
JOURNAL OF COMPUTER AND SYSTEM SCIENCES 29, 36-47 (1984)

An n log n Algorithm for Determining
the Congruity of Polyhedra

K~KICHI SUGIHARA

Department of Information Science, Faculty of Engineering,
Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Japan 464

Received May 25, 1982; revised October 4, 1983

This paper describes an algorithm for determining whether two polyhedra are congruent.
The asymptotic time complexity of the algorithm is bounded by a constant times n log n
where n is the number of edges of the polyhedra. It is also shown that under some conditions
the problem of partial congruity can be solved in O(d) time.

1, INTRODUCTION

Because of recent development of computational geometry, many new and useful
results have been obtained for the processing of geometric information in a two-
dimensional space. In the case of three-dimensional geometry, on the other hand, we
can find only a few results, such as the construction of a convex hull [2, 171, the
construction of a plane which separates two families of points [151, and the detection
of interference of two polyhedra [5, 141.

In the present paper we consider another computational problem in a three-
dimensional space, the problem of determining whether two polyhedra are congruent.
This problem arises out of several fields of engineering. In CAD systems for the
design of mechanical parts [6,8], we sometimes have to judge whether a part fits a
hole of another part. In scene analysis using multi-view techniques [3, 191, we have to
identify objects by searching for prototypes that have the same shapes as the
observed objects. These problems are reduced to the problem of recognizing the
congruity of polyhedra.

Vertices and edges of a polyhedron form an undirected simple graph. Hence, it
seems natural to expect that we may be able to use some techniques for graph
isomorphism in order to construct an algorithm for the congruity of polyhedra. The
graph isomorphism in a general case is a hard problem [7]. For planar graphs,
however, polynomial-order algorithms are known. Especially for triply connected
planar graphs, Weinberg [20] found an algorithm of O(n’), Hopcroft and Tarjan
[lo] of O(n log n), and Hopcroft and Wong [1 l] of O(n).

In the present paper we shall show that the technique in Hopcroft and Tarjan [lo]
can be applied to the congruity of polyhedra, and thus construct an O(n log n)
algorithm for determining whether two polyhedra are congruent. The

36
0022~0000184 $3.00
Copyright 0 1984 by Academic Press, Inc.

All rights of reproduction in any form reserved.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82247874?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

CONGRUITY OF POLYHEDRA 31

Hopcroft-Tarjan algorithm can be applied only to triply connected planar graphs,
whereas the present algorithm works even if the graphs composed of the vertices and
the edges of the polyhedra are not planar or triply connected. This is because the
Hopcroft-Tarjan algorithm is essentially for isomorphism of embedded graphs, and a
polyhedron can be thought of as a graph embedded on the surface of a solid object.
Thus the present algorithm is available also to polyhedra that are neither convex (if a
polyhedron is convex, the associated graph is triply connected [4]) nor
homeomorphic to a sphere (if a polyhedron is homeomorphic to a sphere, the
associated graph is planar).

We shall also show that we can judge in O(n’) time whether a part of a
polyhedron is congruent with some part of another polyhedron. This result seems
interesting when we recall that the subgraph isomorphism problem is
NP-complete [91.

2. DEFINITIONS AND NOTATIONS

Let R3 denote a three-dimensional Euclidean space. A Polyhedron is a closed
subset of R3 with finite volume bounded by a finite number of planar polygons. We
call the polygons faces, the line segments shared by two faces edges, and the points
shared by three or more faces vertices, respectively, of the polyhedron. For a
polyhedron P, let F(P), E(P), V(P) denote the set of faces, that of edges, and that of
vertices, respectively, ofP. Furthermore, let aP denote the boundary of P, that is,

ap=U {~:~EF(P)}.

For any two points x and y in R 3, let d(x, y) denote the Euclidean distance
between x and y. A mapping T of IA3 onto itself is said to be isometric if d(x, y) =
d(T(x), T(Y)) for any X, YE R 3. An isometric mapping T is said to be orientation-
preserving if T maps any right-handed coordinate system onto some right-handed
coordinate system. For any subset X of R3, we define

T(X) = { y: y = T(x) for some x in X}.

