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ABSTRACT 

The problem of scaling a matrix so that it has given row and column sums is 
transformed into a convex minimization problem. In particular, we use this transfor- 
mation to characterize the existence of such scaling or corresponding approximations. 
We obtain new results as well as new, streamlined proofs of known results. 

1. INTRODUCTION 

A scaling of a nonnegative matrix A is a matrix having the form B = XAY 
where X and Y are square diagonal matrices which have positive diagonal 
elements. The problem of determining a scaling of a given matrix that has 
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prespecified row sums and column sums has been studied extensively over 
the last 20 years, beginning with the pioneering work of Sinkhom (1964), 
Sinkhom and Knopp (1967) Menon (1967), and Brualdi, Parter, and 
Schneider [ 19661 where doubly stochastic scalings are considered. A heuristic 
algorithm for solving the general problem has actually been suggested twenty 
five years earlier by Kruith of (1937) see Krupp (1979). The general problem 
has applications in many areas, including planning of telephone traffic and 
transportion, social accounting, matrix preconditioning, and algebraic image 
reconstruction; see Kruithof (1937) Bacharach (1970), Lamond and Steward 
(1981), King (1981) and references therein. 

Marshall and Olkin (1968) argued that given a nonnegative matrix, the 
problem of determining a scaling having prespecified row sums and column 
sums can be solved by finding a solution to a nonlinear (nonconvex) mini- 
mization problem that is defined over an (open) subset of the set of strictly 
positive vectors. Of course, existence of a minimizer to such a problem is a 
delicate issue because of boundary problems. In particular, Marshall and 
Olkin showed that when the given matrix is strictly positive, the correspond- 
ing minimization problem has an optimal solution, concluding that a desired 
scaling exists. In this paper we show that the minimization problem identified 
by Marshall and Olkin is a geometric program and as such is convertible to a 
convex minimization problem. Further, we show that the solution of this 
minimization problem is, in fact, equivalent to the solution of the scaling 
problem. This result suggests the use of algorithms that are known to solve 
convex optimization problems for computing scalings which have prespeci- 
fied row sums and column sums. We hope to apply our results to develop 
computational methods in the future. We observe that other authors have also 
applied results from optimization theory to matrix scaling problems-for 
example, Krupp (1979) and Elfving (1980) who considered entropy maxi- 
mization; see also Censor (1986). 

Using the reduction of the scaling problem to the solution of a convex 
optimization problem, we are able to apply results from the theory of 
convexity. We thereby obtain necessary and sufficient conditions for the 
existence of an optimal solution to the derived optimization problem; hence, 
we characterize solvability of the scaling problem. In particular, the resulting 
conditions reduce to nonsolvability of a certain linear system, and standard 
techniques from the theory of linear inequalities convert them into a finite set 
of combinatorial conditions. These conditions turn out to be the conditions 
identified by Menon and Schneider (1969). 

Finally, we obtain necessary and sufficient conditions such that the above 
scaling problem can be solved approximately to arbitrary precision, and we 
obtain uniqueness results. 
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The following example demonstrates that the scaling problem cannot be 
solved over every ordered field. Let 

Then the unique scaling of A whose row sums and column sums equal r and 
c, respectively, is the matrix 

i @+1)-i 0 (&+2)-l 0 

ii 

1 1 2 1 IL 45 0 

0 1 i 

= I 
Further, the pre- and postmultiplying matrices are unique up to a scalar 
multiple. We conclude that the above scaling problem cannot be solved over 
the rationals and there is no algorithm that is based on the four elementary 
operations that can solve the above problem. 

We introduce some notation and conventions in Section 2 and state the 
main results in section 3. Proofs of these results are then given in Section 4. 
Further references to the literature will be found following the statements of 
our theorems in Section 3. 

2. NOTATION AND CONVENTIONS 

For a positive integer k, let (k > denote the set (1,. . . , k }. We will use the 
symbol “ c ” for set inclusion and the symbol “ c ” for strict set inclusion. 
When 1 c (k) we use the notation 1’ to denote the complement of 1 within 
(k); the identity of the referenced integer k wilI always be clear from the 
context. 

Let A E Rmx”. The support of A, denoted suppA, is defined to be the 
set {(i, j> E (m) x (n) : Aij f O}. We say that A is nonnegative, written 
A>,O, if Ajj>O for all (i,j)E(m)X(n). We say that A is strictly 
positive,writtenA>O,if Aij>Oforall(i,j)E(m)X(n).Finally,wesay 
that A is semipositive, written A > 0, if A > 0 and A f 0. As usual, for 
B,CER”~” wewrite B<C, B<<C,orB<CifC-B>,O,C-B>>O,or 
C - B > 0, respectively. Of course, the above notation and definitions apply 
to vectors when either m = 1 or n = 1. 
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Again, let A E R”lx”. For I c (m) and Z c (n) we define A,, to be the 
corresponding submatrix of A. In particular, when either Z or J is empty, A,, 
denotes the empty matrix. When A is square, i.e., m = n, we use the 
abbreviated notation A, for A,,. Also, if n = 1, i.e., A is a vector, we use the 
notation A, for the corresponding subvector of A, i.e., A, is A,,:,). 

For a finite subset J of integers, let R’ denote the Euclidean space whose 
coordinates are numbered by the elements of J: formally, R’ is the set of 
functions from J into R where the image of j under such a function r is 
denoted by xi. Of course, if J = (n) for a positive integer n, R’ can be 
identified with R”. 

Let k be a positive integer. The vector (1,. . . , 1)’ E Rk will be denoted by 
e. For i = 1 , . . . , k, let ei denote the unit vectors in Rk and for I 2 (k), let 
e’=&EIe’. No confusion with the exponential function ex should occur. 
Incidentally, we use the notation exp x interchangeably with the notation e’ 
for the exponential function. 

