INFORMATION AND COMPUTATION 119, 124-128 (1995)

A Lower Bound for the Emulation
of PRAM Memories on Processor Networks*

TorBEN HAGERUP

Max-Planck-Institut fir Informatik, D-66123 Saarbriicken, Germany

We show a lower bound of 2(min{log m, ./n} } on the slowdown of
any deterministic emulation of a PRAM memory with m cells and n 1/0Q
ports on an n-processor bounded-degree network. The bound is weak;
unlike all previous bounds, however, it does not depend on the
unnatural assumption of point-to-point communication which says,
roughly, that messages in transit cannot be duplicated by intermediate
processors. For m sufficiently large relative to n, the new bound implies
the optimality of a simple emulation on a mesh-of-trees network.
© 1995 Academic Press, Inc.

1. INTRODUCTION

Parallel random access machines (PRAMs) and bounded-
degree processor networks (BDNs) are synchronous
parallel machines employing as computing agents a finite
collection of sequential processors, each equipped with a
local memory. The processors of a PRAM communicate via
a shared global memory, while each processor of a BDN can
communicate directly with only a constant number of
neighboring processors.

The powerful PRAM model is attractive to the algorithm
designer, but the direct physical realization of its shared
memory with as many simultaneously active I/O ports as
there are processors poses difficult or unsolvable problems.
Processor networks, in contrast, are routinely built using
current technology, but they are significantly less con-
venient to program because interprocessor communication,
easy on the PRAM, represents a nontrivial problem that
must be dealt with explicitly. For this reason, much effort
has gone into bridging the gap between the unfeasible
PRAM and the feasible BDN by means of emulations of the
shared PRAM memory on a BDN (see Fig. 1).

Consider in the sequel an emulation on an n-processor
BDN of a PRAM memory with m cells or PRAM variables
and n I/O ports. Each BDN processor is connected to one
I/O port in a bijective fashion. In the beginning of each

* Supported in part by the Deutsche Forschungsgemeinschaft, SFB 124,
TP B2, VLSI Entwurfsmethoden und Parallelitit, and in part by the
ESPRIT II Basic Research Actions Program of the EC under Contract
3075 (Project ALCOM).

0890-5401/95 $6.00

Copyright © 1995 by Academic Press, Inc.
All rights of reproduction in any form reserved.

memory cycle, each BDN processor obtains over its I/O
port from an unspecified external agent (representing the
PRAM program) either a write request, i.e., a request to
update a specified PRAM variable with a specified value, or
a read request, i.c., a query asking for the value of a specified
PRAM variable. We can assume that the read and write
requests issued within a single memory cycle all pertain to
distinct variables (i.e., the memory access pattern is that of
an EREW PRAM).

The task of the emulation is to satisfy all read requests;
ie, each BDN processor receiving at the beginning of a
memory cycle a query for a variable x must at the end of the
cycle transmit over its I/O port the current value of x,
defined in the obvious way, or some fixed value if x has
never received a value. The slowdown of a particular
memory cycle is the number of network steps needed to
emulate that cycle, and the (worst-case) slowdown of the
emulation is the maximum slowdown of any memory cycle.
Note that we require the emulation to handle arbitrary sets
of read and write requests for distinct variables correctly,
which corresponds to allowing nonuniform PRAM com-
putations, ie., computations described by a different
program for each combination of values of n and m.

As demonstrated by Karlin and Upfal (1988) and Ranade
(1991), there are randomized emulations with expected
slowdown O(log n). Since the diameter of any n-processor
BDN is Q(logn), this is clearly optimal. We consider
here deterministic emulations, for which the picture is
less clear. The best currently known upper bound of
O(log nlog m/log log n) was given by Herley and Bilardi
(1994). A lower bound of Q(min{./nlogn, lognlogm/
log log m}) for the case m=n?*" was found by Alt et al.
{1987) and, independently, by Karlin and Upfal (1988). The
latter bound was extended by Herley and Bilardi to smaller
values of m relative to n. In conjunction, the known results
amount to a lower bound of

o <min {‘ /nlog n, log nlogm (log(m/n))* }>’

log log m ’ log log(m/n)

for arbitrary combinations of n and m.

