
journal of functional analysis 158, 357�388 (1998)

Interaction Equations for Short and
Long Dispersive Waves

Daniella Bekiranov*

Department of Mathematics, Florida International University, Miami, Florida 33199

Takayoshi Ogawa-

Graduate School of Polymathematics, Nagoya University, Nagoya 464-01, Japan

and

Gustavo Ponce

Department of Mathematics, University of California Santa Barbara,
Santa Barbara, California 93106

dedicated to professor rentaro agemi on his sixtieth birthday

We show the time-local well-posedness for a system of nonlinear dispersive equa-
tions for the water wave interaction

i�tu+�2
xu=uv+|u| 2 u, t # (&T, T ), x # R,

{�tv+P(Dx)v=�x |u|2,

u(0, x)=u0(x), v(0, x)=v0(x).

It is shown that for any initial data (u0 , v0) # H s(R)_H s&1�2(R) (s�0), the
solution for the above equation uniquely exists in a subset of C((&T, T); H s)_
C((&T, T ); H s&1�2) and depends continuously on the data. By virtue of a special
structure of the nonlinear coupling, the solution is stable under a singular limiting
process. � 1998 Academic Press

1. INTRODUCTION

An interaction phenomenon between long waves and short waves under
a weakly coupled nonlinearity has been studied in various physical situa-
tions. After the proper rescaling arguments, the harmonics of the wave is
subject to a typical form. The short wave term S(x, t): R_R � C is described
by a Schro� dinger type equation and the long wave L(x, t): R_R � R is
described by some sort of wave equation occasionally accompanied by a
dispersive term. In the most general case, the phenomenon is described by
the nonlinear coupled system
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i �t S+icS �xS+�2
xS=:SL+# |S| 2S, t, x # R,

(1.1)
�tL+cL �xL+&P(Dx) L+* �x L2=; �x |S| 2,

where :, ;, #, &, cS , cL , and * are real constants and P(Dx) is a linear
differential operator with constant coefficients. This equation appears in
various settings of physics and fluid mechanics. For example,

(i) the internal gravity wave packet [17] (;<0, cS=cL=#=
*=&=0),

(ii) the capillary�gravity interaction wave [12] (;<0, cS=cL=#=
*=&=0) and [24] (P(Dx)=�3

x , cS=cL=:=0, and *=&=1),

(iii) the sonic�Langmuir wave interaction in plasma physics [22, 41]
(cL=&1, cS=*=&=#=0),

(iv) the general theory of water wave interaction in a nonlinear
medium [5] (&=0, *=0 or 1),

(v) the motion of two fluids under capillary�gravity waves in a deep
water flow [13] (P(Dx)=Dx �x and &=1, cS=cL=#=*=0, :, ;>0),
and

(vi) the motion of two fluids under a shallow water flow [13] (*=
&=#=cS=cL=0, :, ;>0).

The purpose of this paper is to consider the well-posedness of the
Cauchy problem for the interaction equation (1.1). We refer to the word
``local well-posedness'' in the sense of Hadamard, that is, the solution uniquely
exists in a certain time interval (unique existence), the solution has the same
regularity as the initial data in a certain time interval (persistence), and the
solution varies continuously depending upon the initial data (continuous
dependence). Global well-posedness requires that the same properties hold for
all time t>0.

The most typical case in the theory of wave interaction is described by
the following system,

i �t u+�2
xu=:vu+# |u| 2u, t, x # R,

{�tv+c �xv=; �x( |u|2), (1.2)

u(x, 0)=u0(x), v(x, 0)=v0(x),

where c=\1 and :, ;, and # are real constants. In fact when &=0 in (1.1),
the two systems (1.1) and (1.2) are equivalent by a proper gauge transfor-
mation and scaling of the variables (see [39]).

The solvability of the system (1.2) is considered under various settings.
Yajima andOikawa [41] applied the inverse scattering method and found
the N-soliton solution of (1.2) when c=1, ;=&1, and #=0. See also Ma
[30]. Laurenc� ot [29] considered the orbital stability for a weak solution
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in H1(R) around the stationary standing waves. M. Tsutsumi and Hatano
[38, 39] considered (1.2) using the method of nonlinear evolution equa-
tions and showed local well-posedness where the initial data (u0 , v0) #
Hm+1�2(R)_H m(R) with m=0 for #=0 and with m=1, 2, ... for #{0.
They also obtained global well-posedness in similar spaces [39]. Bekiranov
et al. [1] generalized the result of M. Tsutsumi and Hatano [39] for initial
data (u0 , v0) # H s(R)_L1�s(R) for 0<s<1�2 when #=0.

Our first purpose is to show that system (1.2) is locally well-posed in
L2_H&1�2. Hence we improve the results found in [1]. In general, for a
nonlinear evolution equation it is more difficult to show well-posedness for
initial data in a larger class. The single nonlinear Schro� dinger equation,

{i �t u+�2
xu=# |u|2u

u(x, 0)=u0(x),

is known to be complete integrable (#=1) and well-posed in the space
L2(R) (Zakharov and Shabat [43], Y. Tsutsumi [40], Kato [23], and
Cazenave and Weissler [11]). Hence it is natural to expect that the system
(1.2) is well-posed for u0 # L2(R).

From a mathematical point of view, investigating the well-posedness of
a dispersive system such as (1.1) is related to the smoothing effects induced
by the linear parts of each of the equations that make up the system and
the relation of them with the nonlinear terms, in both its degree of non-
linearity and its particular structure. Recently the local well-posedness for
single dispersive equations with quadratic nonlinearities has been extensively
studied in Sobolev spaces with negative indices. For example, the one-
dimensional nonlinear Schro� dinger equation with appropriate quadratic
nonlinearity is known to be well-posed up to H&1�2+=(R), and the KdV
equation is well-posed up to H&3�4+=(R) ([25, 27, 35]).

In general, a coupled system like (1.2) is more difficult to handle in the
same spaces as in the space each of the equations is solved. Due to the
asymmetry of the characteristics of each linear part in system (1.2), how-
ever, we are still able to show well-posedness for the initial data (u0 , v0) #
L2(R)_H&1�2(R).

For the system that describes the capillary�gravity interaction [24],
(cited in (ii) in the beginning of this Introduction),

i �tu+�2
xu=# |u|2 u,

{�tv+�3
xv+�xv2=�x |u| 2,

u(x, 0)=u0(x), v(x, 0)=v0(x),

similar results have been obtained (see M. Tsutsumi [37] and Bekiranov
et al. [2]). Since well-posedness has been established in a weak space, this
interaction model is valid for more singular waves than continuous data.
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Next we treat two related systems, (v) and (vi), that describe the inter-
action of two fluid interfaces under the setting of deep and shallow flows.
Funakoshi and Oikawa [13] formulated the interaction waves for the
boundary of two fluids with different densities. If the flow is considered in
the deep flow setting, the interaction equation is described by the following
system,

i �t u+�2
xu=:vu, t, x # R,

{�tv+& �x Dxv=; �x( |u| 2), (1.3)

u(x, 0)=u0(x), v(x, 0)=v0(x),

where Dx=H �x=|�x | and H denotes the Hilbert transform defined by

Hu=F&1 &i!
|!|

û,

while under the shallow flow setting, the governing system is as follows:

i �tu+�2
xu=:uv, t, x # R,

{�tv=; �x( |u|2), (1.4)

u(x, 0)=u0(x), v(x, 0)=v0(x).