Let P, and P, be two polyhedra. If an isometric orientation-preserving mapping T
satisfies P, = T(PJ, then the mapping obtained when we restrict the domain of T to
P, is called a congruent mapping of P, onto P,. P, and P, are said to be congruent if
there exists a congruent mapping of P, onto P,.

For a polyhedron P, let FG(P) denote the undirected graph whose node set is F(P)
and whose arc set is defined by

{{f, f’): f, f’ E F(P), the faces f andf’ share a common edge}.

38 KOKICHI SUGIHARA

We call FG(P) the face-edge graph of the polyhedron P. For any point x in R 3, we
define ball B(x; r) of radius r at x by

B(x;r)= {y:yE R3,d(x,y)<r}.

In the present paper we consider polyhedra P’s that satisfy the following three con-
ditions.

Condition 1. The face-edge graph FG(P) is connected.
This condition excludes those polyhedra in which two parts are disconnected or

they touch only at vertices.

Condition 2. For any point x in AJP, there exists a positive real t(x) such that
B(x; r) n P - L?P is nonempty and simply connected for any 0 < r < t(x).

This condition excludes some “unusual” polyhedra. Since B(x; r) n P4P is
nonempty, the polyhedron P must be thick, that is, P can not be something made of
“thin” paper. Furthermore, since B(x; r) n P - aP is simply connected, P can not
have unusual vertices or edges such as those in Fig. 1. Therefore, if P satisfies
Condition 2, we can distinguish between the outside and the inside of a face, and we
can in a unique order visit all the faces and edges touching a vertex counterclockwise
around it from an arbitrarily chosen initial face or edge.

Condition 3. For any face f of P, f - u {e: e E E(P)} is simply connected.
This condition excludes faces with holes (except for holes that touch the boundary

of the faces). Hence, if P satisfies Condition 3, we can travel from any edge on f to
any other edge on f along some sequence of edges on f.

For a polyhedron P, let G(P) = (V(P), E(P)) be the undirected graph having the
node set V(P) and the arc set B(P), where e E E(P) is considered as an arc
connecting the two end vertices of the edge e. We call G(P) the uertex-edge graph
of G. Every node of G(P) has at least three arcs, because three or more faces of P
meet at every vertex. Let c(P) = (V(P), E(P)) be the directed graph that is obtained
when we replace every arc of G(P) with the two directed arcs of each direction, that
is,

E(P) = {(Q 9 %), (Q, 01): Iv, 9 02) E E(P)}.

For any e = (vi, UJ in l?(P), v, and v, are called the initial node and the terminal

FIG. 1. Polyhedra which do not satisfy Condition 2.

CONGRUITY OF POLYHEDRA 39

node, respectively, of the directed arc e, and the reversal (Q, v,) of e is denoted by e’.
A sequence ((u,, vz), (02, Q),..., (u,_, , u,)) of elements of E(P) is called a directed
path starting w$h the edge (or, v2) and ending with the edge (v,_r , u,).

The graph G(P) defmed above is an “abstract” graph. In what follows, however,
we will mean by G(P) the actual three-dimensional configuration composed of the
vertices and the edges of P, and will use the terms “vertices” and “edges” to indicate
the “nodes” and “arcs” of d(P). Therefore, for example, a vertex of G(P) has its
location in R 3, and an edge of G(P) has its length. Moreover, for any u E V(P) and
e = (u, u’) E E(P), we can uniquely define the order in which we, starting with the
edge e, visit counterclockwise all the edges out of the vertex u.

For any e E J!?(P), let JR(e) denote the face to the right of the directed edge e, and
f‘(e) the face to the left of e (see Fig. 2). By H,(e) and H,(e), respectively, we
indicate the oriented planar surfaces on which f,(e) orfl(e) lies, where an “oriented.”
surface means that the one side of the surface is labeled as the outside and the other
as the inside. Let e be any edge of G(P), and e’ be any edge going out of the terminal
vertex of e. We say that e’ is to the immediate right of e iff,(e) = fR(e’), and to the
immediate left of e iff,(e) = fL(e’). We represent the edge to the immediate right of e
by g,(e), and that to the immediate left of e by gL(e). Thus g, and g, are one-to-one
mappings of E(P) onto itself, and consequently the inverses gR1 and g;’ are also
one-to-one mappings of E(P) onto itself, as shown in Fig. 2.