124

LOWER BOUND FOR EMULATION OF PRAM MEMORIES

Shared memory
(external view)

Emulating network
(internal view)

FIG. 1.
network,

Emulation of a shared PRAM memory on a bounded-degree

The upper and lower bounds cited above coincide for a
large range of values of m relative to n. All lower bounds
mentioned above, however, were derived under the
assumption of so-called point-to-point communication. This
assumption is best visualized by imagining the values of
PRAM variables to be contained in sealed envelopes. An
unlimited supply of such envelopes for a variable x,
provided by the external agent at the relevant processor,
takes the place of a write request for x, and a read request
for x must be satisfied by the presence of at least one
envelope for x at the relevant processor. Envelopes can be
arbitrarily routed through the network, but copies of
envelopes cannot be created by the network. Note that this
may force the network to work harder to achieve a certain
distribution of copies of the variables, i.e., of knowledge of
their current values. By way of example, suppose that »n pro-
cessors are interconnected in the form of a complete binary
tree. If the root processor wants to broadcast the value of a
single variable to all other processors, this can be done in
O(log n} time with no restrictions on communication, but
the broadcast takes £2(n) time under the assumption of
point-to-point communication, since n —1 copies of the
variable must leave the root processor.

Most of today’s large computer networks operate
according to the assumption of point-to-point communica-
tion; e.g., if a person in New York wants to send the same
E-mail message to ten recipients in Europe, ten copies of the
message must cross the Atlantic. Nevertheless, we argue
that the assumption of point-to-point communication is
quite artificial in the context of a tightly coupled multi-
processor. This is evidenced already by the difficulty of
describing it in natural terms. Computers do not com-
municate via sealed envelopes, copying of arbitrary data
items is as easy, up to a constant factor, as passing them
on unread to a neighboring processor, and we have not
been able to think of a physical realization of a network

that would of necessity restrict itself to using point-’

to-point communication. The assumption of point-to-point
communication was evidently introduced to make the

125

model of computation fit the existing proof, and it might be
claimed that the previous lower bounds say more about our
inability to analyze the general situation than about the dif-
ficulty of the emulation.

Throughout the paper, for any s>0, logs denotes
max{log, s, 1}. The assertion E, = O(E,), where E, and E,
are expressions, is intended to mean that for some constant
¢>0, E, < cE, for all legal combinations of values of the
variables occurring in F,. The meaning of E, = Q(E,) and
E,=6©(E,) is defined analogously.

2. THE NEW LOWER BOUND

In this paper, we prove the first lower bound on slow-
down, apart from the trivial bound of Q(log n), that does
not depend on the assumption of point-to-point com-
munication. The bound, 2(min{log m, \/n}), is quite weak.
In particular, when m is polynomial in n, it coincides with
the trivial bound of £(log n). Its proof is a variation of the
proof of (Alt et al., 1987), the crucial difference being a new
definition of the redundancy of a variable. In general terms,
the redundancy of a variable is a measure of the abundance
of copies of the variable. If the redundancy of a variable is
high, reading the variable may be easy, but updating it is
expensive, a trade-off that is exploited by the proofs. The
previous proofs define the redundancy of a variable as the
number of copies of the variable stored outside a “ball” of
radius ¢ in the network, for suitably chosen g. Under the
assumption of point-to-point communication, this forces
the network to spend Q(rq) time per memory cycle main-
taining an average redundancy of r, but this is not true in
the case of unrestricted network communication. Our main
contribution is an alternative definition that works even
without the assumption of point-to-point communication.
We define the redundancy of a variable simply as the
number of processors holding a copy of the variable
(technically, we assume the subnetwork spanned by the set
of such processors to be connected; this is no restriction,
however, since we can simply assume that once a processor
“knows” the value of a particular variable, it never again
“forgets” that value). With this definition, Q(r) time per
memory cycle is necessary to maintain average redundancy
r, and we will show in Section 4 that the emulation is
extremely slow unless r = Q(log m).