We say that a matrix B is chain&e if B E RPxq for positive integers p 
and 9 and for every in and jE(9) thereexist i,=i,i2,...,ip in (p) 

and jl,..., j,_,, j, = j in (9) such that B,,j, > 0 for t = 1,. . . , g and 
B I,+,j, > Ofor t = l,..., g. Let m and n be positive integers and let A E R”‘X” 
be a matrix having no zero row or zero column. Then A is the direct sum of 
chainable blocks, i.e., there exist (unique) partitions Z(l), . . , I( h ) of (111 ) and 

J(I),...,.Z(h)of ( ) f n o nonemptysetssuchthatforr,sE (l,...,h}, A[(,,,(,, 
= 0 if r f s and AI(,),(,) is chainable if r = s. In this case we call the pairs 

(Z(l), J(I)>, . . . , (I( h ), J( h )) the components of A. (The proof of the above 
fact follows from the decomposition of the bipartite graph associated with the 
matrix A into its graph theoretic connected components.) We comment that 
it can be shown that if p and 9 are positive integers and R is a matrix in 
RPxQ which has no zero row or zero column, then B is chainable if and only 
if B,,=O for 0#ZC(p) and 0 # J C (9) implies B,,,, f 0. This latter 
equivalent property is called indecomposability in Menon and Schneider 
(1969) and chainability in Hershkowitz, Rothblum, and Schneider (1988). 

3. THE MAIN RESULTS 

Throughout let A be a given m x n nonnegative matrix, and let r and c 
be given strictly positive vectors in R”’ and R”, respectively. A scaling of A 
is a matrix having the form B = XAY where X E Rnr x m and Y E R” xn are 
diagonal matrices having positive diagonal elements. We will consider the 
problem of identifying a scaling B of A for which 

Be=r and e’B=c, (3.1) 
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and we will refer to this problem as the scaling problem. In particular, a 
scaling B of A which satisfies (3.1) will be called an (r, c>scaling of A. 

Following Marshall and Olkin (1968) we will find it useful to consider the 
following nonlinear optimization problem in our study of (r, c )-scalings: 

Program I: min xTAy 

Of course, feasibility of a pair (x, y) for Program I implies that no coordinate 
of x or y is zero; hence, necessarily x z== 0 and y B 0. Thus, feasibility or 
optimality for Program I is equivalent, respectively, to feasibility or optimal- 
ity for the following modified version of Program I: 

Program I’ : min r *A y 

XEW, yER”. 

Unfortunately, the objective function of Program I is not necessarily a 
convex function, and its feasible region is not necessarily a convex set. Still, it 
turns out that Program I belongs to the class of optimization problems called 
geometric programs which are convertible into “convex” problems. Specifi- 
cally, make the change of variables si = log xi and tj = log yi, and take 
logarithms of the objective and constraints of Program I’ to obtain: 

Program II: minlog C exp(si+aij+tj) 
(i,j)csuppA 

s.t. r*s = cTt = 0, 

SER”‘, tER”, 

where aij = log Aij for each pair (i, j) E suppA. 
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Of course, Program I has an optimal solution if and only if Program II has 
an optimal solution, in which case one can obtain an optimal solution for any 
one of these two programs from any given solution of the other. The 
important virtue of Program II is that it is a convex minimization problem. 
Specifically, a standard result-e.g., Avriel (1976, Lemma 7.12, p. 
197)- shows that the objective function of Program II is convex; of course, 
its two constraints are linear. 

Our first result asserts that the (r, c)-scaling problem reduces to the 
problem of solving a nonlinear optimization problem stated as Program I, or 
equivalently to the “convex” optimization problem stated as Program II. 

THEOREM 1 (Characterization of ( r, c )-scalings). 

(a) Assume that err = e’c and that (x*, y*) is optimal for Program 1. Let 
X* and Y* be the diagonal matrices defined by 

x,T = (A”) -‘Lx:, i=l ,..., m, (3.2) 

and 

YjT = yf, j=l,...,n, 

where 

h* = (~*)‘AY* 

eTr ’ 

(3.3) 

(3.4) 

Then B = X*AY* is an (r, c)-scaling of A. 
(b) Assume that X* and Y* are diagonal mutrices in R”‘x”’ and Rnx”, 

respectively, with positive diagonal elements, where B = X*AY* is an 
(r, c)-scaling of A. Then err = eTc and the vectors x* E R”’ and y* E R” 
defined by 

XT = x*x,:, i = l,..., m, (3.5) 

and 

yf = #uL*Yjf, j=l a..., n, (3.6) 
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(3.7) 

and 

p* = fi (yj;) -wL-lQ), 
(3.8) 

j=l 

are optimal for Program I. 

Part (a) of Theorem 1 essentially appears in Marshall and Olkin (1968, 
proof of Lemma 2). 

THEOREM 2 (Existence of (r, c)-scalings). The following conditions are 
equivalent : 

(a) There exists a scaling B of A which satisfies 

Be=r and eTB=cT. (3.9) 

(b) There exists a matrix B E Rmx” with supp B = supp A which satisfies 
(3.9). 

(c) There exist no pair of vectors (u, v) E R”’ x R” for which 

ui + vj > 0 for each pair (i, j) E suppA, 

rTu + cTv d 0, 

and 

either ui+vi>O forsome (i,j)EsuppA 

or rTu + cTv < 0. 

(d) There exist TUI pair of vectors (u, v) E R”’ X R” for which 

ui + vi < 0 foreachpair (i,j)EsuppA, 

rTu = cTu = 0, 

(3.10) 

(3.11) 

(3.12) 

(3.13) 

(3.14) 
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and 

ui + vj -c 0 forsomepair (i,j)~suppA, (3.15) 

and, in addition, err = e’c. 