For an edge e E E(P), let r(e) denote the length of the edge e, and w(e) the angle
between the two side faces fk(e) and f,(e) (0 < w(e) < 27r, w(e) # rr), where the angle
is assumed to be measured in the inside of the polyhedron and hence 0 < w(e) < II
means that the edge e forms a ridge and x < w(e) < 2n means a valley. Furthermore,
let e,(e) be the angle between e and g,(e) and 6,(e) the angle between e and gL(e)
(0 < B,(e), e,(e) < 2x). We define J(e) by

A directed path (e 1 ,..., e,) of G(P) is said to be primary if for each i, 1 < i Q n - 1,

fice)
e

tie) A q-(e)

g$e)

FIG. 2. Definition of g,, g,, and 1.

40 KdKICHI SUGIHARA

e,, i is either to the immediate right of e; or to the immediate left of e,. For a primary
path p = (e, ,..., e,), we define a(p) = (c, ,..., c,_,) by

I 1
ci =

if ei+ 1 = g,(eJ,
-1 if ei+ 1 = g,(ei).

Note that g,(e) # gJe> for any e E J?(P) (because any vertex of G(p) has three or
more edges) and hence c, is determined without ambiguity.

Suppose that P and P’ are two polyhedra. Let p = (e, ,..., e,) and p’ = (e; ,..., e;) be
primary paths of G(P) and c(P’), respectively. If a(p) = a(p’), then p’ is said to be
the path corresponding to p starting with the edge e; . An edge e, E J?(P) and an edge
e; E E(P’) are said to be indistinguishable if any primary path p = (e, ,..., e,) starting
with e, and the path p’ = (e; ,..., ,, e’) corresponding top starting with el satisfy n(e,) =
J(e;) for any i, 1 < i < n, and distinguishable if otherwise. Note that if P = P’, then to
be indistinguishable is an equivalence relation in z(P), and thus the
indistinguishability introduces an equivalence relation in edge set E(P,) U -. - U &P,)
of any number s of polyhedra P, ,..., P,.

3. BASIC RESULTS

In this section we derive some results on which our algorithm is based.

LEMMA 1. Let P be a polyhedron satisfying Condition 2, and p = (e, ,..., e,) be
any primary path of G(P). If the locations of e, and H,(e,) in R3 and the values
A(e,), 1 ,< i< n, are given, then the locutions of e,, H,Je,), H,(e,) in R3 can be deter-
mined uniquely.

Proof It suffices to show that if the locations of ei and H,(eJ are given, then the
locations of e,, , , H,(e,+ ,), H,(ei+ 1) are determined uniquely. Now suppose that the

locations of ei and H,(e,) in R3 are given.

Case (i) Suppose that e,, i = g,(e,). Since H,(ei+l) = H,(eJ, the location of
H,(ei+,) in R3 is uniquely determined. Noting that the angle between e, and e,+, is
given by t9,(ei) (the third component of n(e,)) and the length of e,+, by I(e,+ J (the
first component of L(e,+ J), we can uniquely determine the location of ei+ 1 in R 3. The
location of H,(e{+,) is also determined because the angle between H,(e,+,) and
H,(ei+ 1) is given by W(ej+ J (the second component of L(e,+ 1)).

Case (ii) Suppose that ei+ i = g,(e,). From w(e,), we can determine the
location of H,(e,). Exchanging the right and the left in the case (i), we can easily see
that the locations of ei+ , , H,(ei+ 1), H,(ei+ J in R 3 are determined uniquely. Q.E.D.