Benney [5, 6], Grimshaw [17], Djordjevic and Redekopp [12], and
Yajima and Satsuma [42] studied these systems numerically. We show
that the solution of the system (1.3) is locally well-posed in the space
H s(R)_H s&1�2(R) (s�0). The presence of a stronger dispersive property
due to the term & �x Dxu in the second equation in (1.3) suggests that this
system has a better smoothing effect than system (1.4). Nevertheless, local
well-posedness in L2(R)_H s&1�2(R2) is derived for system (1.4). In other
words, the smoothing effect in (1.3) due to the dispersive term & �x Dxu
does not play a significant role in the solvability of (1.3). For the case,
&=1, &1, it seems that for the characteristics of the linear parts in (1.3)
there is a type of cancellation and the system does not have sufficient
smoothing to guarantee well-posedness in weaker spaces. For the case
|&|<1, however, the special structure of the nonlinear terms give us some
advantage for well-posedness. Thus we have different results depending of
the value of &. As a byproduct of well-posedness, we also show that by a
(singular) limiting procedure, as & � 0, the solution u& to (1.3) strongly
converges to the unique solution for (1.4). This limiting procedure
implicitly approximates the situation where the depth of the second fluid
becomes more shallow and closer to the depth of the first fluid's surface.

To state our result, we introduce the integral equation associated to (1.2)
(or (1.4) with #=0),
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u(t)=U(t) u0&i |
t

0
U(t&t$)[:v(t$) u(t$)+# |u(t$)|2 u(t$)] dt$,

v(t)=Wc(t) v0+; |
t

0
Wc(t&t$) �x |u(t$)|2 dt$,

where U(t)=eit �2
x and Wc(t)=e&ict �x denote the unitary operators for the

linear Schro� dinger and first order wave equations.
For the particular case (1.4), we understand that c=0 for the group Wc(t),

hence the second integral equation has the following simple form

v(t)=v0+; |
t

0
�x |u(t$)|2 dt$.

Also, we shall let �(t) denote a smooth cut off function such that �=1
for |x|�1 and �=0 for |x|>2. For T>0, �T=�(t�T ).

We state our first result for the systems (1.2) and (1.4).

Theorem 1.1. Let s�0 and b # (1�2, 1). Then for any (u0 , v0) # H s(R)_
H s&1�2(R), there exists T>0 and a unique solution (u(t), v(t)) of the initial
value problem (1.2) (and of (1.4)) such that

(1) The solution (u, v) satisfies

u # C([0, T); H s(R)),

�TU(&t) u # H b
t (R; H s

x(R)),

v # C([0, T); H s&1�2(R)),

�TWc(&t) v # H b
t (R; H s&1�2

x (R)).

(2) The nonlinearities are well-defined and satisfy

u # L6((0, T); L6
x),

�TWc(&t)(�x |u|2) # H b
t (R; H s&1�2

x (R)),

�TU(&t)(uv) # H b
t (R; H s

x(R)).

(3) The solution of the Schro� dinger part u preserves its L2 norm, i.e.,
for 0<t<T,

&u(t)&2=&u0 &2 .

(4) Moreover, the map (u0 , v0) � (u(t), v(t)) is Lipschitz continuous
from L2(R)_H &1�2(R) to C([0, T ); L2(R))_C([0, T); H &1�2(R)).
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Remark 1. The local well-posedness for a solution of (1.2) in Hs_L1�s(R)
(s>0 with #=0) was obtained by Bekiranov et al. [1] using commutator
estimates. The above theorem improves the previous result. Combining the
above theorem with the argument in [1], it is possible to show that a
global result holds for the case (u0 , v0) # H s(R)_H s&1�2(R) (s�1�2).
This result is a generalization of the result by M. Tsutsumi and Hatano
[38, 39], where they considered the solution in Hm+1�2(R)_Hm(R)
m=0, 1, 2 . . . (with #=0 when m=0).

Remark 2. The regularity difference of 1�2 is a natural consequence of
the structure of the nonlinear terms. One can scale the solution, (u, v), of
the system (1.2) or of (1.4) as

u*(x, t)=*3�2u(*x, *2t),

v*(x, t)=*2v(*x, *2t),

where we ignore the terms c �xv and #|u|2u. That is (u* , v*) solves (1.2) or
(1.4) with initial data u*0=*3�2u0(*x) and v*0=*2v0(*x). Now taking the
homogeneous derivative of order s in L2 for u* and s&1�2 in L2 for v*

yields the following

&Ds
xu* &2

2=*2+2s &D s
xu&2

2 ,

&Ds&1�2
x v* &2

2=*2+2s &D s&1�2
x v&2

2 .

Thus the difference in regularity of 1�2 is needed to keep each norm equiv-
alent under scaling. This coupled with the best result for the cubic nonlinear
Schro� dinger equation (i.e., well-posedness in L2 [40]) tells us that Theorem 1.1
is in some sense the best possible.

Remark 3. Related to another kind of nonlinear Schro� dinger equation,
it should be commented that the weak solution for the derivative nonlinear
Schro� dinger equation uniquely exists in H1(R) (see Hayashi [18], Hayashi
and Ozawa [20], and Ozawa [33]). These results are obtained by reduc-
ing the single equation into a system of nonlinear Schro� dinger equations.
In our case, the presence of a stronger smoothing effect, which is mainly
due to the special structure of the nonlinear interactions, enable us to
handle well-posedness in a weaker space.

Remark 4. After completing this work, we are noticed that the similar
result is obtained by Ginibre et al. [15]. They consider Zakharov system
including higher dimensional cases as well as the first order case (1.2) in
one space dimension.

We next state the analogous result for the deep flow version of two phase
flow of interaction equation (1.3). Note that the integral equation is expressed
by
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u(t)=U(t) u0&i |
t

0
U(t&t$)[:v(t$) u(t$)] dt$,

v(t)=V&(t) v0+; |
s

0
V&(t&t$) �x |u(t$)| 2 dt$.

where V&(t)=e&&t �x Dx is the linear Benjamin�Ono propagator.

Theorem 1.2. Let s�0 and b # (1�2, 3�4). Then for any (u0 , v0) #
H s(R)_H s&1�2(R) and |&|<1, there exists T>0 such that the initial value
problem (1.3) admits a unique solution (u(t), v(t)). Further:

(1) The solution satisfies

u # C([0, T); H s(R)),

�TU(&t) u # H b
t (R; H s

x(R)),

v # C([0, T); H s&1�2(R)),

�TV&(&t) v # H b
t (R; H s&1�2

x (R)).

(2) The nonlinearities are well-defined and satisfy

�TU(&t)(uv) # H b
t (R; H s

x(R)),

�TV&(&t)(�x |u|2) # H b
t (R; H s&1�2

x (R)).

(3) For any s�0, the solution of the Schro� dinger part u preserves its
L2 norm, i.e., for any 0<t<T,

&u(t)&2=&u0 &2 .

(4) We have the momentum, and the energy conservation laws:

Im | u(t) �xu� (t) dx&&v(t)&2
2=Im | u0 �xu� 0 dx&&v0&2

2 for s� 1
2 ,

&�xu(t)&2
2+: | v(t)|u(t)| 2 dx& 1

2&D1�2
x v(t)&2

2

=&�xu0&2
2+: | v0 |u0 |2 dx& 1

2 &D1�2
x v0&2

2 for s�1.