(e) For every 1 C (m) and 3 C (n) for which A,,I = 0 we have that 

(3.16) 

and equality holds in (3.16) if and only if A,Y = 0. 
(f) Program I has an optimal solution, and eTr = eTc. 

The equivalence of conditions (a) and (b) of Theorem 2 for the chainable 
case appears in Menon (1968, Theorem 2), and the equivalence of (a) and (e) 
was established in Menon and Schneider (1969, Theorems 3.6 and 4.1). Also, 
the equivalence of (b) and (e) for chainable matrices appears in Brualdi 
(1968, Theorem 2.1). Next, the implication (f) * (a) essentially appears in 
Marshall and Olkin (1968, proof of Lemma 2) and the equivalence of (b) and 
(d) for the case with r = e and c = e is given in Saunders and Schneider 
(1979, Theorem 3.4). 

We observe that solvability of Program I or nonexistence of vectors u and 
o which satisfy (3.13)-(3.15) does not imply that eTr = eTc. For example, let 

A = (1,1>> r=(l), and ~=(1,2)~. (3.17) 

Then eTr = 2 # 3 = eTc, but Program I becomes the problem of minimizing 
x,(yr + ys) subject to x, = 1 and y,yi = 1, which has an optimal solution 

<x:, y:, Y:) = (1,2_ 2’3,21/3). Also, if u E R and u E R2 satisfy (3.14) and 
(3.13), then ui = 0 = 2)i +20,, zl,+u,<O, and u,+v,<O, implying that 
u1 = ua = u1 = 0. In particular u and u do not satisfy (3.15). So, no (u, v) E 
R”’ X R” satisfy (3.13)-(3.15). 

We note that in condition (e) we allow I, 1 and their complements to be 
empty, and we consider the empty matrices to be zero matrices. In particu- 
lar, we have that I = (m) and ] = (n) satisfy A [‘, = 0 and A rI’ = 0; hence, 
condition (e) implies that x7_ i r, = C;= 1 cj. Evidently, we could have avoided 
the use of empty matrices by imposing the condition x&r, = Cy= icj. 

THEOREM 3 (Existence of approximate (r. c)-scalings). The folbwing 
conditions are equivalent: 

(al) For every E > 0 there exists a scaling B of A which satisfies 

II Be - r/la: 6 E and (Ie’B - cTI(, < E. (3.18) 
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(a2) There exists a matrix A’ E Rnlx” with~uppA’~suppAandA:~=A~~ 
for every pair (i, j) E supp A’, where A’ has a scaling B’ which satisfies 

B’e = r and eTB’= c*. (3.19) 

(bl) For every E > 0 there exists a matrix B E Rnlxn with supp B = supp A 
which satisfies (3.18). 

(b2) There exists a matrix B E R”’ Xn with supp B c supp A which satis- 
fies (3.19). 

(c) There exist no pair of vectors (u, v) E R” x R” for which 

ui + vi > 0 for each pair ( i , j ) E supp A (3.20) 

and 

rTu + cTv < 0. (3.21) 

(d) There exist rw pair of vectors (u, v) E R”’ x R” for which 

ui + vi < 0 for each pair ( i , j ) E supp A (3.22) 

and 

rTu = cTv = 0 (3.23) 

and, in addition, err = c’e. 
(e) Foreveryl~(m)andJc(n) forwhichA,,,=O wehavethat 

Cri> Ccj. 

iEl jEJ 

(3.24) 

(f) The objective of Program 1 is bounded away jknn zero over the 
feasible set of Program 1, and eTr = e’c. 

The equivalence of conditions (b2) and (e) for the case where r = e and 
c = e appears in Saunders and Schneider (1979, Theorem 3.3). 

The example following Theorem 2 indicates that the assertion that the 
objective of Program I is bounded away from zero, or the nonexistence of 
vectors u and v that satisfy (3.22)-(3.23), does not imply that eTr = eTc. 

4 (Uniqueness (r, c)-scalings). matrix A at most 
(r, c)-scaling. if X, X’ and are diagonal with 
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positive diagonal elements, B = XAY is an (r, c)-scaling of A and 

(I(l), J(l)),...>(J(h), J(h)) are the components of A, then X’AY’ is an 
(r, c)-scaling of A if and only if for some positive numbers a,, . , , ah, 

X&t, = (Y,X~(~) ad Y,it, = atm’Y,ct,, t=l,...,h. (3.25) 

The uniqueness of an (r, c)-scaling of a chainable matrix when such a 
scaling exists appears in Menon (1968, Theorem 2). The general case is 
implicit in Menon and Schneider (1969, Theorems 3.9 and 4.1); see also 
Hershkowitz, Rothblum, and Schneider (1988, Theorem 3.7). 

THEOREM 5 (Uniqueness of solutions to Program I). Suppose eTr = e’c, 
that (x*, y*) is an optimal solution for Program I and 

(I(l)> ~(l)),...,(~(h)> J(h)) are the components of A. Then (xl, y’) is an 
optimal solution for Program I if and only if for some positive numbers 
aI,. . . , a,, with 

(3.26) 

we have that 

Xi(,) 
-1 

= v&, ad Y&, = at Y,T,,, t =l,...,h. (3.27) 

In particular, if A is chainable, there is at most one optimal solution of 
Program 1. 

4. PROOFS 

We start with the proof of Theorem 1. 

