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1. Introduction 

The joy of my being here among a group of old friends to celebrate the anniversary 
of one of my closest friends, Adriano Garsia, is haunted by temptation. As I look at 
you, condemned as you are to listen to me for the next fifty minutes, I feel that the 
opportunity I have long been waiting for is at last delivered to me on a silver platter: 
the opportunity, that is, of  presenting the latest results of my own work to a public 
whose collective wisdom in combinatorics will seldom (if ever) again be reassembled. 
At last, I will inflict upon a competent (if helpless) audience one hour's lecture on the 
basics of supersymmetric algebra, on the concomitants of skew-symmetric tensors, or 
maybe on the characteristic-free resolution of Weyl modules. 

At the sound of these words, we register a sudden decrease in the temperature of  this 
hall. A chill is running down your spines at the prospect of being subjected to such 

a punishing sitting. Rest assured that I will not abuse the time you have generously 
allotted me; or rather, I will try not to do so deliberately. 

We will dwell instead upon the one topic of unquestioned interest and timeliness 
among mathematicians of all times: gossip. Or rather, to use an acceptable euphemism, 
we will deal with the history of mathematics. 

2. Cambridge 02138 in the fifties 

The fifties were a great time to be alive, and the assembly of younger mathematicians 
that went through the universities in the Boston area would now fill the Who's Who 
of mathematics. 

The center of mathematical activity was the MIT common room, recently renovated 
in 1957, which since that year has been allowed to freely deteriorate. At frequent inter- 
vals during the day, you would find in the MIT common room Paul Cohen, Eli Stein, 
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and later Gene Rodemich, excitedly engaged in aggressive problem solving sessions and 
other mutual challenges to their respective mathematical knowledge and competence. 

The leader of the problem solving sessions was without question Adriano Garsia, 
at times joined by Cameo appearances of Alberto Calder6n, Jiirgen Moser and John 
Nash. Often, a discussion that had started in the common room would be carried over 
uninterrupted through lunch at Walker, where mathematicians used to assemble around 

a large table, easy to spot in the hustle and bustle of  faculty and students. 
Norbert Wiener would often join the younger mathematicians at lunch; he loved to 

sit at the old wooden tables in Walker; he glowed under the stares he got from the 
undergraduates, and craved the fawning admiration of  the younger mathematicians. The 
temptation to tease him was irresistible. 

Let me tell you a Norbert Wiener story, one that only one other person in this room 
knows. Several of  us were having lunch one day, sitting at the usual table in Walker. 

Norbert Wiener was at the head of the table, with Paul Cohen at his right; others at 
the table were Adriano Garsia, Arthur Mattuck, myself, and some other person whose 
name I cannot recall. Paul Cohen turned his head towards Wiener and asked, in a tone 
of mock candor: 'Professor Wiener, what would you do if one day, when you went 
home at the end of  the day, you were to find Professor X sitting in your living room 
sopha?' 

Cohen was alluding to a well-known mathematician who was known to indulge in 
the dubious practice of 'nostrification'. Norbert Wiener became red in the face and 
snapped back: 'I would throw him out and start counting the silver!' I leave it to you 
to figure out who Professor X is. By the way, term 'nostrification' was introduced by 
Hilbert, and the practice has been faithfully carried on by some of  his students. 

From time to time, the problem sessions in the MIT common room would be tem- 
porarily suspended, and would be replaced by 'ranking sessions', where all of  us in- 
structors would indulge in the favored hobby of younger mathematicians, namely, that 
of passing judgement on older mathematicians and listing them in strict linear order. 
I remember a heated discussion we had one day, on whether Professor Y should be 
rated as a first-rate second-rate mathematician, or as a second-rate first-rate mathemati- 
cian. I cannot remember whose side Adriano took at that time. We would usually fred 
ourselves on the same side. We both believed at the time that John Nash was the most 
talented mathematician we had ever met, and I do not believe either of us has changed 

his mind since. 
Every time I had to enter the MIT common room, I would make sure to swallow 

an extra tablet of  Nodoz. Eventually, I began to avoid the common room altogether. 
I could not take the heat, and Adriano kindly agreed to meet me privately to bring 
me up to date on the latest happenings. All the differential geometry I know I learned 
from these tutoring sessions with Adriano. 

