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Adenosine mediates transforming growth factor-beta 1 release in kidney
glomeruli of diabetic rats
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Up regulation of the transforming growth factor-beta 1 (TGF-b1) axis has been recognized as a path-
ogenic event for progression of glomerulosclerosis in diabetic nephropathy. We demonstrate that
glomeruli isolated from diabetic rats accumulate up to sixfold more extracellular adenosine than
normal rats. Both decreased nucleoside uptake activity by the equilibrative nucleoside transporter
1 and increased AMP hydrolysis contribute to raise extracellular adenosine. Ex vivo assays indicate
that activation of the low affinity adenosine A2B receptor subtype (A2BAR) mediates TGF-b1 release
from glomeruli of diabetic rats, a pathogenic event that could support progression of glomerulopa-
thy when the bioavailability of adenosine is increased.
� 2009 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
1. Introduction

Diabetic nephropathy (DN) is the leading cause of end-stage renal
failure in the world. Approximately 40% of patients with type 1 and 2
diabetes will develop DN [1]. The major clinical features of human
DN include albuminuria, progressive reduction of GFR and hyperten-
sion, and increased risk for cardiovascular diseases [1]. The DN path-
ogenesis is associated with glomerular angiogenesis and
hyperfiltration. In addition, thickening of the glomerular basement
membrane, the expansion of mesangial cells, glomerulosclerosis
and tubulointerstitial fibrosis are observed in patients with DN [2].

Transforming growth factor-beta 1 (TGF-b1) and its receptors are
up-regulated in both experimental and human diabetic nephropa-
thy [2]. Enhanced expression of TGF-b1 receptors, TGF-b1 bioactiv-
ity, and responsiveness to exogenous TGF-b1 has been noted to
occur in response to high glucose in glomerular cells [3–6]. Blocking
of TGF-b1 signaling or expression prevent and/or reverse the hyper-
trophic and profibrotic effects of the diabetic state [2]. Currently,
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new pharmacological targets that allow blocking the TGF-b1 medi-
ated glomerulosclerosis are the focus of much research.

The nucleoside adenosine regulates essential renal functions by
means of local modification of its extracellular bioavailability to
activate members of the P1 purinoceptor family enclosing A1, A2A,
A2B and A3 adenosine receptor (AR) subtypes [7]. All subtypes have
been detected in the glomerulus, but their physiological roles have
been scarcely studied [8–10].

Extracellular adenosine availability in body compartments is
regulated by the capability of cells to uptake adenosine to be
metabolized, accumulating extracellularly when uptake is de-
creased [11–16]. The uptake of adenosine by mammalian cells
is mediated by the activities of the equilibrative (ENTs, Na+-
independent) and the concentrative (CNTs, Na+-dependent)
nucleoside transporters [17]. In addition, the activity of ecto en-
zymes able to metabolize purine nucleotides, particularly the
ecto 50-nucleotidase (CD73) that hydrolyze AMP [18], is also a
relevant contributor to produce the ligand for adenosine
receptors.

Actually the mechanisms controlling extracellular adenosine
bioavailability in the glomerulus are poorly understood. It has been
shown that a source of adenosine is provided by the metabolism of
ATP released from glomerular cells [19]. In this study, we evaluate
the effect of experimental diabetes on the activity of the nucleoside
lsevier B.V. All rights reserved.
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transporters and the ecto 50-nucleotidase in the rat glomerulus.
Further the probably pathogenic role of adenosine receptors to
support the activation of the TGF-b1 axis, which mediates glomer-
ulosclerosis, in response to changes in adenosine availability.

2. Materials and methods

2.1. Animals and tissue samples

Diabetes was induced in male rats (Sprague–Dawley) weighing
250 g by single intravenous injection of streptozotocin (65 mg/kg)
dissolved in citrate buffer pH 4.5. Control rats were injected with
vehicle. Blood glucose was measured weekly. Diabetic group were
animals presenting blood glucose levels higher than 450 mg/dl.
Three weeks post-induction, the kidney were perfused with PBS
1X and recollected. Glomeruli were isolated using a differential
sieving method [10].
2.2. Adenosine quantification

Total glomeruli freshly purified from individual rat were incu-
bated in 1 ml of tyrode’s buffer at 37 �C and 5% CO2 for 1 h. Incuba-
tion medium and glomeruli were separated by centrifugation at
2000�g for 5 min. The adenosine content in supernatants was
quantified using derivatization with chloroacetaldehyde and HPLC
with fluorometric detection.

