vaccine closure, over a reservoir of water degassed with
He(g) (100 mL/min for 30 min). The cylinder was filled twice with 18O2

gas, with only the second being used for the enzyme incubation.
Incubations in H2

18O were achieved by the use of concentrated solu-
tions of reagents and buffers. The two-drop approach (enzyme/iron
and substrate/cofactor) described above was employed but the total
volume of the two was less than 5 lL. The reaction was started by
addition of 95 lL H2

18O.
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After 30 min incubation with shaking at 37 �C (or 30 �C for ANS
and FLS) the samples were quenched with an equal volume of metha-
nol. These mild quenching conditions were employed in order to
minimise exchange of the labelled succinate product with solvent. Sam-
ples were injected immediately on to a Waters 2790 HPLC fitted with a
Machery-Nagal, nucleosil 100-C-18 Nautilus column (125 · 2 mm)
running isocratically in a 0.05% (v/v) formic acid aqueous solution,
eluting via a flow splitter into a Micromass LCT mass spectrometer
in negative ion mode (capillary voltage 2100 V, cone voltage 24 V).
3. Results

An LC/MS technique was developed to study the level of

incorporation of oxygen into the succinate product of the en-

zymes. This enabled the retention of succinate on the C-18 col-

umn (Fig. 2A), thus separating it from other small molecules in

the reaction such as buffer salts, which passed over the column

in the void volume, and also from unreacted 2OG. 2OG was

not observed by LC/MS, perhaps due to complexation with

a metal ion resulting in an unretained salt, invisible to negative

ion ESI-MS.

Analysis of the succinate product of all the enzymes used

yielded similar results from incubation under 18O2, namely that
Fig. 2. TIC chromatogram and mass spectra of the succinate products of th
from the C18 column; (B) mass spectrum of succinate from a reaction under
mass spectrum of succinate from a reaction under 18O2 and H2

18O.

Table 1
Percentage incorporation of 18O into succinate product from reaction under

Enzyme Substrate Incorporation of

AlkB 1-methyladenosine >95
ANS (±)-trans-DHQ >90
ANS (±)-naringenin >95
FLS (±)-trans-DHQ >95
FIH DESGLPQLTSYDCEVN\API >95
PHD2 DLDLEMLAP\YIPMDDDFQL >95

Values were calculated by comparison of the integration of the peaks at 117
values of incorporation into alcohol products are given. \ indicates residue th
FIH [30] and at the trans-4 position of proline for PHD2 [14].
the predominant species (90% or greater) in the negative ion

mass spectrum of succinate was that containing a single 18O

atom ([M � H]� = 119) (Fig. 2C). The very low levels of unla-

belled succinate ([M � H]� = 117) observed could result from

incomplete removal of 16O2 from the enzyme samples, but

the possibility of low levels of exchange (<5%) cannot be ruled

out. Addition of unlabelled succinate post-quenching to an

incubation of AlkB with 1-methyladenosine resulted in an

increase in intensity of the 117 Da peak in the mass spectrum,

indicating that these species were in fact due to succinate.

Table 1 gives the levels of 18O incorporation into succinate

in the different experiments. In the cases of ANS (with (±)-

naringenin as substrate) and those of PHD2 and FIH, the level

of incorporation of 18O into the enzymatic products was also

analysed. In each case it was found to be >99% in accord with

literature results [13–15]. The corresponding analysis was not

carried out with AlkB as the oxygenated product, formalde-

hyde, undergoes facile exchange [22,23]. Similarly, when

ANS and FLS used (±)-DHQ as a substrate, the product

was not analysed as the enzyme reaction includes a dehydra-

tion process in which the hydroxyl group derived from dioxy-

gen is lost [13].
e PHD2 reaction, which are typical of others. (A) Elution of succinate
16O2; (C) mass spectrum of succinate from a reaction under 18O2; (D)

a 18O2 atmosphere

[18O] into succinate (%) Incorporation of [18O] into product

–
–
>90 [13]
–
>90 [15]
>98 [14]

Da for succinate and 119 Da for [18O]-succinate. Where appropriate,
at is hydroxylated in peptides: at the pro-S b-position of asparagine for
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When incubations were carried out in the presence of H2
18O,