Proof of Theorem 1. (a): Assume that eTr = eTc and that (x*, y*) is 
optimal for Program I. The gradients of the functions defining the two 
equality constraints of Program I are given by 
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As r # 0 and c # 0 (being strictly positive), we have that the above two 
gradients are linearly independent at (x*, y *), implying that first order 
conditions are satisfied at (r*, y*); see Avriel (1976, Theorem 2.6, p. 16). 
Hence, for some real numbers X* and p* 

and 

As (x*, y*) is feasible for Program I’, we have that llzr,( x~)‘~ = n;,.,,( y,*)“t 
= 1, and therefore (4.1) and (4.2) imply, respectively, that 

and 

((~*)‘A),=P*[~~(v:)c/]~=~~~, j=l,...,n. (4.4) 
I I 

In particular, we have that X* =(x*)TAy*/eTr and i.~* =(x*)TAy*/eTc, 
respectively. As eTr = eTc, we conclude that X* = p*. So X* satisfies (3.4). 
Further, (4.3) and (4.4) imply, respectively, that the diagonal matrices 
X*E RmXm and Y*E Rnx” defined via (3.2) and (3.3) satisfy X*AY*e = T 
and eTX*AY* = p*cT/X* = c T. So, indeed, B = X*AY* is an (r, c)-scaling 
of A. 

(b): Assume that X* and Y* are diagonal matrices in R’“‘“’ and R”‘“, 
respectively, with positive diagonal elements, where B = X*AY* is an (T, c)- 
scaling of A. Then eTr = er( Be) = (eTB)e = cTe = eTc. Also, let s* E R” and 
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t * E R” be defined by 

s* =p*+logxi;, i=l,...,m, 

and 

tj* =y*+IogYj:, j=I >..., n, 

where 

p*= - 
~:I”,r,(logx,~) 

x;I= l  Tk 

and 

y* = _ c~=~cj(logyj~) 

c;,lc, 

Evidently, these definitions assure that ET!, I;S+ = 0 and ~~=,~~t~* = 0. So 
(s”, t *) is feasible for Program II. Further, if h( , ) is the objective function 
of ProgramHand B=h(s*,t*), wehavethat for i=l,....m 

=@-’ c ,,:+u,,+r,*_ B-‘el-‘bY’r, 
(j:(i,j)~suppAj 

=fy-’ c efi*XifAiJjJTeY* - 8- ‘e”*&‘;; = 0. (4.5) 
(j:(i,j)ESuppA) 

The last equality following from the fact that X*AY*e = r. Similar argu- 
ments, using the fact that e’X*AY* = c’, show that for j = 1,. . . , n 

(4.6) 

It follows that (s*, t*) satisfy the Kuhn-Tucker conditions for Program II and 
therefore (s*, t *) is optimal for that program; see Avriel(l976, Theorem 4.38, 
p. 96). Evidently, (x*, y*) E R” X R” defined by (3.5)-(3.8) satisfy XT = es;* 
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and yf = e’? for i = 1,. . . , m and i = 1,. . . , n; hence this pair is, indeed, 
optimal for Program I. n 

Before establishing Theorem 2 we need some auxihary results. Let h( , ) 
be the objective function of Program II, i.e., for each (s, t) E R” x R”, 

exp( si + aij + tj) . (4.7) 

We have already observed that this function is convex. A direction of 
recession of h( , ) is a pair (u, U) E R” X R” for which 

see RockafeIIar (1970, pp. 66-68). Also, a direction along which h( , ) is 
constant is a pair (u, U) E R” X R” for which 

h(s+u,t+u)=h(s,t) for all (s, t) E R”‘“. 

We next characterize directions of recession of h( , ) and directions along 
which h( , ) is constant. 

LEMMA 1. A pair (u, v) E R” X R” is a direction of recession of h( , ) 
if and only if 

ui + vj < 0 for every pair (i, j) E suppA. (4.8) 

Proof. A pair (u, v) E R” x R” is a direction of recession of h( , ) if 
and only if for every pair (s, t) E R” x R” 

C [exP(si+aij+tj)][eXP(zci+Vj)] 
(i, j)~suppA 

G c exp(si+aij+tj). 
(i,j)ssuppA 

(4.9) 

Trivially, (4.8) implies that (4.9) holds for every pair (s, t) E R”’ X R”. To see 
the reverse implication, assume that (u, U) E R” X R” does not satisfy (4.8), 
and we wi.U construct a pair of vectors (s, t) for which (4.9) does not hold. As 
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(u, U) do not satisfy (4.8), we have that for some (i*, j*) E suppA, u,+ + uj* 
> 0. Let p = exp( z+ f uj*) > 1, and for each M > 0 let s(M) = Me” ( E R”‘) 

and t(M) = Mej’ ( E RI’). It then follows that 

1 {exP[s(“)i+~ij+t(~)j]}[exP(ui+uj)] 
(i. j, E SUppA 

> P exp( a,+,* +2M) = PA,*j*e2”. (4.10) 

Also, as ~(M)~+a~~+t(M)~ia,~+ M for every pair (i, j)E(suppA)\ 
(i*, j*), we have that 

c exp (s(M), + aii + t(M)j] 
(i. i, E suppn 

G c Aije”’ + A,,j*(e2”- e.“). (4.11) 
(i, j)EsuppA 

Since ,0 > 1, it immediately follows that for sufficiently large M the right-hand 
side of (4.10) dominates the right-hand side of (4.11). For such M, (4.9) need 
not hold for s = s(M) and t = t(M), establishing a contradiction and thereby 
completing our proof. n 

COROLLARY 1. A pair (u, 6) E R”’ x R” is a direction ulong which 

h( , ) is constant if and only if ui + vi = 0 for every pair (i, j ) E supp A. 

Proof. Trivially, (u, v) is a direction along which h is constant if and 
only if both (u, u) and ( - u, - v) are directions of recession of h( , ). 
Hence, the conclusion of our corollary is immediate from Lemma 1. N 

We are now ready to establish Theorem 2. 