One month in the spring of 1958 he was kind enough to find the time for a series 
of ten lectures on the theory of  certain surfaces he had discovered, and whose theory 
he had developed in his first year at MIT. He had decided to name them 'Schottky 
surfaces' to honor Schottky, an otherwise obscure mathematician (or so we believed 
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at the time). I never heard Schottky's name mentioned again until a couple of years 
ago, when Paul Erd6s told me a startling story, which you will hear shortly. 

Neither Adriano nor I had any inkling that we would end up working in combi- 
natorics. In fact, the term 'combinatorics' was all but unknown. The problems of the 
day, those problems by which mathematicians test one another, were at that time more 
frequently drawn from analysis (they were problems such as one finds in P61ya and 
Szeg6's collection) rather than from combinatorics, as is more often the case nowadays. 
Adriano was fond of reminiscing about two of his teachers, both of whom came from 
the same great German school of analysts as P61ya and Szeg6: Karl L6wner and Marcel 
Riesz. After I met Karl L6wner and Marcel Riesz, I noticed a family resemblance. 

At first, I did not believe some of the stories Adriano used to tell me about Marcel 
Riesz, but eventually I came to realize that they were true. For example, the story 
about Marcel Riesz's hiding his paychecks under the mattress instead of cashing them, 
and of how Adriano had to run to several banks all over town cashing checks for 
Marcel Riesz on the day before Marcel Riesz was scheduled to leave for Sweden. 

Luckily, Adriano has kindly agreed to attend this meeting, and he will tell us some 
of the better stories about those wonderful years. 

3. Alfred Young 

Alfred Young believed his greatest contribution to mathematics to be the application 
of representation theory to the computation of invariants of binary forms. If he had 
been told that today we mention his name with reverence in connection with the notion 
of standard tableaux, he would probably have winced. 

The story of standard tableaux makes an interesting episode of mathematical history. 
As you know, Alfred Young made his debut in mathematics with a difficult computation 
of the concomitants of binary quartics, a tour de force  which took its lead from Peano's 
elegant and unjustly forgotten finiteneness theorem. 

As he proceeded to derive a systematic method for computing the syzygies holding 
among the invariants of such quartics, Young realized that the methods developed by 
Clebsch and Gordan for the computation of invariants and syzygies could not be pushed 
much farther. He went into a period of self-searching which lasted a few years, after 
which he published the first two papers of the series 'Quantitative substitutional analy- 
sis'. Both papers appeared in short sequence at the turn of the century. In these papers 
Young outlined the theory of representations of the symmetric group as we know it 
today. He proved that the number of irreducible representations of the symmetric group 
of order n equals the number of partitions of n, and he gave an explicit decomposition 
of the group algebra into irreducible components by means of idempotents. 

To this day remain, Young's combinatorial construction of the irreducible representa- 
tions of the symmetric group remains the simplest, though not the most elegant nor the 
easiest to handle. Alfred Young made no appeal to the theory of group representations 
(or group characters, as it was called by Frobenius, who had developed it); in fact, 
the word 'group' seldom appears in the seven hundred-odd pages of Young's collected 
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papers. It is safe to surmise that Young was reluctant to rely upon group-theoretic 
arguments. For example, he never used the expression 'normal subgroup'. 

It seems that Young's results irritated the leading algebraist of the time, namely, 
Professor Frobenius of the University of Berlin. What? This British upstart could get, 
using rudimentary combinatorial methods, what everyone in his sophisticated German 
school had been working upon for years? Frobenius carefully studied Young's two 
papers (while skipping Young's elaborate applications to invariant theory, a subject 
which Frobenius despised) and went to work. After a short while, Frobenius published 
a paper in which Young's results were properly rederived following the precepts of 
Frobenius's newly invented theory of group characters. Frobenius was a Bourbakist at 
heart, and his way of doing representation theory has prevailed to this day. 