(H2
18O:H2

16O = ca. 19:1 in the final incubation mixture),

incorporation of 18O into succinate was observed, but no

incorporation of label into the peptide products. In the case

of PHD2, a high level of incorporation (approximately 80%)

of 18O from H2
18O was seen into succinate, but for FIH,

the level was no higher than 50%. This incorporation was

thought to result from exchange of oxygen from bulk solvent

with that of the ketone carbonyl of 2OG. It is possible that this

exchange occurs while the 2OG is bound to the iron(II) in the

active site, and that the different levels of exchange reflect dif-

ferences in catalytic mechanism. However since the acid catal-

ysed exchange of the carbonyl oxygens of aldehydes and

ketones in solution is well-precedented [21], it seems probable

that the differences in exchange levels in the presence of la-

belled water reflect, at least in part, the differences in incuba-

tion conditions. Incubations of PHD2 and FIH under H2
18O

but in the absence of prime peptide substrate (i.e., uncoupled

turnover conditions) showed that succinate containing one
18O atom was produced by PHD2. Under these conditions

FIH did not catalyse the production of succinate. The lack

of uncoupled turnover displayed by FIH was in accord with

literature reports [15,27].

In order to rule out the possibility that the oxygens of succi-

nate exchanged with the bulk solvent, incubations containing

succinate but no 2OG were carried out under H2
18O condi-

tions and showed only the presence of a peak at 117 Da.

Experiments with both FIH and PHD2 were carried out under

conditions where both 18O2 and H2
18O were present and

showed peaks for labelled succinate at 119 Da (incorporation

of one atom of 18O) and also at 121 Da (incorporation of

two atoms of 18O), supporting the hypothesis that bulk solvent

exchanges only with the ketone carbonyl of 2OG in solution

(Fig. 2D).
4. Discussion

These results utilising enzymes from both prokaryotic

(AlkB) and eukaryotic (FIH, PHD2, ANS and FLS) sources

suggest that complete incorporation of 18O from 18O2 into

one carboxylate of succinate is a typical feature of catalysis

by 2OG oxygenases, as is the case for the carboxylate of the

homogentisate product of the mechanistically related enzyme

4HPPD [21]. For some hydroxylations, e.g., those catalysed

by PHD2 and FIH, high levels of incorporation into the alco-

hol product are also observed in the same assays. In the case of

some prokaryotic enzymes however, e.g., deacetoxy/deacetyl

cephalosporin C synthase and clavaminic acid synthase (at

least with some substrates) less than stoichiometric incorpora-

tion of oxygen into the alcohol product occurs [9,10]. How-

ever, with deacetoxy/deacetyl cephalosporin C synthase,

prior work has established that a single oxygen from dioxygen

is incorporated into succinate during catalysis [9], as was the

case for the more typical reaction catalysed by thymine-

7-hydroxylase [11] catalysis. When using (±)-DHQ as a

substrate, ANS catalysis also leads to sub-stoichiometric incor-

poration of oxygen from dioxygen into its flavonoid product,

but this reaction is a special case in which the nascent hydroxyl

is lost by dehydration [13]. When ANS catalyses a typical

hydroxylation, e.g., the hydroxylation of (±)-naringenin, high

levels of incorporation occurred [13]. The deacetoxycephalo-
sporin C synthase (DAOCS, a bacterial enzyme that only

catalyses the deacetoxycephalosporin C synthase component

of the two reactions of its fungal homologue deacetoxy/deace-

tylcephalosporin C synthase) reaction might also be regarded

as being atypical; there is crystallographic evidence that the

oxidative rearrangement catalysed by DAOCS proceeds via a

divergence from the more general reaction scheme in which a

penicillin displaces succinate from a ferryl intermediate [28].

Clavaminc acid synthase is also unusual in that it catalyses

three reactions and has an HXE rather than and HXD Fe(II)

binding motif [29]. Thus, given the previous reports and the

results presented here it seems likely that incorporation of

one atom of molecular oxygen into the succinate product is

a general feature of catalysis by 2OG oxygenases. It is also

clear that there is mechanistic variation after formation of

the reactive oxidising intermediates, but even in cases where

this enables exchange of oxygen during hydroxylation, there

is still (almost) complete incorporation of dioxygen derived

oxygen into succinate.
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