Proof of Theorem 2. In this proof we refer to conditions found in the 
statement of Theorem 2. We will establish Theorem 2 by showing the 
sequence of implications: (a) * (b), (b) * (c), (c) = (d), (d) a (f), (f) j (a), 

(e) * (c), and (c) * (e). 
(a) * (b): This implication is trivial, as each scaling of A has the same 

support as A. 
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(b) CJ (c): The assertion in (b) means that there exists a solution to the 
linear system 

c Zij = r,, 
jG (l,...,n) 

(i, j) E suppA 

c zij = cj, 
i= (l,...,m) 

(i. j) E suppA 

8 B 0, 

where z is the (variable) vector given by 

i=l m, >..., (4.12) 

j=l >..., m (4.13) 

(4.14) 

(4.15) 

It now follows from the theorem of the alternative stated in Theorem A.2 of 
the Appendix that this system has no solution if and only if there is no pair of 
vectors (u, v) E R” x R” satisfying (3.10), (3.11), and (3.12). 

(c) =. (d): Assume that (c) holds. We first establish that eTr = eTc. Sup- 
pose that this is not the case and err # e*c. Let u = e E R” and v = - e E R” 
if err < e’c, and let u= -e E R” and u =e ER” if err > e’c. In either 
case ui+vj=O for all (i,j)EsuppA and r%+cTv= -(rTe-crel<O, 
contradicting (c). So, indeed, e*r = eTc. Finally, if (u, v) satisfy (3.13)-(3.15), 
then, trivially, ( - U, - v) satisfy (3.10)-(3.12) implying that (c) * (d). 

(d) * (f): Evidently, Program I has an optimal solution if and only if 
Program II does. Hence, we consider only Program II. Let C = {(s, t ) E 
R” X R” : rTs = cTt = O}. By Lemma 1 and Corollary 1, condition (d) asserts 
that every direction of recession of h which is in C is a direction along which 
h is constant. Thus, we conclude from Rockafellar (1970, Theorem 27.3, p. 
267) that Program II attains a minimum. 

(f) +S (a): This equivalence is immediate from Theorem 1. 
(e) * (c): Suppose that (e) holds, i.e., for Z c (m) and J C_ (n) 

A,eJ = 0 * c ri > c ci with equality holding if and only if A,? = 0. 
iGl jgl 

(4.16) 
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In particular, we have that 

Vl 

Cr,= icj; 
1=1 j=l 

(4.17) 

see the third comment following the statement of Theorem 2. We first 
establish that there exists no triplet (u, v, s) E R” x R” x RsuppA satisfying 

Sij = 24, + vi for every pair (i, j) E suppA, (4.18) 

u 20, OGO, (4.19) 

sa 0, (4.20) 

and either 

rTu + cTv < 0 (4.21) 

or 

rTu + cTv = 0 and c stj > 0. (4.22) 
(i,j)ESllppA 

Of course, (c) asserts the nonexistence of triplets (u, 0, s) satisfying (4.18), 
(4.20), and either (4.21) or (4.22) without requiring that (4.19) be satisfied. 
Hence nonexistence of (u, IJ, s) satisfying (4.18)-(4.20) and either (4.21) or 
(4.22) is a weaker assertion than (c). Suppose that the set of triplets (n, n, s) 
satisfying (4.18)-(4.20) and either (4.21) or (4.22) is not empty. Let 
(u*, n*, s*) be a triplet in that set which minimizes Y(U, U, s) = ]supp ul+ 
(supp 01 + (supp s( among such triplets (where absolute value signs are used to 
denote cardinahties of sets). Of course, both (4.21) and (4.22) assure that 
(u*, o*) is nonzero. Let I = {i = 1,. . , m : ut > 0} and J = { j = 1,. . , n : v; 
< O}. In particular, either I or J is nonempty. Also, (4.18)-(4.20) imply that 

if i E I” and j E J then (i, j) 4 suppA, i.e., A,?, = 0. Hence, (4.16) implies 
that 

(4.23) 

For B > 0 let (u(e), u(0), s(d)) E R”’ X R” X R’“ppA be defined by u(8) 
= u*-@Be’, u(0) = v*+ OeJ, and s(e),,= s$ - e[(eJ)i - (eJ)j] for each 
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(i, j) E suppA. Then (u(B), u(e), s(d)) satisfies (4.18) for all 8 > 0. Now, if 
U* = 0 then i e I, implying that ~(8)~ = u: = 0; hence supp u(e) 5 supp u*. 
Similarly, supp u(B) c supp o*. Also, if siT = 0 for (i, j) E suppA, then either 
U* = u,? =0 or U* > 0 and 0; < 0, and in either case (e’)i -(eJ)j= 0; 
hence supp s( 0) c supp s*. Further, for 

we have that u(e*) 2 0, o(e*) G 0, s(e*) 2 0 and v(u(@*), v(e*), s(e*)) < 
V( u*, o*, s*). In particular, (u( 0*), u( 0*), s( 0*)) satisfies (4.18)-(4.20). We 
continue by showing that (u( t9*), v( 0*), s(e*)) satisfies either (4.21) or (4.22). 
First observe that (4.23) implies that 

TTu(e*) + cTu(e*) = rTu*+ C~U* - e* ( Cri- Iil’j) 

iEZ j-e1 

( rTu* + cTu*. (4.25) 

Now, if (u*, u*, s*) satisfies (4.21) i.e., rTu* + cTv* < 0, or if Ci E, ri > 

cjEJcj’ then (4.25) implies that (u(e*), u(e*), s(o*)) satisfies (4.21). It 
remains to consider the case where (u*, v*, s*) satisfies (4.22), i.e., rTu* + 
cru*=OandC. (,, I) E SuppA~i*j > 0, and where Ci E I r, = Cj E, cj. In this case we 
have that 

rT24(e*) + cTu(e*) = rTu* + cTu* - e* ( Cri- C’j) 

iGl jsl 

=o+o=o. 