Frobenius went one up on Alfred Young, by discovering the character formula that 
now bears his name, a formula which Young had unforgivably missed. 

Young was deeply hurt when he learned of Frobenius's work. Worse yet, at exactly 
the same time as Young was getting ready to publish his two papers on substitutional 
analysis, Frobenius assigned to his best student Issai Schur the thesis problem of deter- 
mining all possible generalizations of the Binet--Cauchy formula for the multiplication 
of minors of matrices. In the year 1900, Issai Schur published his thesis, in which all 
irreducible representations of the general linear group were explicitly determined on 
the basis of their traces, what we now call Schur functions. Young realized the con- 
nection between his work and Schur's thesis; Young's two papers and Schur's thesis 
were embarrassingly close results, though by no means overlapping. 

For about twenty years after the turn of the century, Young did not publish another 
word. To the surprised colleagues who would make tactful inquiries, he would answer 
that he was learning to read German in order to understand Frobenius's work. But this 
was a white lie. Young was intensively working on going one up on Frobenius. And he 
did, when in 1923, almost twenty years after his second paper, he published his third 
paper on quantitative substitutional analysis. In this paper standard tableaux were first 
introduced to the world, their number was computed, and their relation to representation 
theory was described. Again, Young's methods were purely combinatorial, with not one 
iota of group theory or character theory. A new proof of Frobenius's character formula 
was given, which dispensed with the apparatus of representation theory as we know it 
today, and replaced it by combinatorial tecniques. 

Again, there followed a period of shocked silence. It appears that the German alge- 
braists were lending a deaf ear to Young's discovery. Had it not been for Hermann 
Weyl's intervention, Young's newly discovered standard tableaux might have been 
permanently exiled to Aberystwyth, Wales, together with apolarity and perpetuants. 

Hermann Weyl, while writing his book on group theory and quantum mechanics 
in the late twenties, came upon Young's work and realized its importance. The term 
'Young tableau' first appeared in print in Hermann Weyl's book 'Group theory and 
quantum mechanics' (a book that was rewritten and updated some forty years later 
by Leona Schensted). Since Hermann Weyl represented at the time the pinnacle of 
mainstream mathematics, it did not take long for Young's name to become a house- 
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hold word first among physicists, and then among mathematicians. Van der Waerden 
included standard tableaux in one of the later editions of his 'Modem Algebra', where 
he made use of some unpublished results of von Neumann. The geometer Hodge learned 
about standard tableaux from Young's associate, Professor D.E. Littlewood, and used 
them with great success in his study of flag manifolds. The algebras that are nowadays 
named after Hodge might more justly have been named after Young. Hodge himself 
explicitly acknowledges his total indebtedness to Littlewood and Young. 

Alfred Young was generous with his ideas. Turnbull would come down to Cam- 

bridge (the other Cambridge) from St. Andrews in Scotland once a month to talk to 
Young. Philip Hall polished Young's ideas on symmetric functions, which were first 

made public in Aitken's 'Letter to an Edinburgh colleague'. The various equivalent 
definitions of Schur functions first appeared together in Philip Hall's paper 'The alge- 
bra of partitions', without any proofs; for several years after Hall's paper, no printed 
proofs of the equivalence of these definitions were available, and we had to construct 
our own. 

Alfred Young's style of mathematical writing is one that has unfortunately gone 
out of fashion. It is based on the assumption that the reader is to be treated as a 

gentleman with a sound mathematical education, and gentlemen need not be told the 
lowly details of proofs. As a consequence, we sometimes have to puzzle nowadays on 
certain inferences for which Young omits any explanation out of  respect for his readers. 