LEMMA 2. Let P and P’ be two polyhedra satisfying Condition 2. Let p =

CONGRUITY OFPOLYHEDRA 41

(e , ,..., e,) be a primary path oS_G(P) and p’ = (e; ,..., e;) be the path corresponding to
p starting with any edge e; ofG(P’) such that A(e,) = A(ef each i, 1 < i < n. Then,
the isometric orientation-preserving mapping T of Ii?’ onto itself such that e; = T(e,)
aTnd& 2;;;) = T(H,(e,)) also satisfies e; = T(e,), HR(eA) = T(H,(e,)), H,(e;) =

L n *

ProoJ From Lemma 1, the relative position of e,, H,(e,), e,, H,(e,), H,(e,) is
the same as that of e{, H,(e;), e;, H,(e;), H,(eA). Hence we get the lemma. Q.E.D.

LEMMA 3. Let P be a polyhedron that satisfies Conditions 1, 2, and 3. For any e,
e’ E E(P), there exists a primary path of d(P) that starts with e and ends with either
e’ or (e’)‘.

Proof From Condition 1, there exists a sequence f, ,..., f, of faces of P such that
fi = fR(e), f, = fR(e’) and for any i, 1 < i < n - 1, fi and A+ 1 share a common edge,
say, e, (the direction of e, will be given a little later). Therefore, we can construct a
primary path from e to either e’ or (e’)’ in the following way. Starting with e, we first
travel from edge to edge along the boundary of the face fi until we arrive at e, (at
this point we determine the direction of e, in such a way that the direction coincides
with the direction of our travel). Next we travel along the boundary of the face f2
until we arrive at e2 (at this point we determine the direction ofe,). In a similar
manner, we can travel until we arrive at e, _ 1. Note first that because of Condition 3
we can always go from e,_i to e, along the boundary of fi. Note secondly that the
path we have taken is primary because we always choose as the next edge either the
edge to the immediate right or that to the immediate left. Starting with e,_, , we
travel along the boundary of the face f, and eventually come across either e’ or (e’)r.

Q.E.D.

THEOREM 4. Let P, and Pz be two polyhedra satisfying Conditions 1, 2, and 3,
and let e, and e2 be edges of G(P,) and c(P,), respectively. There exists a congruent
mapping of P, onto P, that maps e, onto e2 if and only if e, and e2 are
indistinguishable.

ProoJ: If there exists a congruent mapping of P, onto P, which maps e, onto e2,
then e, and e, are obviously indistinguishable. Now, supppose that e, and e2 are
indistinguishable. Then, there exists a unique isometric orientation-preserving
mapping T of iR3 onto itself that satisfies e2 = T(e,) and Ha(e,) = T(H,(e,)). Let e3
be any edge of G(P,). It follows from Lemma 3 that there is a primary path, say, p,,
starting with e, and ending with either e3 or (e,)l. Let p2 be the path corresponding to
p, starting with e2, and let e, be the last edge of p2. Since e, and e, are
indistinguishable, it follows from Lemma 2 that e4 = T(e,), H,(e,) = T(HR(e,)),
K_(e4) = T(K(e,)). S ince e3 is arbitrary, T maps P, onto P, and hence P, and P, are
congruent. Q.E.D.

42 KGKICHI SUGIHARA

4. ALGORITHM FOR CONGRUITY RECOGNITION

Theorem 4 has the same “form” as that in Hopcroft and Tarjan [lo] on which
they construct an algorithm for graph isomorphism. Therefore, we can use their
technique for our problem. According to this policy we will in this section construct
an algorithm for determining whether two polyhedra are congruent.

We use a random access machine [l] as the model of computation. We assume
that the polyhedra P, and P, are described in some suitable data structure such as the
one in [121 or [151, and hence for each e E l?(P,) (i = 1,2) we can retrieve g,(e),
gL(e), g,‘(e), g;‘(e), the coordinates of the initial and the terminal vertices of e, the
surface equations on which_&(e) or fL(e) lies, etc., in O(1) steps.

Based on Theorem 4, we can construct the following algorithm for determining
whether two polyhedra P, and P, are congruent.

Algorithm A.

(1) Calculate n(e) for all e in E(P,) U E(P,).

(2) Partition ,!?(P,)uE(P,) into blocks, say, B(l), B(2),...,B(k) (k > l), in such
a way that e and e’ belong to the same block if and only if n(e) = n(e’). If there exists
i, 1 < i (k, such that either B(i) G g(P,) or B(i) c E(P,), then conclude that P, and
P, are not congruent and stop the processing.