Also, (4.16) implies that A,,c = 0. As we have already seen that A,?, = 0, we 
have that (e’), - (e’)j = 0 for all (i, j) E suppA. So 

c S(@*)ij = C {u:+o~-B*[(e’),-(e’)j]} 
(i,j)cswpA (i,j)EsuppA 

= c spa, 
(i. j)ESUPPA 
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and we see that (u( B*), u(B*), s(P)) satisfies (4.22). So (u( 0*), u( 0*), s( t9*)) 
satisfies (4.18)-(4.20) and either (4.21) or (4.22). As Y( u(@*), u( a*), s( 0*)) < 
V( u*, v*, s*), we get a contradiction, thereby showing that no triplet (u, u, s) 
satisfies (4.18)-(4.20) and either (4.21) or (4.22). 

We finally establish that there exists no triplet (u, u, s) satisfying (4.18) 
(4.20), and either (4.21) or (4.22), thereby establishing (c). Suppose (u, u, s) 
satisfies the above conditions, and let U = u + and = u - for 

- 
sufficiently (u, v, s) satisfies (4.18) 
(4.19), and (4.20). Further, (4.17) assures that 

As (u, v, s) satisfies (4.21) or (4.22), we immediately conclude that (U, V, s) 
satisfies the same condition, respectively. So, U, a, s satisfies (4.18)-(4.20) 
and either (4.21) or (4.22), a contradiction. 

(c) 3 (e): Assume that (c) holds. To establish (e) let Z c (m) and 
c (n) A,<, = Consider the u = E R” v = eJ E 

As AIc, 0, we that ui vi > for each (i, j) supp A. 
we conclude (c) that + cTu 0, i.e., 

c T, - c cj = rTu + cTv 2 0. 
it1 jEJ 

(4.26) 

Further, if equality holds in (4.26) then (c) implies that U, + vi = 0 for all 
(i, j) E suppA, assuring that no pair (i, j) E I“ X J is in suppA, i.e., A,,, = 0. 

We finally show that if AIlr = 0 and ArcI = 0 then Xi E I r, = xj =I cj. First 
observe that as (u,u)=(-e,e)eR”‘XR” satisfy ui+uj=O for every 
(i, j) E suppA we have that 

- E r, + f cj = rTu + cTv > 0. (4.27) 
i=l j=l 

Similarly, by considering (u, v) = (e, - e) E R” x R” we obtain the reverse 
inequality. So, necessarily, 

&- fcj=o. 
1=1 j=l 

(4.28) 
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Now, if AIIC - - 0 and A,,, = 0, our earlier arguments show that 

cri- CCj>O (4.29) 
iEZ iel 

and 

c ri- c cjl/o. (4.30) 
i E 1’ jEr 

Adding the left hand sides of (4.29) and (4.30) yields the expression Cz 1 r, - 
C;, lcj, and therefore we conclude from (4.29), (4.30), and (4.28) that 
equality holds in (4.29) and (4.30), as asserted. m 

Proof of Theorem 3. In this proof we refer to the conditions of the 
statement of Theorem 4. 

(al) j (bl) and (a2) * (b2): These two implications are trivial and follow 
from the fact that a scaling of a matrix has the same support as the given 
matrix. 

(bl) 3 (al): Suppose that (bl) holds. Let E > 0 be given, and suppose that 
B E RmX” has the same support as A and satisfies (3.18). Let r’ = Be and 
c’ = BTe. Then the equivalence of (a) and (b) in Theorem 2 assures the 
existence of a scaling B’ of A for which We = T’ = Be and erB’ = (c’)r = cTB. 
In particular, JIB’e - r)\, = I/Be - rJJm < E and JlerB’- cTllm = lleTB - ~~11~ 
< E, establishing (al). 

(b2) 3 (a2): Suppose that (b2) holds and B E R” Xn satisfies supp B c 
supp A, Be = r, and eTB = cT. Let A’ be the m X n matrix defined by 
A:j = Aij if (i, j) E supp B and A’ii = 0 otherwise. As B is a matrix having 
the same support as A’ for which Be = r and eTB = c*, we conclude from 
the equivalence of conditions (a) and (b) of Theorem 2 that A’ has a scaling 
B’ for which B’e = r and eTB’ = cT, establishing (a2). 

(bl) * (b2) e (c): Assertion (b2) means that there exists a solution to the 
linear system 

c zij = r,, i=l,...,m, 
jG(l,..,,n) 
(i, j) E suppA 

c zij = cj, j=l ,...1 n, 
iG (l,...,m) 
(i, j)EsUppA 
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where the (variable) vector .z is given by z = ( zii)ci, j~GSuppA. Also, the 
assertion in (bl) means that for every e > 0 there exists a solution to the linear 

system 

c Xii -T, GE, 

jG (l.....tl) 

(I, j)ESuPPA 

c Zij_Cj <&, 

iE (1, ..,nr) 

(i, j) E suppA 

i=l ,...,m, 

j=l ) . . ) n ) 

where, again, z = (zi .)Ci, j)EsuppA. The equivalence of the solvability of these 

two systems now fo d ows from a standard result about linear systems; see 
Theorem A.4 of the Appendix. Also, it follows from the theorem of the 
alternative stated in Theorem A.3 of the Appendix that the first of the above 
two systems has a solution if and only if there is no pair of vectors 
(u, U) E R”’ x R” satisfying (3.20) and (3.21). 

(c) = (d): Assume that (c) holds. The arguments used to establish the 
implication (c) d (d) in Theorem 2 show that in this case necessarily e’r = erc. 
Now, assume that (u, v) E R” X R” satisfies (3.22) and (3.23). Then for some 
E > 0, ui + vi + sri < 0 for all (i, j) E suppA. Let U’ = - u - ET and u’ = - o. 
Then u:+vj=-(u,+vj)-er,>O for all (i,j)~suppA and rru’+ 
cru’ = - r% - cru - srTr = - srTr < 0. So (u’, v’) satisfies (3.20) and (3.21), 
which contradicts (c). This completes the proof that (c) * (d). 