Reverse transcription and Real Time Polymerase chain reac-
tions. Total RNA were isolated from purified glomeruli using the
Trizol� Reagent (Invitrogen). Aliquots of 1 lg of total RNA were re-
versed transcribed using oligo (dT18) and MMLV Reverse Transcrip-
tase (Invitrogen) [10]. Amplifications were performed using a
LightCycler� rapid thermal cycler (Roche Diagnostics). Reactions
(10 ll) included 1 ll of template cDNA (dilution 1:10), 0.2 lM
primers and components provided by Lightcycler� Fast Start
DNA Master SYBR�Green (Roche). Templates for standard curves
were prepared as described [10]. Reactions were conducted for
5 min at 95 �C, followed by 40 cycles including denaturation for
10 s at 95 �C, annealing for 10 s at 60 �C and extension for 30 s at
72 �C. Rat gene-specific primers (sense, antisense) were: A1AR
50-CTCCATTCTGGCTCTGCTCG-30, 50-ACACTGCCGTTGGCTCTCCA-30;
A2BAR 50-TTCTGCACGGACTTTCACAG-30, 50-AAGGAGTCAGTCCAA-
TGCCA-30; CD73 50-GATAACGGTGTGGAAGGACT-30, 50-CTGCA
ACG-CAGTGACTTCAT-30; ENT1 50-TCTGCTTTCATCTGGAGGAC-30,
50-GAAGATGAGCCAGACAGCCT-30; ENT2 50-ATAGGACTGCGGACAT-
CATG-30, 50-TTGAAGGTGTCTGTGGGACT-30; b-actin 50-GAT-
GACCCAGATCATGTTTG-30, 50-CAGGAGGAGCAATGATCTTG-30.
2.3. Transport assay

Overall uptake rates were measured in isolated glomeruli by
the rapid filtration technique [20]. Freshly purified glomeruli were
resuspended in choline buffer (in mM: 5.4 KCl, 1.8 CaCl2, 1.2
MgSO4, 10 Hepes, 137 choline chloride, pH 7.4). Uptake was initi-
ated by diluting the glomeruli suspension 5-fold in choline buffer
supplemented with [5,6-3H]uridine (1 lM, 1 lCi/ml) and incu-
bated at 22 �C for 1 min. Incubation was terminated by the addi-
tion of 1 ml of ice-cold STOP solution (137 mM NaCl and 10 mM
Hepes, pH 7.4), filtered and washed twice with 3 ml of STOP solu-
tion. Particular uptake rates for equilibrative nucleoside transport-
ers 1 or 2 (ENT1, ENT2) were assigned to transport activities
inhibited by 1 lM NBTI or 2 mM hypoxanthine, respectively [21].
Total nucleoside uptakes were also measured in transport medium
containing sodium chloride. Sodium-dependent uptakes rates
were calculated from the differences between sodium and choline
uridine uptakes.
2.4. AMP hydrolysis

Glomerular ecto 50-nucleotidase activity (CD73) was revealed
by histochemical lead phosphate method. Frozen sections
(12 lm) were obtained from rat kidneys perfused with 0.15 M
NaCl. The procedure to fix the sections and assay AMP hydrolyzing
activity was similar as described [18]. Preincubation in presence of
5 mM levamizole were carry out to block alkaline phosphatase
activity. To assure specific CD73 ecto 50-nucleotidase activity, the
AOPCP inhibitor (Sigma) was used as control.
2.5. TGF-b1 release