(4) Moreover, for T>0 the map (u0 , v0) � (u(t), v(t)) is Lipschitz con-
tinuous from H s(R)_H s&1�2(R) to C([0, T); H s(R))_C([0, T); H s&1�2(R)).
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Remark 5. It should be noted that a single dispersive wave in deep
fluid flow is generally described by the equation

{�tv+& �x Dxv+�xv2=0
v(x, 0)=v0(x),

which was studied by Benjamin [4] and Ono [31]. Existence and well-
posedness results for this single equation are found in [21, 16, 34, 25] (see
also [19]). Since (1.3) has no self-interacting nonlinear term, �xv2, the
existence result is better than the results obtained in the references above.
It should be also noted that the method for the weak solvability of non-
linear Schro� dinger equations and the KdV equation found in [7, 8, 26, 27]
does not seem to be applicable to this single equation. The smoothing effect
for the linear part of the Benjamin�Ono equation is weaker than that of the
linear part of the KdV equation although the nonlinear terms are similar.

The method of proof which is used for both Theorems 1.1 and 1.2 is
based on the analogous argument introduced by Bourgain ([7�9]), in the
spatially periodic case and extensively improved by Kenig et al. [25, 27,
28] for the Schro� dinger and KdV equations. The key fact is that we use
appropriate space-time weight norm in the phase space to see the smooth-
ing effect of two dispersive linear equations and smoothing effects of the
quadratic nonlinearities which is seen as terms of a convolution of weight
potentials. The expression of quadratic nonlinearities by convolution yields
some benefit to avoid a loss in regularity. It should be emphasized that the
special structure of the nonlinear coupling presents a better smoothing
effect. Especially the nonlinear term, �x |u|2, in the second equation has a
preferable property of smoothing. In general, |u|2 has a better smoothing
property than u or u� alone. We use this property to obtain well-posedness
independent of the dispersive property of the second equation.

Remark 6. For the case &=1 or &1, the characteristics between the
Schro� dinger part and the Benjamin�Ono part in the system (1.3) do not
have as strong a cancellation as in the case |&|<1; thus we do not see the
same smoothing effects. This may be due to some sort of resonance. We
expect that if in the regular case s>0, the well-posedness holds for |&|=1.

Remark 7. Following the argument in [28] (Theorem 1.4 (ii)) we shall
show that the result in Theorem 1.3 is the best possible given by our
method (it fails for s<0 except for the limiting case, s=0, which remains
open). In [27], it was established that the initial value problem

{i �t u+�2
xu=# |u|2

u(x, 0)=u0(x)
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is locally well-posed for s> &1�4 and that the crucial bilinear estimate

&U(&t) |u|2&Ht
b&1 (R; Hs

x)�C &U(&t)u&2
H t

b (R; Hs
x)

fails for s<&1�4. The same example used in [28] to show this failure
proves that

&U(&t) uv&H t
b&1 (R; H s

x)�C &U(&t)u&H t
b (R; H s

x) &V1(&t)u&H t
b (R; H s

x)

also fails for s<0.

As an application of both Theorems 1.1 and 1.2, we state a result of the
limiting problem & � 0 for the system (1.3).

Theorem 1.3. Let (u&(t), v&(t)) be a solution of (1.3) obtained in Theorem
1.2 and (u(t), v(t)) be of (1.4) in Theorem 1.1 with the same initial data (u0 , v0)
# L2(R)_H&1�2(R). Then for any T>0 and b # (1�2, 3�4), we have

&u&&u&C([0, T ); L2)+&�T (u&&u)&H t
b (R; L 2

x) � 0,

&v&&v&C([0, T ); H&1�2) � 0

as & � 0.

Remark 8. It is not difficult to obtain a similar result for the regular
cases once we have a uniform estimate in & for the local solutions. According
to the weak well-posedness results contained in Theorems 1.1 and 1.2, we can
approximate the weak solution by regularized solutions.

In what follows we use the following notations. Let Fx and Ft be the
Fourier transform in the x and t variables. (x)=(1+|x| ) is a weight
function both used for the time and space phase variables. We use the
conventional notation for a differential operator (Dx) =F&1

x (!) Fx . The
norm for L2(R) and the Sobolev space H s(R) in the space variable are
expressed by & }&2 and &v&H s=&(Dx) s v&2 , respectively. We denote L p

t (Lq
x)

as the Banach spaces L p(R; Lq(R)) in the variables (t, x) and 1<p, q��.
Hb(R; H s)=H b

t (R; H s
x(R)) is the Hilbert space defined by

H b
t (R; H s

x(R))=[u(t, x) # S(R2); (Dt) b u # L2
t (R; H s

x(R))].

Let f�� be the Fourier transform of f in both the x and t variables, that is

f�� ({, !)=(2?)&1 ||
R 2

e&it{&ix!f (t, x) dt dx.

(( f, g)) denotes a dual coupling and f V g is the convolution of f and g in
space and time.
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Let U(t)=eit �2
x, V&(t)=e&&t Dx �x and Wc(t)=e&ct �x be the unitary

operators associated with the linear Schro� dinger, the linear Benjamin�Ono
and the first order wave equation respectively. Finally we introduce the
function spaces for constructing the local solutions which are originally
used by Bourgain ([7]) (see also [25, 26, 2]). For s # R and &1<b<1,
we let X s, b, Y s, b

& , Z s, b
c be the Hilbert spaces with the norms

& f &X s, b=\|| ({+!2) 2b (!) 2s | f�� ({, !)|2 d{ d!+
1�2

=&U(&t) f (t)&Ht
b (R; Hs

x (R)) ,

&g&Y &
s, b=\|| ({+&! |!|) 2b (!) 2s | ĝ̂({, !)| 2 d{ d!+

1�2

=&V&(&t) g(t)&H t
b (R; H s

x (R)) ,

&h&Z c
s, b=\|| ({+c!) 2b (!) 2s |h�� | ({, !)|2 d{ d!+

1�2

=&Wc(&t) h(t)&H t
b (R; Hs

x (R)) .

We will avoid using the subscripts & and c except when this might cause
confusion, that is V(t) will denote V&(t), W(t) will denote Wc(t) and & }&Y s, b

=& }&Y &
s, b , & }&Zs, b=& }&Z c

s, b . �=�(t) always denote a fixed smooth cut off
function such that �(t)=1 for |t|�1 and �(t)=0 for |t|>2. �$(t)=�(t�$)
for $>0. Various constants are denoted by C.

2. PRELIMINARY ESTIMATES

The following lemma concerning the basic estimates on the function
spaces we consider are established by Kenig et al. [25, 27].

Lemma 2.1 ([25, 27]). Let s # R, b # (1�2, 1) and $ # (0, 1), then for
F # X s, b we have

&�$F&Xs, b�C $ (1&2b)�2 &F&Xs, b . (2.1)

Let a, b # (0, 1�2) with a<b and $ # (0, 1), then for F # X s, &a we have

&�$F&X s, &b�C $(b&a)�4(1&a) &F&Xs, &a . (2.2)

Similar estimates hold for Y s, b and Zs, b replacing X s, b.
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Lemma 2.2 ([7, 14, 27]). Let s # R, b # (1�2, 1) and $ # (0, 1). Then for
F # H b

t (R; H s
x), we have

"�$ |
t

0
F(t$) dt$"H t

b (R; Hs
x)

�C $ (1&2b)�2 &F&H t
b&1(R; H s

x) , (2.3)

"�$ |
t

0
F(t$) dt$"L� ((0, T ); Hs

x)

�C $(1&2b)�2 &F&Ht
b&1(R; H s

x) . (2.4)

Proof of Lemma 2.2. The second inequality (2.4) is immediately obtained
from (2.3) by the Sovolev immedding. The first inequality is derived as follows.
By the argument in [7] and [27] we divide the following integral into three
parts:

�$ |
t

0
F(t$) dt$=�$ |

t

0
| e ix!+it${ f�� (t$, !) d! dt$

=�$ || eix! \|
t

0
eit${ dt$+ F�� ({, !) d{ d!