A Jower bound on the slowdown of an emulation is a
statement about the worst case of what may happen within
a single memory cycle. It does not rule out the possibility
that bad cases might be quite infrequent; indeed, even an
emulation with constant amortized slowdown is still
possible. Our proof, however, yields something stronger
than merely a bound on the (worst-case) slowdown. Given
a particular emulation and a positive integer 7, let S(7) be
the maximum number of network steps needed to emulate

126

T consecutive memory cycles. What we prove is that
S(T)/T = Q(min{log m, \/n}) if T is sufficiently large; ie.,
the amortized slowdown is no better than our lower bound
on the worst-case slowdown.

3. A GAME MODEL OF THE EMULATION

In the interest of precision and simplicity, we model the
emulation by a game played between player 4 (the “adver-
sary” or “algorithm”) and player E (the “emulation”).
Although some parallels to the emulation are drawn in the
description of the game, we leave to the reader the complete
translation between the two contexts. The description of the
game should be taken as the final authority concerning what
is and what is not allowed in the emulation. For instance,
the use of separate tokens for each variable rules out the
possibility of combining values of many variables into a
single data item that can be routed at unit cost. Whereas it
is not clear how to achieve such a combination, schemes
such as that of Rabin (1989) show that this restriction may
not be vacuous.

The game is played by altering configurations of tokens
placed at the vertices of an undirected graph according to
rules detailed below. Each token is labeled by an integer,
and for each label x, there are two kinds of tokens labeled
x, copy tokens and query tokens. A token labeled x will be
called a token for x. The vertices of the graph correspond to
the processors of the emulating network, each edge {u, v}
corresponds to a (bidirectional) communication link
between the processors represented by u and v, and each
label x represents a PRAM variable. In the remaining
description, we will identify each vertex with the corre-
sponding processor and each label with the corresponding
PRAM variable. A copy token for a variable x at a vertex v
represents the fact that v “knows” the current value of x. A
query token for x at a vertex v indicates that the current
value of x has been requested at v. In the remainder of the
paper, let d > 2 be a fixed integer.

Let n,meN={1,2,..}. The (n, m)-game between
players A and E'is played as follows: In his first move, player
E chooses an undirected graph G = (V, Eg) with » vertices
and maximum degree d, and a copy token for each element
of X={1, .., m} is placed at each vertex v V. X represents
the set of variables, and the initial configuration is designed
to maximize the advantage of player £, while eliminating a
technical difficulty related to unitialized variables. The rest
of the game is an infinite sequence of rounds, where each
round consists of one move by player A4 followed by zero or
more moves by player E. Player A chooses freely between
write moves and read moves. A write move has the form
Write(Y), where Yis a subset of X with | Y| < n, and consists
in the following: For each xe Y, first all tokens for x are
removed from the graph, after which player A places a single
copy token for x at some vertex v€ V. Within a single write

TORBEN HAGERUP

move, each vertex v € V may receive at most one copy token.
Y represents the set of PRAM variables updated in a given
step, old tokens for variables in Y are removed because they
represent copies that are invalidated by the update, and a
copy token for x is placed at the single processor that
initially knows the new value of x, for each x¢ Y.

A read move has the form Read(Y), where Y as before is
a subset of X with | Y] < », and consists in the following: For
each xe Y, player A places a query token for x at some
vertex v e V, with no single vertex receiving more than one
query token within a single read move.

Each move by player E consists in the following: For each
edge e € E;, player E chooses one variable x ¢ X. If a copy
token for x is present at exactly one endpoint of ¢, a new
copy token for x is created and placed at the other endpoint
of e. This models the communication of the value of x from
one processor to a neighboring processor. Player £ must
continue to execute moves until each vertex that holds a
query token also holds a copy token for the same variable,
ie., until all read requests have been satisfied. Informally,
player A aims to maximize the number of moves executed
by player F, while player E tries to minimize this quantity.
For all n, m, Te N, let

S(n, m, TY=min{Se N | there is a strategy
for player E that executes at most S
moves during the first 7
rounds of any play of the (n, m)-game}.