Purified glomeruli (200 000 per well) were incubated in 2 ml of
HAM-F10 medium (5 mM D-glucose) supplemented with 1 lmol/l
NECA non-selective P1 receptor family agonist, 50 nmol/l
MRS1754 A2BAR antagonist, 30 nmol/l CPA A1AR agonist,
30 nmol/l DPCPX A1AR antagonist, 100 nM CGS21680 A2AAR ago-
nist, 10 nM ZM241385 A2AAR antagonist, 1 lM 2-CI-IBMECA
A3AR agonist and 10 lM MRS1220 A3AR antagonist at 37 �C and
5% CO2 for 12 h. Binding affinities were described [22]. Following
incubations, glomeruli were collected by centrifugation and the
supernatants were stored at �70 �C. Aliquots of supernatants from
ex vivo treated glomeruli were used to quantify active TGF-b1
using the ELISA Mouse/Rat/Porcine/Canine TGF-b1 Immunoassay
Quantikine� system (R&D Systems). TGF-b1 values were normal-
ized to glomeruli total protein contents in individual assays.
2.6. Immunohistochemistry

Rat kidney tissues were fixed in formalin, paraffin embedded
and 5 lm sections were mounted on sylanized slides. Immunode-
tection was performed as described [10]. The primary polyclonal
anti-A2BAR, -A1AR and primary monoclonal anti-TGF-b1 antibodies
were obtained from Santa Cruz Biotechnology. The immunosignals
were revealed using the LSAB+ System–HRP system
(DakoCytomation).

2.7. Statistical analysis

Values are means ± S.E.M., where n indicates number of ani-
mals. ANOVA was applied for unpaired data and P < 0.05 was con-
sidered statistically significant.

3. Results

3.1. Short term diabetes modifies adenosine bioavailability in rat
glomeruli

Purified glomeruli by differential sieving method were mostly
lacking of bowmann’s capsule. Quantification of adenosine indi-
cates that diabetic glomeruli were able to accumulate more than
sixfold extracellular adenosine compared to levels in the superna-
tants of normal rat glomeruli. Values were 37.4 ± 1.79 nM in dia-
betic vs 6.0 ± 0.36 nM in normal rat glomeruli (values are
means ± S.E.M. from individuals determinations normalized to
1 lg of total glomerular proteins, n = 5, P < 0.001). In order to iden-
tify the mediators involved in modifying the outer adenosine accu-
mulation in diabetic rats, we quantified the effect of diabetes on
the mRNA levels for nucleosides transporters ENT1 and ENT2 and
their activities. Neither ENT1 nor ENT2 transcript contents were
significantly modified (Fig. 1A); however, uptake rates were de-
creased in short term diabetes. Overall uridine uptake in sodium-
containing medium was significantly (P < 0.05) reduced by 30.8%
in glomeruli from diabetic rats. This reduction was mostly, if not



Fig. 1. mRNA content of genes implicated in extracellular adenosine accumulation and adenosine receptors. Quantification of transcript amounts of (A) ENT1 and ENT2, (B)
the ecto 50-nucleotidase (CD73) and (C) adenosine A1 and A2B receptor subtypes genes, were performed by real time PCR in total RNA from glomeruli of normal (h) and
diabetic (j) rats (n = 5). The graphs depict the means ± S.D. of the ratios between numbers of target gene/b actin copies. * indicate significant statistical difference (P < 0.05).
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exclusively, accounted for by the sodium-independent component
of uridine transport, which was decreased by 33.8% by diabetes
(P < 0.05) (Table 1). The evaluation of individual uridine uptake
rates for ENT1 and ENT2, showed a significant decrease (P < 0.05)
in the activity of ENT1 in diabetic rats glomeruli (Table 1).

Previous reports showed that the hydrolysis of AMP by the ecto
50-nucleotidase (CD73) is a limiting step in the rat glomerulus [19].
We quantified an increase in the mRNA contents of CD73 in glome-
ruli from diabetic rats (Fig. 1B). Hystochemical analysis revealed
that evident 50-nucleotidase activity occurs at luminal membranes
of proximal tubules while very less activity was observed in the
glomerulus of normal rats (Fig. 2). Comparison between normal
and pathological rat renal slides indicates an increase in the 50-
nucleotidase activity in the glomerulus of diabetic animals
(Fig. 2B), but no differences were apparent in tubule cells.
Table 1
Effect of diabetes on the activity of nucleoside transporters in ex vivo glomeruli.