=�$ || eix!+it{ 1&eit{

i{
�({) F�� ({, !) d{ d!

+�$ || eix!+it{ 1
i{

(1&�({)) F�� ({, !) d{ d!

&�$ || eix! 1&�({)
i{

F�� ({, !) d{ d!

#I+II+III.

Noting that Ft �$=$�� (${), we have from Lemma 2.1 (2.1),

&I&H t
b (R; Hs

x)

="(Dt) b �$ || eix!+it{ :
�

k=1

(&it)k

ik!
{k&1�({) F�� ({, !) d{ d!"Lt

2 (R; Hs
x)

�C :
�

k=1
"(Dt)b \(&it)k �$

k! || eix!+it{{k&1�({)(!) s F� ({, !) d{ d!+"Lt
2(R; Hs

x)

�C |
�

k=1

$k

k!
(&�$&�+&Db

t �$&Lt
2) &({)b |{|k&1 �({)(!) s F�� ({, !)&L2

{ (R; L2
!)

�Ce$(1+$(1&2b)�2) &�({)(!) s F�� ({, !)&L{
2(L2

!)

�C $(1&2b)�2 &F&Ht
&� (R; H s

x) , (2.5)
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and

&II&H t
b (R; H s

x)�C $(1&2b)�2 "�$ || eix!+it{ 1&�({)
i{

({) b F�� ({, !) d{ d!"L t
2(R; H s

x)

�C $(1&2b)�2 &({) b&1 (!) s F�� ({, !)&L t
2 (R; L2

x)

�C $(1&2b)�2 &F&H t
b&1 (R; H s

x) . (2.6)

For the third term we use the homogeneous estimate (2.3),

&III&H t
b (R; H s

x)="�$ || eix! 1&�({)
i{

F�� ({, !) d{ d!"H t
b (R; Hs

x)

=&�$&H t
b (R) "| eix! \| (1&�({)) F�� ({, !)

i{
d{+ d!"H x

�C $(1&2b)�2 "(!) s \| t
1&�(t)

{
F�� ({, !) d{+"L 2

!

�C $(1&2b)�2 \| \| ({) &2b d{+
_\| ({) 2(b&1) (!)2s |F�� ({, !)| 2 d{+ d!+

1�2

�C $(1&2b)�2 &F&H t
b&1 (R; H s

x) . (2.7)

Combining (2.5)�(2.7), we have the desired estimate. K

Next we show the estimates needed for the linear Schro� dinger equation
and the linear part of the KdV equation which are due to Kenig et al.
Recall that U(t)=eit �2

x, V(t)=e&&t Dx �x, and W(t)=e&ct �x denote the
linear Schro� dinger, linear Benjamin-Ono, and linear wave unitary groups,
respectively.

Proposition 2.3 ([7, 25, 27]). Let s # R, 1�2<b<1 and $ # (0, 1). Then
we have

&�$U(t) u0&X s, b�C $(1&2b)�2 &u0&H s , (2.8)

"�$ |
t

0
U(t&t$) F(t$) dt$"X s, b

�C $ (1&2b)�2&F&Xs, b&1 . (2.9)

Similar estimates hold for V(t) and W(t) replacing U(t) and Y s, b and W s, b

replacing X s, b, respectively.
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Proof of Proposition 2.3. Since U(t) �$=�$ U(t), we see

&�$u(t) U0&Xs, b=&U(&t) �$U(t) u0 &H t
b (R; H s

x)=&�$&H t
b &u0&H s

x

and the first inequality (2.8) follows from &�$&Ht
b=C $(1&2b)�2. The second

inequality (2.9) is a direct consequence of Lemma 2.2. K

The following corollary follows immediately from Proposition 2.3.

Corollary 2.4. Let b # (1�2, 1) and $ # (0, 1). Then we have

"�$ |
t

0
U(t&t$) F(t$) dt"L�((0, T ); H s

x)

�C $(1&2b)�2 &F&Xs, b&1 . (2.10)

Similar estimates hold for F # Y s, b and F # Zs, b with replacing U(t) by V(t)
and W(t), respectively.

The following estimate due to Strichartz [36] is well known and used
often in the various areas of the study of nonlinear Schro� dinger equations.

Proposition 2.4 ([36]). Let u0 # L2(R) then

&U(t) u0&Lt
6 (L 6

x)�C &u0&2 .

Finally we give some elementary estimates needed for the nonlinear
estimates in Section 3.

Lemma 2.5 ([27]). (1) For p, q>0 and r=min( p, q, p+q&1) with
p+q>1, there exists C>0 such that

|
dx

(x&a) p(x&b) q�
C

(a&b) r . (2.11)

(2) For p>1 and q>1�2

|
dx

(ax&b) p�
C
|a|

, (2.12)

|
dx

(a0+a1x+a2 x2) q�C. (2.13)

3. NONLINEAR ESTIMATES

In this section we give four estimates for the nonlinear terms appearing
in systems (1.2) and (1.3). First we treat the cubic nonlinear term.
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Lemma 3.1. For s�0, a�0 and b # (1�2, 1) we have that

&|u|2 u&Xs, a�C &u&3
Xs, b . (3.1)

Proof of Lemma 3.1. It is sufficient to show (3.1) for u # S(R2). Since
for any !, ', ` # R and s�0, (!) s�(!&') s('&`) s(`) s, we see that for
a�0 and 1�2<b<1,

&|u|2 u&X s, a=&({+!2) a (!) s ( |u| �2 u@)&L {
2 (L2

!)

�sup
!, {

({+!2) a &|w| 2 w&Lt
2 (L 2

x)

�&w&3
L t

6(L 6
x) ,

where ŵ̂({, !)=(!) s û̂({, !).
Let f ({, !)=({+!2)b ŵ̂({, !), then

&w&L t
6 (L 6

x)="|| eit{+ix! f ({, !)
({+!2) b d! d{"L t

6 (L6
x)

.

Using the change of variables |={+!2 and rewriting the expression, it
follows that

"| {eit|(|) &b \| e ix!&it!2f (|&!2, !) d!+= d|"L t
6(L 6

x)

="| eit|(|) &b [U(t) g|] d|"L t
6 (L6

x)

,

where we put Fxg|(!)= f (|&!2, !).
Next we use Minkowski's inequality and the Strichartz estimates on the

Schro� dinger equation found in Proposition 2.5 to get the following inequalities

| &eit|(|) &b U(t) g| &L t
6 (L 6

x) d|�| (|) &b &U(t) g|&Lt
6 (L6

x) d|

�C | (|) &b &g| &L2
x

d|

�C &(|) &b&L 2
|

&g|(x)&L2
| (L 2

x)

�C &g|(x)&L 2
| (L 2

x) . (3.2)
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Finally by Plancherel's identity, we have from (3.2),

&g|(x)&L 2
| (L 2

x)=\|| | f (|&!2, !)|2 d! d|+
1�2

=& f &L {
2 (L2

!)

and this completes the proof. K

The following lemmas are proved by a method originally due to Bourgain
and considerably improved by Kenig et al., and contain the remaining non-
linear estimates needed for the construction of local solutions.

The estimate in Lemma 3.2 shows that the nonlinear interaction �x |u|2

has the best smoothing property of the four nonlinear terms by our method
and it plays a key role in our results.