(d) a (c): Suppose that (d) holds and (u, v) E R”’ X R” satisfies (3.20) 
and (3.21). Let y = rre = c’e, U’E - u + y-‘(rTU)e, and 0’~ - c + 

y-‘(cTu)e. Then for every (i, j) E suppA, (3.20) and (3.21) imply that 

q’+v(= -(ui+uj)+y~~l(rTu+cTo)< -(ui+ui)‘<O. 

Also, rTu’ = cTv’ = 0. So (u’, o’) satisfies (3.22)-(3.23), which contradicts (d). 
This completes the proof that (d) =) (c). 

(f) a (d): Assume that (f) holds and that (u, u) E R”’ x R” satisfies (3.22) 
and (3.23). Let 6 = max{ ui + vi: (i, j) E suppA}. ln particular, (3.22) as- 
sures that 6 < 0. Now, for every M > 0 let r(M) and y(M) be defined by 
x(M), = expMu,, i = l,..., m, and y( M)j = exp Mui, j = 1,. . . , n. Evidently, 
for every M > 0, we have r(M) B 0, y(M) B 0. Also, by (3.23) ny: 1 x(M): 
=exp(Z,“=,M~,u~)=expO=l and ny_ly(M)7 =exp(Z~=,Mc,vj)=expO 
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= 1. Thus (x( M ), y( M )) is feasible for Program I for each M > 0. In 
addition, we have that x( M)iy( M)j = exp M( ui + vj) < exp SM for each 
(i, j) E suppA, implying that 0 < x(M)TAy(M)<(eTAe)(exp6M). 

As 6 < 0, we conclude that x( M )TAy( M) + 0 as M -+ co, implying that 
the objective of Program I is not bounded away from zero, contradicting (f). 

(d) j (f): Suppose that (d) holds and that the objective of Program I is 
not bounded away from zero. Let (Y 3 min{ Aii: (i, j) E suppA}. Then there 
exists a pair (x, y) that is feasible for Program I, and xrAy < (Y. In particular, 
for every (i, j) E suppA 

XiAijyj xTAy 
XiYj < --y < (y < 1. (4.31) 

Let u E R” and t’ E R” be defined by ui = log xi, i = 1,. . . , m and vi = 
logyj, j =I,..., n. Then (4.31) implies (3.22) and the feasibility of (x, y) for 
Program I implies (3.23) contradicting (d). 

(e) => (c): Assume that (e) holds. Then arguments similar to those used in 
the proof of the corresponding implication in Theorem 2 show that there 
exists no triplet (u, V, s) E R” X R” X RsuppA which satisfies (4.18)-(4.21). 
Next, further arguments used in the proof of Theorem 2 show that nonexis- 
tence of (u, v, s) satisfying (4.18)-(4.21) implies nonexistence of (u, v, s) 
satisfying (4.18), (4.20), and (4.21). The latter is equivalent to (c). 

(c) * (e): Assume that (c) holds. To establish (e) let I 5 (m) and 
J G (n) satisfy A,,, = 0. Consider the vectors u = e’ E R” and u = - eJ E 
R”. As A,,, = 0, we have that ui + vj > 0 for each pair (i, j) E suppA. Thus, 
we conclude from (c) that r*u + crv >, 0, i.e., 

cr,- 1 Cj=r%+c*v>O. n (4.32) 
iE1 jel 

Proof of Theorem 4. If A has a zero row or zero column, then A has no 
(r, c)-scaling. Hence assume that A has no zero row or column. Now suppose 
that A has two scalings B = XAY and B’= X’AY’ for which 

Be = B’e = r and eTB = eTB’ = cT, (4.33) 

where X, X’, Y and Y’ are diagonal matrices of appropriate size having -- 
positive diagonal elements. Let ?? = X’X-’ and y = Y-‘Y’. Then B’ = XBY 
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and B=(X) -lB’(i(‘)-‘. In particular, as Cl=,Blj= 1;, we get from the 
inequality between the arithmetic and geometric mean that for i = 1,. . . , m 

1 = ‘; = (R’e), (x;=I”iiB~jvjj) 

-= 

'i 'i 5 

(4.34) 

Raising the above inequalities to the r,th power and taking products, we get 
.that 

(4.35) 

Exchanging B and B’ and replacing x by (%) -’ and y by ( y ) ‘, we also 
get that 

It follows from (4.35) and (4.36) that these two inequalities must hold as 
equalities, implying that each of the inequalities in (4.34) must hold as an 
equality. As the inequality between the arithmetic and geometric mean holds 
as equality if and only if the terms averaged with positive weights are all 
equal to the corresponding average, we get that the equalities in (4.34) imply 
that for i = l,...,~n. 

-- 
X*,Yjj = 1 forall j=l,..., n with B,,>O. (4.37) 

-- 
Thus, XiiYjj = 1 for all (i, i) E supp B = suppA, i.e., XiiBijyjj = Bil. Hence, 

-- 
B’=XBY=B, (4.38) 

which proves that A has at most one (T, c)-scaling. 
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We next conclude from (4.37) that 

(i, jl) ~suppA and (i, j,) ~suppA * i!j,jl=pJ2j2 (4.39) 

and 

(il, j) E suppA and (i,j) E suppA j Xl,i,=Xizi,. (4.40) 

Hence it easily follows from the definition of chainability that if 1 c (m) and 
.l c (n) such that A,, is chainable, then xii coincide for all i E I and yjj 
coincide for all j E J. In particular, if (Y is the common value of the xii’s 
when i ranges over 1, then (4.37) shows that (Y-I is the common value of the 
yjj’s when j ranges over .l. Thus, (Y = xii = X;iX,’ for each i E 1 and 

-‘=y..=Y.‘.Yx’ for each j 

is (&r(l,‘, JJ 
E J, implying that Xi = cwX, and Y,’ = c’Y,. 