Young's one and only student, G. De B. Robinson, wrote the ninth and last paper on 
quantitative substitutional analysis on the basis of notes left by his teacher. Robinson 
inherited all of Young's handwritten papers after his teacher's death. I shall not make 
any conjectures on the fate of these papers. Suffice it to say that, some fifteeen years 

ago, Alfred Young's collected papers were published by the Toronto University Press, 
at the price of ten dollars a copy, a prize subsidized by an unknown donor. They are 
still in print. 

4. Problem solvers and theorizers 

Mathematicians can be subdivided into two kinds: there are the problem solvers and 
there are the theorizers. To be sure, most mathematicians are a mixture of the two; 
however, it is easy to find extreme cases of either kind; I leave it to you to cite your 
favored examples of  either kind. 

4.1. Problem solvers 

To the problem solver, the supreme achievement in mathematics is the solution of a 
problem that had been given up as hopeless. It matters little that the solution may be 
clumsy; what matters is that it should be the first, and a correct one. Once he solves 
a problem, the problem solver will permanently lose interest in it, and will listen to 
new and simplified proofs of his problem with an air of condescension, suffused with 
boredom. 
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The problem-solver is a conservative at heart. To him, mathematics consists of  a 
sequence of challenges to be met, an obstacle course of  problems. The mathematical 
concepts required to state mathematical problems are tacitly assumed to be eternal and 
immutable. 

Mathematical exposition is regarded as an inferior undertaking. All new theories 
are viewed with deep suspicion, as intruders who must prove their worth by posing 

challenging problems before they are paid any attention. The problem solver resents 
all generalizations, especially those that may occasionally succeed in trivializing the 
solutions of one of his problems. 

The problem solver is the role model for budding young mathematicians, eager to 
prove their worth by following his courageous lead. When we describe to the public 
the conquests of mathematics, we take famous problem solvers as our shining heroes. 

4.2. Theorizers 

To the theorizer, by contrast, the supreme achievement of  mathematics is a theory 
that sheds sudden light on some incomprehensible phenomenon. To him or her, success 
in mathematics does not consist in the solution of problems, but in their trivialization. 

His or her moment of glory comes with the discovery of a new theory that does not 
solve any of the old problems, but renders them as irrelevant as crossword puzzles. 

The theorizer is a revolutionary at heart. To him or her, mathematical concepts 
received from the past are to be regarded with deep suspicion, as imperfect instances 
of more general concepts yet to be discovered. Mathematical exposition is thought to 
be a more difficult undertaking than mathematical research. 

According to the theorizer, the only part of  mathematics that will survive are the def- 
initions. Great definitions are what mathematics permanently contributes to the world. 
Theorems are tolerated as a necessary evil, since they play a supporting role - -  or 
rather, as the theorizer will reluctantly admit, an essential role - -  in the understanding 

of definitions. 
The theorizer often has trouble being recognized by the community of mathemati- 

cians. His or her frequent consolation is their certainty, which may or may not be 
borne out by history, that his or her theories will survive long at~er the problems of 
the day have been forgotten. 

If I were a space engineer looking for a mathematician to help me send a rocket into 
space, I would choose a problem solver. But if I were looking for a mathematician to 
give a good education to my child, I would unhesitatingly choose a theorizer. 

5. Hermann Grassmann and exterior algebra 

Alfred Young was more of a problem solver than a theorizer. But one of the great- 
est mathematicians of the nineteenth century is a theorizer all the way; I mean of 
course Hermann Grassmann. Everyone agrees that Grassmann's one great contribu- 
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tion to mathematics is a new definition, namely, the definition of exterior algebra, a 
definition which he spent his entire life understanding and developing. 