Lemma 3.2. Let s�0 and b>1�2. Suppose that u # X s, b. Then there is a
constant, C>0 only depending on b such that

&�x |u|2&L t
2 (Hx

s&1�2)�C &u&2
X s, b . (3.3)

The following corollary is an immediate consequence of Lemma 3.2.

Corollary 3.3. For u # X s, b with 1�2<b, s�0 and for any a�0, there
is a constant C>0 only depending on b such that

&�x |u|2&Y s&(1�2), a�C &u&2
Xs, b , (3.4)

&�x |u|2&Z s&(1�2), a�C &u&2
Xs, b . (3.5)

Proof of Corollary 3.3. Since

&�x |u|2&Y s&(1�2), a=&({+&! |!| )) a (!) s&1�2 �x |u|2@@&L {
2 (L2

!)

�&�x |u|2&L t
2(H x

s&1�2) ,

(3.4) follows immediately from (3.3). Similarly (3.5) follows from (3.3). K

Proof of Lemma 3.2. By letting f ({, !)=({+!2) b (!) s û̂ and f *({, !)
=({&!2) b (!) s u�^^ , we have

&�x |u|2&L t
2 (Hx

s&1�2)

=&i!(!) s&1�2 |u|2@@ &L {
2 (L 2

!)

="i!(!) s&1�2 \ f
(!) s ({+!2) b V

f *
(!) s ({&!2) b+"L {

2 (L 2
!)
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="i!(!) s&1�2 \|| f (_, ')
(') s (_+'2) b

_
f *({&_, !&')

(!&') s ({&_&(!&')2) b d_ d'+"L {
2(L2

!)

�"|!| s+1�2 \|| 1
(') 2s (_+'2) 2b (!&') 2s ({&_&(!&')2) 2b d_ d'+

1�2

_(| f |2 V | f *|2)1�2"L{
2 (L 2

!)

�&| f |2 V | f *|2&1�2
L {

1(L 1
!)

_"|!| 1�2 \|| 1
(_+'2) 2b ({&_&(!&')2) 2b d_ d'+

1�2

"L{
�L !

�

�& f &L {
2 (L 2

!) & f *&L {
2 (L 2

!)

_"|!| 1�2 \|| 1
(_+'2) 2b ({&_&(!&')2) 2b d_ d'+

1�2

"L {
� L !

�
,

where we have used |!|�(!&')(').
By (2.11) and (2.12) in Lemma 2.5 we have

|!|1�2 \|| 1
(_+'2) 2b ({&_&(!&')2) 2b d_ d'+

1�2

�C |!|1�2 \| 1
({&!2+2'!) 2b d'+

1�2

�C,

which shows (3.4). K

Lemma 3.4. Let s�0, a�&1�4, 1�2<b<3�4, and |&|<1. Suppose that
u # X s, b and v # Y s&1�2, b

& , then there is a C>0 only depending on b, a and
(1&|&| )&1 such that

&uv&X s, a�C &u&X s, b &v&Y &
s&1�2, b . (3.6)

If v # Zs&1�2, b
c , then there is a C>0 only depending on b, and a such that

&uv&X s, a�C &u&X s, b &v&Zc
s&1�2, b . (3.7)
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Proof of Lemma 3.4. First we note that by duality we have that

&uv&X s, a=&(!) s ({+!2)a uv@@&L{
2 (L2

!)

= sup
&,&L{2 (L2

!)�1 }��
(!) s

({+!2) |a| û̂ V v̂̂, ,��} .
Now setting f ({, !)=({+!2)b (!)s û̂ and g({, !)=({+&! |!|)b (!) s&1�2 v̂̂,

�� (!) s

({+!2) |a| û̂ V v̂̂, ,� ��
=�� (!) s

({+!2) |a| \ f
(!) s ({+!2) b V

g
(!) s&1�2 ({&!3)b+ , ,� ��

=||
(!) s

({+!2) |a|

_\|| g(_, ') f ({&_, !&')
(') s&1�2 (_+&' |'|) b (!&') s ({&_+(!&')2) b d_ d'+

_,� ({, !) d{ d!

=||||
R1

+||||
R2

+||||
R3

(!) s g(_, ') f ({&_, !&') ,� ({, !)

\(') s&1�2 (!&') s ({+!2) |a| (_+&' |'|) b

_({&_+(!&')2) b +
d_ d' d{ d!

=I1+I2+I3 , (3.8)

where the regions R1 , R2 and R3 make up R4 and are defined as follows.
First we split R4 into three regions, A, B, and C:

A=[({, _, !, ') # R4 : |'|�2], (3.9)

B={({, _, !, ') # R4 : |2(1+& sgn(')) '&2!|�
1&|&|

2
|'|, |'|>2= , (3.10)

C={({, _, !, ') # R4 : |(1+& sgn(')) '&2!|�
1&|&|

2
|'|, |'|>2= . (3.11)
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For |&|<1 we have that the set

{({, _, !, ') # R4 : |'|>2, |2(1+& sgn(')) '&2!|<
1&|&|

2
|'|

and |(1+& sgn(')) '&2!|<
1&|&|

2
|'|=

is empty, so that we have R4=A _ B _ C.
Noting that for points in C,

|{+!2|+|_+&' |'| |+|{&_+(!&')2|�|&' |'|+'2&2!'|>
1&|&|

2
|'| 2,

(3.12)

we separate C into three parts,

C1=[({, _, !, ') # C : |_+&' |'| |, |{&_+(!&')2|�|{+!2|],

C2=[({, _, !, ') # C : |{+!2|, |{&_+(!&')2|�|_+&' |'| |],

C3=[({, _, !, ') # C : |{+!2|, |_+&' |'| |�|{&_+(!&')2|],

so that one of the following |{+!2|, |_+&' |'| |, or |{&_+(!&')2| is
larger than (1&|&| )�6 |'|2.

We can now define the three sets that we separate R4 into:

R1=A _ B _ C1 ,

R2=C2 ,

R3=C3 .

Now to estimate I1 we integrate with respect to { and ! first, then we use
Ho� lder's and the Cauchy�Schwartz inequalities to obtain the following:

|I1 |�&,� ({, !)&L {
2 (L2

!) " (!) s

({+!2) |a|

_||
f ({&_, !&') g(_, ') /R1

({, _, !, ') d_ d'

(') s&1�2 (!&') s (_+&' |'|) b ({&_+(!&')2) b"L {
2 (L 2

!)

�& f &L {
2 (L2

!) &g&L{
2(L 2

!) &,&L {
2 (L 2

!) " (!) s

({+!2) |a|

_\||
(') /R1

\(') 2s (!&') 2s (_+&' |'|) 2b

_({&_+(!&')2) 2b +
d_ d'+

1�2

"L {
� (L!

�)

. (3.13)
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For the second term, we integrate over _ and ' first and follow the same
steps as above to obtain

|I2 |�& f &L2
_ (L 2

') &g&L 2
_ (L 2

') &,&L2
_ (L 2

') " (') 1�2

(') s (_+&' |'|) b

_\||
(!) 2s /R2

(!&') 2s ({+!2) 2 |a| ({&_+(!&')2) 2b d{ d!+
1�2

"L _
� (L '

�)

.