,...,(J(T(h), J(h)) are the components of A, each AIC,,JCt, is 
chainable and (3.25) follows for corresponding numbers (Ye,. . . , CQ. 

Finally, assume that X’ and Y’ satisfy (3.25). Then for t = 1,. . . , h, 
XiiYj; = XiiYjj for every i E Z(t) and j E Z(t), implying that 

Ah as AI(,),(S) = 0 for t + s, we have that for such t and s 

(X’AY’)~~),M = X&,,A I(t),(S]Y&, = 0 

=X A r(t) ,(lMS~Y,CS) = (XAY)I,QJCS~~ (4.42) 

completing the proof that X’AY’ = XAY. H 

We note that the proof of Theorem 1 can be established from strict 
convexity properties of the objective of Program II, but the arguments used 
will implicitly coincide with those used in the proof established here. 

Proof of Theorem 5. If X’ and y’ satisfy (3.27) where CY~,. .., DL,, satisfy 
(3.26), then 

= ( x*)~A~*. 
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Also. 
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Also, by the equivalence of parts (e) and (f) in Theorem 2, C, E ,Ct ) r, = ,L j E ,( f ) cj 
for t = 1,. . . , h. Hence, 

So (x’, y’) is feasible for Program I and has the same objective value as 
(x*, y*), and therefore (x’, y’) is optimal for Program I. 

Next assume that (x’, y’) is optimal for Program I. It then follows from 
part (a) of Theorem 1 and from Theorem 4 that there exist positive numbers 
(Y~,...,oI,, such that with h*=(~*)~Ay*/e?r and x’=(~‘)~Ay’/e~r we have 
that 

(A’) -lx;ct, = q(h*) -‘x{~) and yicl, = a;'~;,,, t=l,..., h. (4.43) 

As (x*, y*) and (x’, y’) are both optimal for Program I, (x’)~AY’ = (x*)rAy* 
and therefore X’ = X*. Thus, (4.43) reduces to (3.27). Further, feasibility of 
(x*, y*) and (x’, y’) for Program I immediately implies (3.26). 

Finally, if A is chainable, then h = 1 and (3.26) reduces to or = 1. Thus, if 
(x*, y*) and (x’, y’) are optimal for Program I, (3.27) shows that x’ = r* and 
y’ = y*. n 

APPENDIX 

The purpose of this appendix is to summarize some results from the 
theory of linear inequalities that are used in this paper. 
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Theorems of the alternative characterize solvability of linear systems in 
terms of alternative systems. The following three theorem give such results. 

THEOREM A. 1. LetBERk”“, CER ) pXn b E Rk, and c E RP. Then the 
system 

Br f b, ad Cx -+z c (A.11 

has no solution if and only if for mne y E Rk, and z E RP 

yrZ3 + zTc = 0, (A.2) 

y > 0, z > 0, (A.3) 

yTb + zTc < 0, (A.4) 

and 

either yTb+zTcfO or z#O. 

Proof. See Schrijver (1986, Corollary 7.lk, p. 94). 

THEOREM A.2. Let A E Rmx” and a E R”‘. Then the system 

Ax=a, x >> 0 

has rw solution if and only if for some A E R” 

XTA > 0, 

XTa < 0, 

and 

(A.51 

(A.61 

(A.7) 

(A.61 

either XTa < 0 OT XTA # 0. (A.9) 

Proof. Apply Theorem A.1 to the case where B = 
C= -Zandc=O. 

( -*_,4), b=( -“a)> 
n 
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THEOREM A.3. Let A E Rmx” and a E R”‘. Then the system 

Ax=a, X>O 

has no solution if and only if fm some h E R”’ 

(A.10) 

XTA >, 0 and XTa < 0. (A.ll) 

Proof. See Schrijver (1986, Corollary 7.ld, p. 89). n 

We next characterize solvability of a linear system which has nonnegativ- 
ity constraints via an approximate system with strict positivity constraints. 

THEOREM A.4. Let A E R”‘xn and h E R”. Then the system 

Ax = 6, X20 

has a solution if and only if for every E > 0 the system 

IlAx - bll, < E, n B 0 

has a solution. 

(A.12) 

(A.13) 

Proof. Suppose that (A.12) has a solution x*. Let e = (1,. . . ,l) E R”. 
For each E > 0, Iet X*(E) = x* + t(IIAell, + l)-‘e. Then X*(E) B 0 and, as 
Ax* = b, we have that //AX*(E) - b/J, = E(/IAell, + l)-‘JIAeJI, <E. 

Next assume that (A.12) does not have a solution whereas (A.13) has a 
solution for each E > 0, say X(E). As (A.12) has no solution, we have from the 
theorem of the alternative stated in Theorem A.3 that for some X E R”‘, 

XTA > 0, XTb < 0. 

In particular, we conclude that for each E > 0 

E>-‘[AX(E)-b] =(XTA)x(e)-_‘b> -ATb>O. 

As E = ( - hTb)/(xTS1 /Xi1 + 1) does not satisfy the above inequality, we have 
a contradiction that proves the second implication. n 
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NOTE 

The results of this paper were presented at the third Haifa Matrix Theory 
Conference in January 1987, and the paper appeared as Technical Report 
8828 of the Center for the Mathematical Sciences of the University of 
Wisconsin in April 1988. Recently a more general scaling problem was 
introduced by Bapat and Raghavan (1989). Several authors have used opti- 
mization techniques to study this and other generalized scaling problems. See 
the papers by Franklin and Lorenz (1989) Rothblum (1989), and M. H. 
Schneider (1989). The papers mentioned are published in this issue. 

We thank R. W. Cottle for drawing OUT attention to the references to 
Kruithof (1937) and Krupp (1979). We also thank A. Muchlis for his careful 
reading of our munwscript. 
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