Grassmann never solved any of the problems that were fashionable in his day, in 
fact, he never solved any problems whatsoever, except those which he himself had 
posed. He never contributed to the mathematics of the nineteenth century, to invariant 
theory, to elimination theory, to the theory of algebraic curves or to any of the current 
fads. What is worse, to the dismay of his contemporaries, he rewrote some of the 
mathematics of his time in the language of exterior algebra, and he was the first to 
show that much classical physics could be simplified in the notation of exterior algebra, 
thereby anticipating the calculus of exterior differential forms that was to be developed 
by Elie Caftan in the next century. The work of Gibbs and later of Dirac would have 
been considerably simplified if Gibbs and Dirac had had even a fleeting acquaintance 
with exterior algebra. Instead, exterior algebra ended up as another missed opportunity, 
as Freeman Dyson might say. 

It is not surprising that Grassmann was not entirely welcome among mathematicians. 
Anyone who comes up with a new definition is likely to make enemies. No one wants 
to be told to drop what he or she is doing and start paying attention to the intrusion 
of foreign ideas. Grassmann made a great deal of enemies, and the animosity against 
his great definition has not entirely died out to this day. 

The reactions against Grassmann make a humorous chapter in the history of math- 
ematics. For example, Professor Pringsheim, the dean of German mathematicians, and 
the author of over one hundred substantial papers on the theory of infinite series, both 
convergent and divergent, kept insisting that Grassmann should be doing something 
relevant instead of writing up his maniacal ravings. 'Why doesn't he do something 
useful, like discovering some new criterion for the convergence of infinite series!' he 
asserted with all the authority that his position conferred upon him. 

The invariant theory community, led by Clebsch and Gordan, also loudly protested 
that Grassmann's work was pointless, since it did not contribute one single result to 
the invariant theory of binary forms. They were dead wrong, but they would not be 
proved wrong for at least another fifty years. 

Not even Hilbert paid attention to Grassmann. In the second volume of Hilbert's col- 
lected papers I have found only one mention of Grassmann, in a footnote. And even 
the editor of Grassmann's collected papers, Eduard Study, only partially understood ex- 
terior algebra. Study's last book, called 'Vector algebra' (in German 'Einleitun9 in dfie 
Theorie der Invarianten lineiirer Transformationen auf Grund der Vektorrrechnun9' ) 
would have greatly benefitted from an injection of exterior algebra; it is clear, however, 
that Study did not feel comfortable enough with exterior algebra to use it in his work. 

Evil tongues whispered that there was really nothing new in Grassmann's exterior 
algebra, that it was just a mixture of M6bius's barycentric calculus, of Pliicker's co- 
ordinates, and of yon Staudt's algebra of throws. 

The standard objection that was raised against exterior algebra was expressed by the 
notorious question 'What can you prove with exterior algebra that you cannot prove 
without it?' 
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Whenever one hears this question raised against some new piece of mathematics, one 
may rest assured that one is likely to be in the presence of something important. In my 
time, I have heard it raised against random variables, against Laurent Schwartz's theory 
of distributions, against id~les and against Grothendieck's schemes, to mention only a 
few instances. A proper retort to this silly question might be the following answer: 
'You are right. There is nothing in yesterday's mathematics that you can prove with 
exterior algebra, and that could also not be proved without it. Exterior algebra is not 
meant to prove old facts, it is meant to disclose a new world. Disclosing new worlds 
is as worthwhile a mathematical enterprise as proving old conjectures'. 

The first mathematician to understand the importance of exterior algebra was Peano, 
who published a beautiful short introduction to the subject (in Italian: Calcolo oeomet- 
rico secondo l'Ausdehnunoslehre di Grassmann, Torino, Bocca, 1888). Unfortunately, 
Peano was at the time fresh out of school teaching at the Pinerolo military school, and 
his audiences to what must have been beautiful lectures on exterior algebra consisted 
of Italian cavalry officers and cadets. No one living beyond the Alps read Peano's 
book. Three hundred copies were printed of the first and only edition. 

It took almost one hundred years before mathematicians realized the greatness of 
Grassmann's discovery. This is the fate that is meted out to mathematicians who make 
their living on definitions. 

6. Definition and description in mathematics 

One of the great achievements of mathematics in this century is the idea of precise 
definitions ensconced in an axiomatic system. A mathematical object must and can be 
precisely defined; this is the only way we have to make sure we are not dealing with 
pure fantasy. 