(3.14)

Using the change of variables _&{=\ and '&!=` the third region, R3 ,
is transformed into the set R� 3 defined as

R� 3={(_, \, ', `) # R4 : 2<|'|,
1&|&|

2
|'|2�|&' |'|&'2+2'`|�3 |\&`2|=

and it follows that the last term can be estimated as before as

|I3 |� }|| f&(\, `)
(`) s (\&`2)b

_\||
('&`) s g(_, ') ,� (_&\, '&!) /R� 3

(\, _, ', `)

(') s&1�2 (_+&' |'|)b (_&\+('&!)2) |a| d_ d'+ d\ d` }
�& f &L2

\(L2
!) &g&L2

\(L2
`) &,&L2

\ (L2
`) " 1

(`) s (\&`2)b

_\||
('&`)2s /R3

(')2s&1 (_+&' |'|)2b (_&\+('&`)2)2 |a| d_ d'+
1�2

"L\
� (L!

�)

,

(3.15)

where f&(\, `)= f (&\, &`) and ,&(\, `)=,(&\, &`). We note that
f& =(`) s (\&`2)b u�^^ and &f&&L 2

\(L 2
`)=& f &L 2

\ (L2
`)

=&u&Xs
b

and &,&L2
\ (L2

`)�1.
Thus, reviewing the estimates (3.8), (3.13)�(3.15) and noting that (!) �

(')(!&') (or equivalently ('&`)�(`)(') ), we will establish estimate
(3.6) once the following lemma is shown.

Lemma 3.5. All the following expressions are bounded by a constant
C=C((1&|&| )&1):
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" 1
({+!2) |a| \||

(') /R1

(_+&' |'|) 2b ({&_+(!&')2) 2b d_ d'+
1�2

"L {
� (L !

�)

,

" (') 1�2

(_+&' |'|) b \||
/R2

({+!2) 2 |a| ({&_+(!&')2) 2b d{ d!+
1�2

"L_
� (L '

�)

,

" 1
(\&`2)b \||

(') /R� 3

(_+&' |'|) 2b (_&\+('&`)2) 2 |a| d_ d'+
1�2

"L \
� (L !

�)

.

Proof of Lemma 3.5. According to Lemma 2.5 (2.11), it suffices to get
bounds for

1
({+!2) |a| \| (') d'

({+!2+&' |'|+'2&2!') 2b+
1�2

on R1 , (3.16)

(') 1�2

(_+&' |'|) b \| d!
(_&'2+2'!) 2}+

1�2

on R2 , (3.17)

1
(\&`2) b \| (') d'

(\&`2+&' |'|&'2+2`') 2}+
1�2

on R� 3 , (3.18)

where }=min(b, |a| ).
We start with (3.16) in region R1=A _ B _ C1 . In region A, we have

|'|<2 and it is easy to see that

1
({+!2) |a| \| d'

({+!2+&' |'|+'2&2!') 2b+
1�2

�C. (3.19)

Next we estimate (3.16) in region B. By the change of variables '$={+!2

+&' |'|+'2&2!' and the condition (1&|&| )�2 |'|�|2& sgn(') '+2'&2!|
on B yields

1
({+!2) |a| \| (') d'

({+!2+&' |'|+'2&2!') 2b+
1�2

�C \| (') d'$
('$)2b |2& sgn(') '+2'&2!|+

1�2

�C(1&|&| )&1�2 \| ('$)&2b d'$+
1�2

�C(1&|&| )&1. (3.20)

Note that 2b>1 is need to obtain the last line in (3.20) above and that
|&|<1. Similarly on region C1 , we have that for |&|<1, |'|�C(1&|&| )&1

({+!2) 2 |a| for a�&1�4, and it follows from Lemma 2.5 (2.13) that
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1
({+!2) |a| \| (') d'

({+!2+&' |'|+'2&2!') 2b+
1�2

�\| |'| d'
({+!2) 2 |a| ({+!2+&' |'|+'2&2!') 2b+

1�2

�C(1&|&| )&1 \| d'
({+!2+&' |'|+'2&2!')2b+

1�2

�C(1&|&| )&1.

(3.21)

Thus gathering (3.19)�(3.21), we have shown estimate (3.16).
Next we show (3.17). Since 1

2&}&b<0, the change of variables '$=_
&'2+2!', Lemma 2.5 (2.12), and the restriction on the region (3.12)
yields the following

|'|1�2

(_+&' |'|) b \| d!
(_&'2+2!') 2}+

1�2

�
C

(_+&' |'|) b \||'$|�2 |_+&' |'| |
('$) &2} d'$+

1�2

�C
(_+&' |'|) 1�2&}

(_+&' |'|)b �C.

Last, in the region R� 3 we note that |'|�(\&`2) 2b<C(1&|&| )&1 and
from Lemma 2.5 (2.13), we have that

1
(\&`2) b \| (') d'

(\&`2+&' |'|&'2+2`') 2}+
1�2

�C(1&|&| )&1 \| d'
(\&`2+&' |'|&'2+2`')2}+

1�2

�C(1&|&| )&1.

Here we have used }> 1
4 and b� 1

4. Now (3.16)�(3.18) are shown to be
bounded and proof of Lemma 3.5 and hence, proof of (3.6) is completed.

For the proof of (3.7), we choose

A=[({, _, !, ') # R4 : |'|�2],

B=[({, _, !, ') # R4 : |2'&2!+c|> 1
2 |'|, |'|>2],

C=[({, _, !, ') # R4 : |'&2!+c|> 1
2 |'|, |'|>2]

and define R1 , R2 , and R3 in a similar manner as before. The proof of
estimate (3.7) is then similar to the proof of estimate (3.6) and is therefore
omitted. Note that this case, we have no restriction on the parameter c.
This completes the proof of Lemma 3.4. K
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Lemma 3.6. Let u, u~ # X s, b and v, v~ # Y s&1�2, b
& with s�0 and 1�2<b<3�4.

Then there are constants C1>0 and C&>0 such that for any a�&1�4,

&�x |u|2&�x |u~ |2&Y &
s&1�2, a�C1(&u&Xs, b+&u~ &Xs, b)&u&u~ &X s, b , (3.22)

&uv&u~ v~ &X s, a�C&(&u&u~ &Xs, b &v&Y &
s&1�2, b+&u~ &X s, b &v&v~ &Y &

s&1�2, b), (3.23)

where the constant C& depends on b and (1&|&| )&1.

Proof of Lemma 3.6. Lemma 3.6 is an immediate consequence of
Lemma 3.1, Corollary 3.3, and Lemma 3.4. K

Remark 8. As we mentioned in the introduction, the crucial estimate
(3.6) in the proof of Lemma 3.4 is sharp, that is it fails for |&|=1 and s<0
(the case s=0 remains open). To see this we follow [28] Theorem 1.4(ii)
to construct a counterexample:

We take

fN(!, {)=�(!&N) �({+!2)

and

gN(!, {)=�(!+N) �({&!2).

Thus

fN V gN(!, {)tc/R(!, {),

where R is a rectangle of dimension N_N&1 centered at the origin with its
longest side pointing in the (1, &2N) direction. Inserting this information
in (3.24) we get (taking b=1�2, see [28])

1
N1�2_

N1�2&s

N s �C,

which shows the need for s�0.

The next lemma is a simple application of the nonlinear estimates above
and we state it without proof.