Uridine uptake Normal (pmol Urd/mg pro

Sodium buffer 1.418 ± 0.083
Choline buffer 1.100 ± 0.096
Sodium-dependent 0.318 ± 0.053
ENT1 mediated 0.410 ± 0.044
ENT2 mediated 0.188 ± 0.071

The values represent the means ± S.E.M. of triplicate experiments in glomeruli isolated
* Significant difference, P < 0.05.
3.2. Adenosine A2B receptor mediates TGF-b1 release from diabetic
glomeruli

Following 3 weeks of diabetes induction, the rat glomeruli
showed an increased expression of TGF-b1 located mainly to mes-
angial cells as previously reported [23,24], which contrasts with
normal glomeruli where the immunostaining was undetected
and it was only evident in certain tubular epithelial cells (Fig. 4).
In addition, extracellular matrix deposition at this stage was a
remarkable feature occurring at the onset of glomerusclerosis
(Fig. 4). The up regulation of the TGF-b1 receptors and the respon-
siveness of glomerular cells have been previously reported in the
diabetic condition, thus suggesting that the ligand availability is
an essential pathogenic event. In glomeruli isolated from normal
rats the treatment with the general P1 agonist NECA (1 lM) does
t/min) Diabetes (pmol Urd/mg prot/min)

0.982 ± 0.081*

0.728 ± 0.052*

0.255 ± 0.076
0.243 ± 0.049*

0.055 ± 0.033

from normal (n = 4) and diabetic (n = 6) rats.



Fig. 2. CD73-mediated AMP hydrolysis in rat glomerulus. Histochemical staining of lead orthophosphate derived from AMP hydrolysis in kidney sections from normal and
21 days diabetic rats. The specificity of hydrolysis was verified using the selective CD73 inhibitor AOPCP. Original magnification 400�.
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not mediate a significant change in the release of the TGF-b1
(Fig. 3). In contrast, the treatment of glomeruli from diabetic rats
with the general adenosine receptor agonist elicits a 2.8-fold in-
crease in the release of the TGF-b1. This effect can be blocked by
a selective adenosine A2B receptor antagonist, MRS1754 (Fig. 3).
Due to the fact that selective adenosine A2B receptor agonists are
not available we tested selective agonists for all other receptors,
and not significant increase in the growth factor release was ob-
served (Fig. 3).

3.3. Effect of diabetes mellitus on adenosine receptors expression

Due to the probably pathogenic role of adenosine A2B receptor
and the changes in the ligand bioavailability, we studied the effect
of diabetes on its expression. Short term diabetes was correlated
with a 1.7-fold higher A2BAR transcripts content (P < 0.05)
(Fig. 1C). Immunohistochemical analysis located the protein
mainly in glomerular podocytes of normal rats (Fig. 4), showing a
similar pattern of expression with the podocyte marker VEGF (data
not shown), whilst a broader protein distribution was observed in
Fig. 3. Role of the adenosine receptors on TGF-b1 release in kidney glomeruli. Glomeru
modulators of adenosine receptors (see Section 2). Active form of TGF-b1 released to incu
control glomeruli was normalized to 1. The graph depicts the means ± S.E.M. * shows st
glomeruli of diabetic rats, including mesangium as occurs with
TGF-b1 (Fig. 4). On the contrary, no significant changes were quan-
tified for A1AR mRNA content (Fig. 1C) and decreased protein abun-
dance in glomerular podocytes was observed when comparing
pathological to control rat kidney glomeruli (Fig. 4).

4. Discussion

Previous studies have measured basal rate of ATP release from
isolated rat glomeruli being approximately 0.30 pmol/min/1000
glomeruli [19]. Interestingly, exogenous ATP was rapidly degraded
by the glomeruli suspension. Adenosine was generated following
ATP hydrolysis, although the AMP concentration was higher than
its other hydrolysis products. Therefore, under normal conditions,
hydrolysis of ATP to adenosine occurs at low rate [19], being
AMP hydrolyzing activity a limiting step. Our finding shows that
diabetic milieu increases AMP nucleotidase activity and sixfold
the accumulation of adenosine with respect to controls, as quanti-
fied in our experimental conditions. This is consistent with obser-
vations showing that in the diabetic rat kidney, adenosine levels
li isolated from normal (h) or diabetic rats (j) were exposed to pharmacological
bation medium was quantified by ELISA. The amount of growth factor released from
atistical differences (P < 0.05), n = 5.