(3) Subdivide B(l),..., B(k) into blocks consisting of indistinguishable edges by
the procedure SUBDIVIDE defined in Fig. 3. Let the resulting blocks be B(l),
P(2),..., B(I) (12 k).

(4) If B(1) n ,!?(P,) # 0 and B(1) n &(P,) # 0, then conclude that P, and P, are
congruent. If otherwise, conclude that they are not congruent.

The procedure in Fig. 3 is written in pidgin ALGOL [11. The procedure subdivides
the initial blocks B(l),..., B(k) into blocks consisting of mutually indistinguishable
edges. An outline of the procedure is the following. First, all pairs of form (i, D) are
stored in stack WAIT, where i denotes a block number and D is either R or L
(line l), and 1 is set to be the number of blocks in the initial state (line 2). Elements of
WAIT are used for checking whether the current partition of the edges is fine enough
in the sense that each block consists of indistinguishable edges. An element (i, D) is
selected and deleted from the stack WAIT (line 4), and MOVE is defined as a set of
edges in such a way that e is in MOVE if and only if some edge in B(i) is to the
immediate right (if D = R) or to the immediate left (if D = L) of e (line 5). Then,
MOVE is used as a reference set for checking whether a block contains mutually
indistinguishable edges. If block PO) contains both an element belonging to MOVE
and an element not belonging to MOVE (this implies that B(j) contains mutually
distinguishable edges), then 1 is replaced by 1+ 1, B(J) is divided into two smaller
blocks B(j) n MOVE and B(j) -B(j)n MOVE, and they are renamed B(1) and
B(j), respectively (lines 6-10). Moreover, if (j, D) is in WAIT, (1, D) is also added to
WAIT for later checking, and if otherwise, either (j, D) or (1, D) that corresponds to
a smaller block is added to WAIT (lines 11-13). Each time an element is added to

CONGRUITY OF POLYHEDRA 43

procedure SUBDIVIDE
begin

1: WAIT + ((1, R), (1, L),..., (k, R), (k, L));
2: Ick;
3: while WAIT is not empty do

begin
4: select and delete (i, D) from WAIT;
5: MOVE +- (g,‘(e): e E B(i)];
6: for each j such that B(j) n MOVE # 0 and B(j) @ MOVE do

begin
I: ItI+ 1;
8: create new block B(I);
9: B(Z) + B(j) n MOVE;

10: B(j) + B(j) - B(I);
11: if (j, D) E WAIT then add (/, D) to WAIT

else
12: ifIB Q IB(I)(then add (j, D) to WAIT
13: else add (2, D) to WAIT

end
end

end

FIG. 3. Procedure SUBDIVIDE used in Step 3 of Algorithm A.

WAIT at line 12 or 13, the corresponding block is not greater than half of its
previous size. Hence, for each edge e, a block containing e is used for checking at
most O(log n) times, and consequently the total time complexity of the procedure is
of O(n log n).

LEMMA 5. Suppose that the blocks B(l),..., B(k) obtained in Step 2 of
Algorithm A are given to the procedure SUBDIVIDE as input. Then thefinal output
~(1)9...9~(01 f rom the procedure SUBDIVIDE coincides with the partition of
E(P,) U E(P,) into mutually indistinguishable edges. Furthermore, if 1 E(PJ =
1 E(P,)I = n, then procedure SUBDIVIDE executes the processing in O(n log n) time.

We omit the proof, because it is the same as that given by Hopcroft and Tarjan
[lo]. (We can also find the proof in a more general framework in Section 4.13 of
Ahoetal. [l].)

THEOREM 6. Suppose that polyhedra P, and P, satisfy Conditions 1, 2, and 3,
and 1 E(P,)I = I E(P,)(= n. Then, Algorithm A correctly determines whether P, and P,
are congruent, and its time complexity is O(n log n).