It is easy to see that S(n,m, T) is well-defined for all
n,m, T € N. By the interpretation of the game, S(n, m, T)
bounds from below the minimum total slowdown over T suc-
cessive memory cycles achievable by any deterministic emula-
tion. Our aim in the next section is to prove a lower bound on
S(n, m, T)/T that holds for all sufficiently large values of T.

By modifying the rules of the game slightly, we can
express the assumption of point-to-point communication.
Suppose that in each write move Write(Y) and forall xe Y,
player A places not a single copy token, but an infinite
supply of copy tokens for x at some vertex ve V, with each
vertex still receiving tokens for at most one variable.
Suppose further that in each move by player E, a single
copy token may be moved across each edge, as opposed to
being copied from one endpoint of the edge to the other.
This modified game models an emulation that operates
according to the assumption of point-to-point communica-
tion. Forn, m, T e N, let

S'(n,m, T)=min{Se N | there is a strategy for
player E that executes at most S moves
during the first T rounds of
any play of the modified (n, m)-game}.

LOWER BOUND FOR EMULATION OF PRAM MEMORIES

Again, §'(n, m, T) is easily seen to be well-defined, and clearly
S(n, m, T)<.S(n, m, T)for all n, m, T € N. The earlier lower
bounds mentioned in the introduction can now be expressed as

S'(n,m, T)

=0 <min {\/n log n.

lognlogm (log(m/n))* }>
log log m ’ log log(m/n)

for all sufficiently large values of T.

4. THE PROOF

This section establishes the lower bound S(n, m, T)/T =
Q(min{log m, ﬁ}), valid for T = 4m. In fact, we exhibit an
explicit strategy for player 4 that realizes the lower bound.
Without loss of generality, we will assume that m > 4n*,
since otherwise the lower bound to the shown coincides
with the trivial lower bound of 2(log n).

For a particular play of the (n, m)-game, let G=(V, E;)
be the graph chosen by player E in his first move. For
xeX={I1,..,m} and re N, denote by I',(t) = V the set of
vertices that hold a copy token for x at the beginning of
round ¢ and call |I" (t)] the redundancy of x at that time. The
strategy for player 4 can now be described as follows: For
t=1,3,5, .., the move by player 4 in round ¢ is of the form
Read(Y), where Y is an n-element subset of X that mini-
mizes |\J, .y £ 1)} over all such subsets; for t1=2,4,6, ..,
the move by player A4 in round ¢ is of the form Write(Y),
where Y is an n-element subset of X that maximizes
> e v I T(1)] over all such subsets.

In order to analyze the resulting play, let us introduce some
more notation. For 7€ N, let s(¢) be the number of moves by
player £ in round ¢, and call R(r)=3 _, |l (¢)] and
r{t) = R{t)/mthe total redundancy and the average redundancy,
respectively, at the beginning of round . Assume that Tiseven,
letF=(1/T)¥7_, r(¢)bethe average redundancy over the first
Trounds and let S=37_, s(7) be the total number of moves
executed by player E over the ﬁrst T rounds.

LemMma 1. If T=z4mand 7 22, then S = T7/(8d).

Proof. Fix 1e{2,4,..}. Since r(t) is the average
redundancy at the beginning of round ¢, there clearly is an
n-element subset Y of X such that 3. ., [I(#)| =2 nr(t). The
move Write(Y) by player 4 reduces the redundancy of each
element of Y to 1. Hence the move by player 4 in round ¢
reduces the total redundancy R by at least n{r(¢)—1). On
the other hand, a single move by player E increases R only
by the number of new tokens created, ie., by at most dn.
Since R has the value mn initially and remains nonnegative,

S-dn+mnz Z

i=1

r(2i)—1).

127

Since only write moves by player A decrease redundancies,

r(2iy=r(2i—1)fori=1, 2, ..., and hence
T2 T T
Y r(2i) 2 Z r(!

i=1

Using the assumptions 7 >4m and 7 > 2, we then obtain

1 /T(F—1) 17
> — "7 —
S/d< 3 m>>8d' |
LEMMA 2. For t=1,3, ., if r(t)<(1/8)log,m, then
s(t)y=n/(4dr(t)) — 1.
Proof. Note first that r(¢)<(1/8)log,m implies
d*" < /m and hence

m >\/m
2nd* 07 2

(recall the assumption m > 4n*).