Fig. 4. Effect of diabetes on adenosine receptors expression in the rat glomerulus. Periodic acid-Schiff (PAS) staining and immunolocalization of TGF-b1, adenosine A2B

receptor (A2BAR) and adenosine A1 receptor (A1AR) subtypes were performed in kidney sections of rats following 3 weeks of diabetes. Immunosignals in podocytes (arrows)
and mesangial areas (stars) are denoted in the glomerulus. Original magnification 400�.
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were not altered in the artery but were significantly increased in
the renal vein plasma [25]. In addition, it was demonstrated that
the ecto 50-nucleotidase activity was increased in medulla and cor-
tex membrane fractions from diabetic rats [9], therefore the en-
zyme activity or its expression may be modulated.

A variety of physiological models have shown that pharmaco-
logical inhibition of the ENT activities results in an increased extra-
cellular adenosine concentration, triggering a specific biological
effect via P1 receptor activation [11–16]. The expression and activ-
ity of ENTs is also altered by the diabetic syndrome, glucose and
insulin [21,26]. Experiments performed in rats revealed that on
day 10 following streptozotocin administration, the mRNA level
of rENT1 was slightly (10%) lowered whilst the level of rENT2
mRNA was reduced by 40% in total kidney [27]. We have not found
differences in ENT1 or ENT2 mRNA contents in glomeruli, but a
marked reduction of ENT1 activity was found in diabetes. In addi-
tion, ENT3 mRNA expression was detected in the glomerulus but
its related activity, assayed to pH 5.5 and inhibited by
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dideoxycytidine, was negligible in control or diabetic glomeruli,
probably confirming its intracellular distribution, as reported ear-
lier [28] (data not shown). We conclude that, in addition to an in-
crease in CD73 activity, a lower uptake activity mediated by
equilibrative nucleoside transporters (mostly by ENT1) brings
about extracellular adenosine accumulation in the diabetic state.
The possibility that ENT2 and, to a minor extent, concentrative
nucleoside transporters are also contributing to this accumulation
cannot be ruled out.

Experimental models correlated adenosine elevations and
adenosine receptors activities with development of fibrosis [29–
31]. The involvement of receptor A2B in TGF-b1 release attributes
a pathogenic role to adenosine in diabetic glomeruli at a stage
where diffuse expansion of mesangial matrix occurs. This response
to adenosine appears to be an attribute of diabetic glomeruli, thus
no effects have been observed in response to adenosine or selective
A1 and A2A agonists on collagen and fibronectin expression in cul-
tured mesangial cells [32]. Probably, the expression of this receptor
subtype in mesangial cells contributes to mediate its effects on
TGF-b1 release in diabetes. In addition, we reported earlier that
A2BAR mediates overproduction of the vascular endothelial growth
factor (VEGF) in glomeruli exposed to high glucose concentrations
[10], another remarkable feature of diabetic glomerulopathy. Fur-
ther, increased A2B receptor protein was observed when glomeruli
where exposed to high glucose concentration [10]. It has been
established that induction of the receptor’s expression appears to
be mediated through transcriptional up regulation in the promoter
of the A2BAR gene via the hypoxia inducible factor-1 alpha (HIF1a)
[33]. Interestingly, the use of cDNA microarrays demonstrated that
in hyperglycemia HIF-1a was up-regulated in the glomerulus in
parallel with an alteration of genes related to oxidative stress
and glucose and lipid metabolism [34].

Due to differential glomerular expression patterns of adenosine
receptors and ligand availability determined in the early diabetic
stage, a condition that may favor signaling by the low affinity
adenosine A2B receptors, it is possible to conclude that pharmaco-
logical intervention of adenosine signaling could be a new alterna-
tive to block some of the events triggering diabetic
glomerulopathy.
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