Proof: The algorithm terminates in either Step 2 or Step 4. If B(i) c E(P,) for
some i in Step 2, edges in B(i) are distinguishable from any edge of c(P,) and hence
from Theorem 4 the two polyhedra are not congruent So is the case in which B(i) G
E(P,). It follows from Lemma 5 that in Step 4 an edge in B(1) is indistinguishable
from any other edge in B(1) and is distinguishable from any edge in the other blocks

44 KdKICHI SUGIHARA

B(2),..., B(Z). H ence from-Theorem 4, P, aid P, are congruent if and only if B(1)
contains both an edge in E(P,) and one in E(P,). Therefore, the judgment in Step 4 is
also correct.

Step 1 takes no more than O(n) time, because we assume that for each e E
,??(P,)U ,!?(P,) we can calculate n(e) in a constant time. Using any technique for
sorting four-character words in the lexicographic order, we can execute Step 2 in
O(n log n) time [11. From Lemma 5, Step 3 can be executed in O(n log n) time.
Step 4 takes O(n) time. Therefore, the total amount of time needed in Algorithm A is
O(n log n). Q.E.D.

Remark 1. The initial partition of &P,)U l?(P,) at Step 2 can be any one
provided that it is not coarser than the partition defined by J(e) and is not finer than
the partition into indistinguishable edges. Hence, in order to shorten the time for the
later processing we can also use miscellaneous information other than n(e). For
example, for any e E E(P) we define 8-tuple n’(e) = (m,(e), m*(e), m,(e), m,(e), J(e)),
where m,(e), m*(e) are the degrees of the initial vertex and the terminal vertex,
respectively, of e, and m3(e), m,(e) are the numbers of edges belonging to the boun-
daries of&(e) and fL(e), respectively. If we partition l?(P,) UE(P,) according to
n’(e) rather than n(e), we in general obtain a liner partition as the initial partition for
the algorithm, and thus improve the processing time.

Remark 2. In practical situations data usually contain errors due to
digitization, etc., and hence n(e) = J(e’) does not make sense. We have to judge
whether n(e) and n(e’) are “nearly equal” under some criterion. For example, we can
judge n(e) and n(e’) are nearly equal if and only if

maxMe) - @‘>I9 Me> - w@‘)l, l&(e) - 4de’>L l&(e) - 4k’)l) < 6

where E is a small positive constant. However, being nearly equal itself is not an
equivalence relation, and hence in order to define the initial blocks B(l),..., B(k) we
have to use the transitive closure of “being nearly equal.” Note that this revision of
the algorithm does not affect the time complexity estimated in Theorem 6, because we
can still make use of the techniques for sorting elements in the lexicographic order if
we adopt the above criterion for being nearly equal. When, on the other hand, errors
in the data are not small, we have to use other approaches such as the one proposed
by Ikeuchi [131, because the abstract graph G(P) itself may contain errors.

Remark 3. The procedure SUBDIVIDE decomposes the initial blocks into the
blocks of indistinguishable edges. However, it is not always necessary to execute the
whole processing: if we come across on the way of the execution a block which is
contained by either E(P,) or ,!?(P& then we can conclude that the polyhedra are not
congruent and stop the processing. This check should be executed between line 10
and line 11 of the procedure SUBDIVIDE.

Remark 4. The algorithm can be modified to partition a family of three or more
polyhedra P,, P, ,..., P, into subfamilies consisting of congruent polyhedra. For this

CONGRUITY OF POLYHEDRA 45

purpose we use E(P,) U E(P,) U ..a U ,@(cs) instead of &Pi) U &P,) as an object to
be partitioned. Moreover, if we use E(P,) instead of &P,)UE(P,), we can
enumerate all of the congruent mappings of P, onto itself.

Remark 5. The algorithm is also used for determining whether two polyhedra are
similar in the sense that they differ only in their sizes. The only thing we have to do
for this purpose is to normalize the sizes of the two polyhedra. This can be done in
0(n) time by expanding or shrinking one of the polyhedra so that the length of its
longest edge coincides with that of the other.

5. ON RECOGNITION OF PARTIAL CONGRUITY

The partial congruity problem is to determine whether a part of a polyhedron is
congruent with some part of another polyhedron. This problem often arises in scene
analysis, where we have to identify objects from information only about “visible”
parts of the objects (see, for example, Sugihara [181 and Oshima and Shirai [161).