Lemma 3.7. Let u, u~ # X s, b and v, v~ # Zs&1�2, b with s�0 and 1�2<b<3�4.
Then there is a constant C>0 such that for any a�&1�4,

&|u|2 u&|u~ |2 u~ &X s, a�C(&u&2
X s, b+&u~ &2

Xs, b) &u&u~ &Xs, b ,

&uv&u~ v~ &X s, a�C &u&u~ &Xs, b &v&Zs&(1�2), b+&u~ &Xs, b &v&v~ &Zs&(1�2), b , (3.32)

&�x |u|2&�x |u~ |2&Zs&(1�2), a�C(&u&Xs, b+&u~ &Xs, b) &u&u~ &Xs, b .
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4. LOCAL WELL POSEDNESS��PROOF OF THEOREM 1.1 AND 1.2

In this section we show the proof of well posedness of (1.2) and (1.3). We
basically follow the arguments given in [27, 2]. Note that in our case, we
cannot employ the scaling argument in [27] because of the presence of the
pure power term in the Schro� dinger part. Recall that � is the smooth cut-
off function as defined in the Section 1, where we denote �$=�(t�$).

Proof of Theorem 1.1. We consider the following function space where
we seek our solution. For (u0 , v0) # H s(R)_H s&(1�2)(R) and b # (1�2, 3�4),
let

XMN=[(u, v): u # X s, b, v # Z s&(1�2), b
c ,

such that &u&X s, b�M, &v&Z c
s&1�2, b�N],

where M=2C0 &u0 &Hs and N=2C0 &v0&H s&1�2 . Then XMN is a complete
metric space with norm

_(u, v)_XMN
=&u&X b+&v&Z b .

Hereafter we use the abbreviation Xb=X s, b and Zb=Z s&(1�2), b
c . Without

loss of generality, we may assume that 1<M and 1<N. For (u, v) # XMN ,
we define the maps,

5[u, v]=�(t) U(t) u0&i�(t) |
t

0
U(t&t$) �$(t$)[:uv(t$)+# |u|2 u(t$)] dt$,

9[u, v]=�(t) W(t) v0+�(t) |
t

0
W(t&t$) �$(t$) ; �x |u| 2 (t$) dt$.

Then according to Lemma 2.1, Proposition 2.3, Lemma 3.1, Corollary 3.3
and (3.7) in Lemma 3.4, we have for b<b$<3�4 and m=(b$&b)�4b$,

&5[u, v]&X b�C0 &u0 &Hs+C &�$[:uv+# |u| 2u]&X b&1

�C0 &u0 &H s+C $+(&uv&Xb$&1+&|u|2 u&Xb$&1)

�C0 &u0 &H s+C $+(&u&Xb &v&Zb &u&3
Xb), (4.1)

&9[u, v]&Z b�C0 &v0&H s&1�2+C &�$ ; �x |u|2&Xb&1

�C0 &v0&H s&1�2+C $+(&�x |u|2&Z b$&1)

�C0 &v0&H s&1�2+C $+(&u&2
X b). (4.2)
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It follows from (4.1) and (4.2) that

&5[u, v]&Xb�
M
2

+C1 $+(M3+MN),

&9[u, v]&Zb�
N
2

+C2 $+M2.

If we set

$+�
1

2 max(C1 , C2)(M2+N)

then we have that &5 [u, v]&Xb � M and &9[u, v]&Yb � N hence
(5[u, v], 9[u, v]) # XMN .

Similarly by (3.24) in Lemma 3.7, we have that

&5[u, v]&5[u~ , v~ ]&X b�C $+(&v&Zb &u&u~ &Xb+&u~ &Xb &v&v~ &Z b

+(&u&2
Xb+&u~ &2

Xb) &u&u~ &Xb)

�C $+(N &u&u~ &Xb+M &v&v~ &Z b)+M2 &u&u~ &Xb)

�C3 $+((M2+N) &u&u~ &X b+M &v&v~ &Zb)

� 1
4 (&u&u~ &Xb+&v&v~ &Z b)

and

&9[u, v]&9[u~ , v~ ]&Z b�C $+(&u&Xb+&u~ &X b) &u&u~ &Xb

�C4 $+M &u&u~ &Xb

� 1
4 (&u&u~ &X b+&v&v~ &Z b) (4.3)

if $+�(4 max(C3 , C4)(M2+N))&1.
Therefore the map 5_9 : (u, v) � (5[u, v], 9[u, v]) is a contraction

mapping from XMN into itself and we obtain a unique fixed point which
solves the equation for T<$.

Next we show the uniqueness of the solution in the above class. For
simplicity, we show the uniqueness of the solution to (1.2) with #=0. The
general case follows similar argument. We introduce the following auxiliary
norms. For T>0, we let
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&u&XT
=inf

w
[&w&X s, b : w # X s, b such that

u(t)=w(t) t # [0, T] in H s],

&v&YT
=inf

w
[&w&Y s&(1�2), b : w # Y s&1�2, b such that

u(t)=w(t) t # [0, T] in H s&(1�2)].

Obviously, if &u1&u2&XT=0, we have u1(t)=u2(t) in H s for t # [0, T].
Let (u1 , v1) be the solution obtained above and (u2 , v2) be a solution of

the integral equation with the same initial data (u0 , v0). We assume that for
some M, N>0,

&u1&Xs, b , &�u2&X s, b�M,

&v1 &Y s&(1�2), b , &�v2 &Y s&(1�2), b�N.

Without loss of generality, we may assume that 1<M+N and T<1.
For some T*<T which will be fixed later, we have

�u2(t)=�(t) U(t) u0&i�(t) |
t

0
U(t&t$) �T*(t$) �2(t$) u2(t$) v2(t$) dt$,

(4.4)

�v2(t)=�(t) W(t) v0+�(t) |
t

0
W(t&t$) �T*(t$) ; �x |�(t$) u2(t$)|2 dt$

for t # [0, T*].
Consider the difference u1&�u2 and v1&�v2 . For any =>0, there exists

(|, ,) # X s, b_Y s&(1�2), b such that for t # [0, T*],

|(t)=u1(t)&�(t) u2(t),
(4.5)

,(t)=v1(t)&�(t) v2(t)

and

&|&X s, b�&u1&�u2 &XT *
+=,

(4.6)
&,&Ys&(1�2), b�&v1&�v2 &YT *

+=.

Set (|~ , ,� ) satisfying

{
|~ (t)=&i�(t) |

t

0
U(t&t$) �T*[|(t$) v1(t$)+�(t$) u2(t$) ,(t$)] dt$,

,� (t)=�(t) |
t

0
W(t&t$) �T*(t$) �x[u� 1(t$) |(t$)+�(t$) u2(t$) |� (t$)] dt$.
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By (4.5) we have |~ (t)=|(t)=u1&�(t) u2(t) and ,� (t)=,(t)=v1&�(t) v2(t)
for t # [0, T*].

Then according to Lemma 2.1, Proposition 2.3, Lemma 3.1, Corollary 3.3
and (3.7) in Lemma 3.4, we have for b<b$<3�4 and +=(b$&b)�4b$,

&u1&�u2&XT*
�&|~ &Xs, b�C &�T*[|v1+�u2,]&X s, b$&1

�C3T*+(&|&X s, b &v1 &Ys&(1�2), b+&,&Y s&(1�2), b &�u2&X s, b)

�C3T*+(M+N)(&|&Xs, b+&,&Ys&(1�2), b),

If T*+�1�4C3(M+N), we have

&u1&�u2&XT *
� 1

4 (&|&Xs, b+&,&Y s&(1�2), b).

Similarly, we have

&v1&�v2 &YT *
� 1

4&|&Xs, b

if T*+�1�8C4 M, where C4 appears in (4.3).
Combining the above, it follows that

&u1&�u2&XT *
+&v1&�v2&YT *

� 1
2 (&|&X s, b+&,&Ys&(1�2), b).