Now choose Z< X with |Z] =m/2 such that |I" (1) <
2r(t) for all xe Z. By the rules of the (n, m)-game, the
subgraph G, of G induced by I (f) is connected, for
arbitrary x € X. Hence for each x € Z there is a path in G of
length at most 2(2r(¢) — 1) that contains all vertices in I" {¢)
(take any Euler tour of a spanning tree of G). But there are
at most n-d*'” such paths in G, ie., at least

4 m

——— >n
nd¥n’”

on d4r1n/

elements of Z share the same path, and this path contains at
most 4r(t) vertices. If the move by player A in round ¢ is
Read(Y), 1t is therefore clear that |I'y| < 4r(t), where
I'y=),.y I(r). Since the moves by player £ in round ¢
must cause at least » — |I",| tokens for variables in Y to be
transmitted over edges joining I'y to the rest of the graph,
it follows that

'FYI n
N
> e b

MaIN THeoreM. If T = 4m, then S(n, m, T)/T =

Q(min{log m,ﬁ}).
Proof. Theset I'={teN |1<Tand r(1) <2} is of size
at least 7/2. Furthermore, since r(2i)>=r(2i—1} for
i=1,2,.., 1 contains at least 7/4 odd integers. But then

either 7> (1/16)log,m, in which case the claim of the
theorem follows from Lemma 1, or Lemma 2 implies that

128

If #f<2, the claim follows. Otherwise, combine the
inequality with Lemma 1 to obtain

S n F
7_‘2 max {S—ZEE— 1, '8‘:1}—9(\/?—1) I

5. CONCLUSION

There seems to be a substantial amount of slack in our
proof. We expect that the lower bound can be significantly
strengthened using more sophisticated combinatorial
techniques.

By the main theorem, sup; S(n, m, T)/T=.Q(\/;-1) for
m sufficiently large relative to »n, more precisely, for
m=22V"_Alt etal. (1987) describe an emulation on a
mesh-of -trees network with slowdown 0(\/;) for arbitrary
m (p. 829), which is therefore optimal for this range of m.
The only emulations previously known to be optimal
without the restriction of point-to-point communication
match the trivial lower bound of 2(log ») and work only for
m=O(nlogn) (see Peleg and Upfal, 1989). Still for m
sufficiently large relative to n, Alt eral (1987) establish
upper and lower bounds on the slowdown of emulations
obeying the restriction of point-to-point communication of

0(\/; log n) and Q(\/n log n), respectively. In this case, the
insistence on point-to-point communication hence worsens

TORBEN HAGERUP

the obtainable slowdown by a factor of between @(\/ log n)
and @(logn). It is unknown, and an interesting open
problem, whether a similar phenomenon occurs for smaller
values of m.

ACKNOWLEDGMENT

The author is grateful to the referees for several suggestions that
improved the presentation.

Received June 24, 1990; final manuscript received December 15, 1993

REFERENCES

Alt, H., Hagerup, T., Mehlhorn, K., and Preparata, F. P. (1987), Deter-
ministic simulation of idealized parallel computers on more realistic
ones, SIAM J. Comput. 16, 808-835.

Herley, K. T., and Bilardi, G. (1994), Deterministic simulations of PRAMs
on bounded degree networks, SIAM J. Comput. 23, 276-292.

Karlin, A. R, and Upfal, E. (1988), Parallel hashing: An efficient
implementation of shared memory, J. Assoc. Comput. Mach. 35,
876-892.

Peleg, D., and Upfal, E. (1989), The token distribution problem, SIAM J.
Comput. 18, 229-243,

Rabin, M. O. (1989), Efficient dispersal of information for security, load
balancing, and fault tolerance, J. Assoc. Comput. Mach. 36, 335-348.
Ranade, A. G. (1991), How to emulate shared memory, J. Comput. System

Sci. 42, 307-326.