While stressing the importance of definition, our century has given short shritt to an 
older notion, the notion of description of a mathematical object. Description and def- 
inition are two quite different enterprises, and they are sometimes confused with each 
other. You can realize the difference between definition and description by performing 
the following thought experiment. Suppose you are trying to teach a new mathematical 
notion to your class. You know that you cannot get away with just writing a defi- 
nition on the blackboard. Sooner or later, you must describe what is being defined. 
Nowadays, one of the more common ways of describing a new mathematical object is 
to give several equivalent definitions of it. Philosophers have long puzzled over this 
strange phenomenon, whereby completely different definitions can be given of the same 
mathematical object. 

In ages past, mathematical objects were described before they could be properly de- 
fined, except in geometry, where Euclid set the standards early in the game. But except 
in geometry, the need for a precise definition was not even felt. The mathematics of the 
past two centuries confirms the fact that mathematics can get by without definitions, 
but not without descriptions. Physicists have long been aware of this priority. 
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To be sure, mathematicians of  all times have claimed that definition is a sine qua 

non of a proper mathematical presentation. But mathematicians, like all people, have 
seldom practiced what they preached. Let us consider some glaring examples. 

The most notorious is the field of real numbers, which was not rigorously defined 
by current standards of rigor until Dedekind came along, very late in the game. Shall 
we infer from the lack of a rigorous definition, that all work on the real numbers that 

came before Dedekind is to be discarded as nonsense? Certainly not. 
Another equally glaring example is the concept of a tensor. When I was an under- 

graduate at Princeton, Professor D.C. Spencer defined a tensor in class as 'an object 
that transforms according to the following rules'; this is the description of a tensor that 

you will also find in Luther Pfahler Eisenhart's textbook in differential geometry, still 
considered to be the best introductory textbook in the subject. It was clear to everyone 
that such a nonsensical statement was not a definition. In fact, every time such a char- 
acterization of a tensor was stated, it was followed by a slight giggle. Nevertheless, 
the lack of definition of a tensor did not stop Einstein, Levi Civita and Caftan from 
doing some of the best mathematics in this century. 

As a matter of fact, the first correct definition of a tensor did not become current 
until the fifties, under the influence of Chevalley I believe, or perhaps I should say 
Bourbaki. Even more amazing, the first completely rigorous definition of a tensor was 
given just at the time when tensors were going temporarily out of fashion. 

A lot of mathematical research is spent in finding suitable definitions to justify 

statements that we already know to be true. The most famous instance of such a 
situation is the Euler-Schl/ifli-Poincar6 formula for polyhedra, which was believed to 
be true in great generality long before a suitably general notion of polyhedron could 
be defined. 

At least one hundred years of research were spent on singling out a definition to 
match the Euler-Schl/ifli-Poincar6 formula. Meanwhile, no one ever entertained any 

doubt of the formula's truth. The philosopher Imre Lakatos has documented the story 
of such a search for a definition in thorough historical detail. Curiously, his findings, 
which were published in the book 'Proofs and refutations', were met with a great deal 
of anger on the part of a section of the mathematical public, who held the axiomatic 
method to be sacred and inviolable. Lakatos's book became for a while anathema 
among philosophers of mathematics of the positivistic school. The truth hurts. 

Hermann Grassmann was a great believer in description; by-and-large, he did not 
bother to give definitions in the current sense of the term. His descriptive style, coming 
precisely at the time when the axiomatic method was becoming a fanatical devotion 
among mathematicians, is very probably one more reason why his work was not read. 
As a matter of fact, the first rigorous definition of exterior algebra was not given until 
the forties, by Bourbaki, in Chapter 3 of his or her 'Alg~bre', which is perhaps the 
best written of all of  Bourbaki's volumes. Each successive edition of this chapter 'fait 
regretter les pr~c~dentes', as the French say. 