By (4.6), we conclude

&u1&�u2&XT *
+&v1&�v2&YT *

�2=.

This proves u1=u2 and v1=v2 on [0, T*]. Repeating this procedure, we
obtain the uniqueness result for any existence interval.

The additional regularity

u # C([0, T ); H s), v # C([0, T ); H s&(1�2))

both follow from (2.5) of Corollary 2.3 and the H s, H s&(1�2) boundedness
of the unitary operators U(t) and V(t) and we complete the proof of local
well-posedness. K

The proof of Theorem 1.2 is similar to the proof of Theorem 1.1. We
only point out that the bound is uniform for 0<&<1&=.

Proof of Theorem 1.2. We use the abbreviation Xb=X s, b and Yb=
Y s&(1�2), b

& . For (u0 , v0) # H s(R)_H s&(1�2)(R) and b # (1�2, 3�4), let

XMN=[(u, v): u # X b, v # Yb, such that &u&Xb�M, &v&Y b�N],
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where M=2C0 &u0&H s and N=2C0 &v0&Hs&1�2 with the norm

_(u, v)_XMN
=&u&Xb+&v&Z b .

Without loss of generality, we may assume that 1<M and 1<N.
Similarly by Lemma 2.1, Proposition 2.3, Lemma 3.1, Corollary 3.3 and

Lemma 3.4, we have for b<b$<3�4, +=(b$&b)�4b$, and (u, v) # XMN that
the maps

5[u, v]=�(t) U(t) u0&i:�(t) |
t

0
U(t&t$) �$(t$) uv(t$) dt$,

9[u, v]=�(t) V&(t) v0+;�(t) |
t

0
V&(t&t$) �$(t$) �x |u|2(t$) dt$.

satisfy

&5[u, v]&X b�
M
2

+C1(1&|&| )&1 $+MN,

&9[u, v]&Z b�
N
2

+C2 $+M 2.

If we set

$+�
1

2 max(C1(1&|&| )&1, C2)(M 2+N)

then we have that &5[u, v]&X b�M and &9[u, v]&Yb�N hence (5[u, v],
9[u, v]) # XMN and showing that it is a contraction follows as before. K

5. THE LIMITING PROBLEM��PROOF OF THEOREM 1.3

In this section we prove Theorem 1.3. To show our theorem, we first
consider the regular solutions (u& , v&) for (1.3) and the regular solutions
(u, v) for (1.4) with the same initial data (u0 , v0) # H5�2_H2. By an approx-
imation procedure the conclusion follows from the well-posedness results
already established.

Proof of Theorem 1.3. Let (u& , v&) be a unique solution of (1.3) in
C([0, �); H5�2)_C([0, �); H2) and let (u, v) be a solution of (1.4) in the
same space both with initial data (u0 , v0) # H5�2_H 2. Without loss of
generality, we may assume that 0<&<1�2. Note that Y s&(1�2), b

0 =H b
t (H

s
x).
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We fix the time interval [0, T] so that each of the solutions satisfy the
following

&u&&X 0, b , &u&X 0, b�M

&v&H t
b (H x

&1�2)�N

&D1�2
x �xv&&L t

2 (L2
x)�N� & .

We note that (u& , v&) has enough regularity to satisfy (1.3) in the strong
sense, so we have the solution to the integral equation associated with (1.3)

{
u&(t)=U(t) u0&i: |

t

0
U(t&t$) v&(t$) u&(t$) dt$,

v&(t)=v0+; |
t

0
�x |u&(t$)|2 dt$&& |

t

0
Dx �xv&(t$) dt$,

and we have the same for a solution (u, v) of (1.4),

{
u(t)=U(t) u0&i: |

t

0
U(t&t$) v(t$) u(t$) dt$,

v(t)=v0+; |
t

0
�x |u(t$)|2 dt$.

Then the difference satisfies

{
u&(t)&u(t)=&i:� |

t

0
U(t&t$)(v&(t$) u&(t$)&v(t$) u(t$)) dt$,

v&(t)&v(t)=;� |
t

0
(�x |u&(t$)|2&�x |u(t$)| 2) dt$&&� |

t

0
�x Dxv&(t$) dt$.

Then by taking the norms & }&X 0, b and & }&Y 0
&1�2, b=& }&H t

b (Hx
&1�2) , we have by

(2.4) in Proposition 2.3 and (3.6) in Lemma 3.4 that

&u&&u&X 0, b�|:| "� |
t

0
U(t&t$)(v&(t$) u&(t$)&v(t$) u(t$))) dt$"X 0, b

,

�C(&v&u&&vu&&X 0, b&1+&vu&&vu&X 0, b&1)

�C $+(&v&&v&H t
b (H x

&1�2) &u&&X 0, b+&u&&u&X 0, b &v&H t
b (H x

&1�2))

(5.1)

384 BEKIRANOV, OGAWA, AND PONCE



Using (2.6) in Corollary 2.3 and (3.22) in Lemma 3.6 yields

&v&&v&H t
b (H x

&1�2)

�|;| "� |
t

0
(�x |u&(t$)|2&�x |u&(t$)|2) dt$"H t

b (H x
&1�2)

+|&| "� |
t

0
Dx �xv& dt$"H t

b (H x
&1�2)

�C &�x |u& |2&�xu&u� &Ht
b&1 (H x

&1�2)

+C &�xu&u� &�x |u|2&Ht
b&1(H x

&1�2)+C |&| &D1�2
x �xv&&Ht

b&1 (L 2
x)

�C &u&&X 0, b &u&&u&X0, b+C &u&X 0, b &u&&u&X 0, b

+C |&| &D1�2
x �xv&&H t

b&1(L 2
x) . (5.2)

Next, by (5.2) and (5.1) we obtain

&u&&u&X0, b�C $+(M2+N) &u&&u&X 0, b+C $+M |&| &D1�2
x �xv&&L t

2 (L 2
x) .

If

$+�
1

2C(M2+N)

we have

&u&&u&X0, b�
|&|
2

&D1�2
x �xv&&L t

2 (L2
x) . (5.3)

Combining (5.2) and (5.3) we have

&u&&u&X0, b � 0
(5.4)

&v&&v&H t
b (Hx

&1�2) � 0

as & � 0.
Now we prove the general case. For any initial data (u0 , v0) # L2_H&1�2

we choose a sequence (un
0 , vn

0) # H 5�2_H2 such that

un
0 � u0 in L2

vn
0 � v0 in H &1�2.
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Then by combining Theorem 1.1 and 1.2 with the above conclusion (5.4),
we have that

&u&&u&X 0, b�&u&&u~ &&X 0, b+&u~ &&u~ &X 0, b+&u~ &u&X0, b

�C(T )(&u~ 0&u0&L 2
x
+&v~ 0&v0&Hx

&1�2)

+|&| &D1�2
x �xv&&L t

2 (L 2
x) ,

&v&&v&C([0, T); H &1�2)�&v&&v~ &&C([0, T); H &1�2)+&v~ &&v~ &C([0, T); H &1�2)

+&v~ &v&C([0, T ); H &1�2)

�C(T )(&u~ 0&u0&L 2
x
+&v~ 0&v0&Hx

&1�2)

+|&| (CM+1) &D1�2
x �xv&&L t

2 (L2
x) .

By letting & � 0 and n � � we have that un
0 � u0 , vn

0 � v0 , and

un
& � u in X0, b & C([0, T ); L2)

vn
& � v in C([0, T ); H&1�2).

Repeating this procedure, we have the conclusion for the desired time
interval. K
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