In the case of graphs the subgraph isomorphism problem is NP-complete, while a
special case of it, the graph isomorphism problem, is not known to be NP-complete
or not (Garey and Johnson [9]). It seems that the hardness of the subgraph
isomorphism problem is partly due to the fact that we are not given information
about what parts are deleted from the graphs. In the case of polyhedra, on the other
hand, we are usually given information about what parts are “invisible.” Making use
of this information, we can construct an efficient algorithm for the partial congruity
problem.

Suppose that the face set F(P) of a polyhedron P is partitioned into F’(P), called
the set of visible faces, and F’(P), called the set of invisible faces, and that we are
given data only about the visible faces. Let E”(P) and V”(P) be the set of edges and
that of vertices, respectively, which belong to boundaries of the visible faces, that is,

E”(P) = {a: a E E(P), a E f for somef E F”(P)},

V(P) = {v: v E V(P), v E _f for somefE F”(P)}.

The elements of E”(P) are called visible edges and those of V”(P) visible vertices. Let
P* be another polyhedron, called a model, and let X be a subset of F(P*). If an
isometric orientation-preserving mapping T of R 3 onto itself maps lJ {f: f E F”(P)}
onto lJ {f: f E X} and moreover if it maps the outside of each face in F’(P) onto the
outside of the corresponding face in X, then the mapping obtained when we restrict
the domain of T to F”(P) is called a partial congruent mapping of P(P) onto X. We
say that P is partly congruent with P* with respect to F”(P) if there exists a subset X
of F(P*) and a partial congruent mapping of F’(P) onto X.

We restrict our consideration to a polyhedron P whose visible part satisfies

Condition 4. The subgraph of the face-edge graph FG(P) induced by the node set
F’(P) is connected.

46 KdKICHI SUGIHARA

Let G’(P) = (V’(P), p(P)) be the directed graph with the node set V”(P) and the
arc set

We partition P(P) into

EB(P) = {e: bothf,(e) and&(e) are visible},

pR(P) = {e: fR(e) is visible but fL(e) is not},

FL(P) = {e: fL(e) is visible but&(e) is not}.

For any e E F(P), let us define p(e) by

(44 wteh 4M 4X4)
(l(e), *, B,(e), *)

(l(e), *, *, e,(e))

if e E &(P),

if e E Pa(P),

if e E B”,(P),

where * means that the value is not defined. For the model P*, we define p(e) by
considering all the faces as visible. Furthermore we define that p(ei) = p(eJ if and
only if they coincide componentwise except for the components in which p(ei) or
p(ez) has *. A primary path p = (e , ,..., e,) is called a visible primary path if the face
fi on which both e, and ei+, lie is visible for any i, 1 < i < n - 1.

An edge e, E I?‘(P) is said to be partly indistinguishable with respect to F’(P) from
e; E ,!?(P*) if any visible primary path p = (e , ,..., e,) starting with e, and the path
p’ = (e’ ,,..., e;) corresponding to p starting with e; satisfy p(e,) =p(ef) for any i,
1 < i< n. Then, we get the following theorem.

THEOREM 7. Suppose that two polyhedra P, P* satisfy Conditions 1, 2, and 3
and the set F”(P) of visible faces of P satisJies Condition 4. Let e be any edge in
i?“(P) and e’ be any edge in &P*). There exist a subset X of F(P*) and a partial
congruent mapping of FV(P) onto X that maps e onto e’ if and only if e is partly
indistinguishable with respect to F’(P) from e’.

The proof is very similar to that of Theorem 4, and hence we omit it.
Using this theorem, we can determine whether P is partly congruent with P* with

respect to F”(P) in the following way. First, we select and tix an arbitrary element e,
of I?“(P). Next, for each element e’ of ,?(P*) we see if e, is partly indistinguishable
with respect to F”(P) from e’. If we happen to come across an edge e* E E(P*) from
which e, is partly indistinguishable, we conclude that P is partly congruent with P*
and end the processing. If e, is not partly indistinguishable from any edge in ,??(P*),
then we conclude that P is not partly congruent with P*. The test of whether or not e,
is partly indistinguishable from e’ can be executed by usual graph search techniques
such as the breadth-first search in O(lE’(P)I) t ime. Therefore, the time complexity is
of O(mn), where n = \E(P*)l and m = IE’(P)(.