Every mathematician of my generation and the preceding learned exterior algebra 
from Bourbaki. For example, Emil Artin did so in the early fifties, motivated by the 
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Galois cohomology he was inventing at the time. I cannot refrain from telling you a 

story about myself. Sometime in 1951, I traveled from Princeton to New York to visit 
Stechert-Hafner on Fourth Avenue, a huge four-floor academic bookstore that has since 
gone bankrupt. 

Stechert-Hafner looked more like a warehouse than like a bookstore; books were 
spread all over in no particular order, ready to be shipped to some college library. 

As I came out of the elevator on the third floor, I walked up to a lady who was 
working with an adding machine, and who seemed the only person present. After a 
few minutes' wait, the lady turned her eyes toward me. She looked at me squarely 
and, before I could speak a word, she said: 'I know your type! You want the Bourbflci 
books!' She was right. She gave me a huge discount, and I will never forget her. 

7. Bottom lines 

How do mathematicians get to know one another? Professional psychologists do 
not seem to have studied this question; I will try out an amateur theory. When two 
mathematicians meet and feel out each other's knowledge of mathematics, what they 
are really doing is finding out what each other's bottom line is. 

It might be interesting to give a precise definition of the concept of a bottom line; 
in the absence of  a definition, we will describe some typical examples. 

To the algebraic geometers of  the sixties, the bottom line was the proof of the 
Weil conjectures. To generations of German algebraists, from Dirichlet to Hecke and 

Emil Artin, the bottom line was the theory of algebraic numbers. To the Princeton 
topologists of  the fifties, sixties and seventies, the bottom line was homotopy. To 
the functional analysts of Yale and Chicago, the bottom line was the spectrum. To 
many combinatorialists today, the bottom line is either the Yang-Baxter equation, or 
the representation theory of the classical groups, or the Schensted algorithm. To some 
algebraists and combinatorialists of  the next ten or so years, the bottom line may be 

elimination theory. 
I will shamelessly tell you what my own bottom line is. It is placing balls into boxes, 

or, as Florence Nightingale David put it with exquisite tact in her book 'Combinatorial  

chance', it is the theory of  distribution and occupancy. 
We resort to the bottom line when we are asked to write a letter of  support for 

some colleague. If the other mathematician's bottom line is agreable with ours, then 
our letter is more likely to be positive. If instead our bottom lines disagree, then our 
letter is likely to be restrained. 

The most striking example of  mismatch of bottom lines was told me by Erdfs. When 
David Hilbert, then a professor at the University of  Konigsberg, was being considered 
for a professorship at Gottingen, the Prussian ministry asked Professor Frobenius to 
write a letter in support of  Hilbert's candidacy. Here is what Frobenius wrote: 'He is 
rather a good mathematician, but he will never be as good as Schottky'. 

Allow me to tell you two more personal stories. 
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In 1957, in my first year as an instructor in Cambridge, I occasionally had lunch 
with Oscar Zariski, who liked to practice his Italian. One day, while we were sitting in 
the main room of the Harvard Faculty Club, he stared at me in the face with his fork in 
his hand and said, loud enough for everyone to hear: 'Remember! Whatever happens 
in mathematics happens in algebraic geometry first!' As a matter of fact, algebraic 
geometry has been the bottom line of mathematics for almost one hundred years; but 
perhaps times are changing. 

The second story is more somber. One day, in my first year as an assistant professor 
at MIT, as I was walking down one of the long corridors of MIT, I met Professor Z, 
a respected senior mathematician with a solid international reputation. He stared at me 
in the face and shouted: 'Admit! All of lattice theory is trivial!' 

I did not have the presence to answer that yon Neumann's work in lattice theory is 
deeper than anything Professor Z has done in mathematics. 

Those of us who have reached a certain age remember the visceral hatred of lattice 
theory that was widespread from around 1940 to around 1970, and that has not com- 
pletely disappeared. Such unusual and widespread instance of dislike for an entire field 
cannot be simply attributed to personality clashes. It is more likely to be explained by 
localizing certain abysmal differences among the bottom lines of the mathematicians 
of the time. 

If  we begin such a search, we are likely to conclude that the field that is normally 
classified as algebra really consists of two quite separate fields. Let us call them algebra 
one and algebra two, for lack of a better language. 

Algebra one is the algebra whose bottom lines are algebraic geometry or algebraic 
number theory. Algebra one has by far a better pedigree than algebra two, and has 
reached a high degree of sophistication and breadth. Commutative algebra, homolog- 
ical algebra, and the more recent speculations with categories and topoi are exquisite 
products of algebra one. It is not infrequent to meet two specialists in algebra one 
who cannot talk to each other, since the subject is so vast. Despite repeated and dire 
predictions of its demise, algebra one keeps going strong. 

Algebra two has had a more accidented history. It can be traced back to George 
Boole, who was the initiator of three well-known branches of algebra two, namely: 
in the first place, Boolean algebra, in the second place, the operational calculus that 
views the derivative as an operator D, on which Boole wrote two books of great beauty, 
and finally, invariant theory, which Boole initiated by remarking the invariance of the 
discriminant of a quadratic form under the action of S12. 

Very roughly speaking, between 1850 and 1950, algebra two was preferred by 
the British and the Italians, whereas algebra one was once a German and lately a 
French preserve. Capelli and Young's bottom line was firmly in algebra two, whereas 
Kronecker, Hecke and Emil Artin are champions of algebra one. 

At the beginning, algebra two was largely cultivated by invariant theorists. Their 
objective was to develop a notation suitable to describe geometric phenomena which 
is independent of any choice of a coordinate system. In pursuing this objective, the 
invariant theorists of the nineteenth century were led to develop explicit algorithms and 
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combinatorial methods. The first combinatorialists, MacMahon, Hammond, Brioschi, 
Trudi, Sylvester, were invariant theorists. One of the first papers in graph theory, in 
which the Petersen graph is introduced, was motivated by a problem in invariant theory. 
Clifford's ideal for invariant theory was to reduce the computation of invariants to the 
theory of graphs. 

The best known representative of algebra two in the nineteenth century is Paul 
Gordan. He was a German, perhaps the exception that tests our rule. He contributed 
a constructive proof of the finite generation of the ring of invariants of binary forms 
which has never been improved upon, and which foreshadows current techniques of 
Hopf algebra. He also published in 1870 the fundamental results of linear programming, 
a discovery for which he has never been given proper credit. 

Despite his achievements, Paul Gordan was seen as an intruder by specialists in 
algebra one. 'Er war ein Algorithmiker!' said Hilbert when Gordan died. 

Gordan's student Emmy Noether became an ardent apostle of algebra one; similarly, 
van der Waerden, a student of General Weitzenb6ck, an algebra two hero, intensely 
disliked algebra two throughout his career. In the thirties, algebra two was enriched 
by lattice theory and by the universal algebra of Philip Hall and his student Garrett 
Birkhoff. 

Despite these notable advances, algebra two has always had a harder time. You 
would not find any lattices, any exterior algebra nor even any mention of tensors 
in any of the editions of van der Waerden's 'Modern Algebra'. G.H. Hardy subtly 
condemned algebra two in England in the latter half of the nineteenth century, with 
the exclamation 'Too much f (D)! '  G.H. Hardy must be turning in his grave now. 

But by now you must have guessed the conclusion of this long tirade. Algebra two 
has come of age; in the last twenty years or so, it has blossomed, and it has acquired a 
name of its own. The bottom line for most of us here is algebra two. In fact, a suitable 
name has finally been invented for algebra two: algebraic combinatorics. In celebrating 
the anniversary of one of the foremost representatives of algebra two, Adriano Garsia, 
we are also rejoicing that our field, algebraic combinatorics, after a tortuous history 
has at last found its own bottom line, together with a firm place in the mathematics 
of our time. 

26 July 1994 