CONGRUITY OF POLYHEDRA 47

ACKNOWLEDGMENTS

The author would like to express his appreciation to Professor Masao Iri of the University of Tokyo
and Professor Noboru Sugie of Nagoya University for valuable discussions.

REFERENCES

1. A. V. AHO, J. E. HOPCROFT, AND J. D. ULLMAN, “The Design and Analysis of Computer
Algorithms,” Addison-Wesley, Reading, Mass., 1974.

2. A. APPEL AND P. M. WILL, Determining the three-dimensional convex hull of a polyhedron, IBM J.
Res. Develop. (November, 1976), 590-601.

3. M. ASADA AND S. TSUJI, Representation of three-dimensional motion in dynamic scenes, Comput.
Vision Gr. Image Process. 21 (1983), 118-144.

4. D. BARNE~TE AND B. GRONBAUM, On Steinitz’s theorem concerning convex 3-polytopes and on
some properties of planar graphs, in “The Many Facets of Graph Theory,” Lecture Notes in
Mathematics No. 110, pp. 27-40, Springer-Verlag, Berlin/New York, 1969.

5. J. W. BOYSE, Interference detection among solids and surfaces, Comm. ACM 22 (1979), 3-9.
6. I. C. BRAID,. The synthesis of solids bounded by many faces, Comm. ACM 18 (1975), 209-216.
7. D. G. CORNEIL AND D. G. KIRKPATRICK, A theoretical analysis of various heuristics for the graph

isomorphism problem, SIAM J. Comput. 9 (1980), 28 l-297.
8. J. ENCARNACAO (Ed.), “Computer Aided Design,” Lecture Notes in Computer Science No. 89,

Springer-Verlag, Berlin/New York, 1980.
9. M. R. GAREY AND D. S. JOHNSON, “Computers and Intractability,” Freeman, San Francisco, 1979.

10. J. E. HOPCROFT AND R. E. TAIUAN, A V Ion V algorithm for isomorphism of triconnected planar

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

graphs, J. Comput. System Sci. I (1973), 323-33 1,
J. E. HOPCROFT AND J. K. WONG, Linear time algorithm for isomorphism of planar graphs, in
“Proceedings, 6th Annual ACM Symposium on Theory of Computing, 1974,” pp. 172-184.
M. HOSAKA AND F. KIMURA, An interactive geometrical design system with handwriting input, in
“Information Processing 77,” pp. 167-172, North-Holland, Amsterdam, 1977.
K. IKEUCHI, Recognition of 3-D objects using the extended Gaussian image, in “Proceedings, 7th
International Joint Conference on Artificial Intelligence, 1981,” pp. 595-600.
T. LOZANO-PYRES AND M. A. WESLEY, An algorithm for planning collision-free paths among
polyhedral obstacles, Comm. ACM 22 (1979), 56&570.
D. E. MULLER AND F. P. PREPARATA, Finding the intersection of two convex polyhedra, Theoret.
Comput. Sci. 7 (1978), 217-236.
M. OSHIMA AND Y. SHIRAI, A scene description method using three-dimensional information,
Pattern Recognition 11 (1979), 9-17.
F. P. PREPARATA AND S. T. HONG, Convex hulls of finite sets of points in two and three
dimensions, Comm. ACM 20 (1977), 87-93.
K. SUGIHARA, Range-data analysis guided by a junction dictionary, Artificial Intelligence 12 (1979),
41-69.
S. ULLMAN, The interpretation of structure from motion, Proc. Roy. Sot. London Ser. B 203 (1979),
405426.
L. WEINBERG, A simple and efficient algorithm for determining isomorphism of planar triply
connected graphs, IEEE Trans. Circuit Theory CT-13 (1966), 142-148.

571/29/t-4

