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Abstract The present study is designed to determine the protective effect of turmeric (TMR)

against neural oxidative damage caused by deltamethrin (DLM). Here we have employed mainly

Fourier transform-infrared (FT-IR) spectroscopy to understand this event, in addition to biochem-

ical analysis. For this purpose, rats were randomly divided into four groups (n= 6); control, TMR

(1% turmeric-diet), DLM-treated (41 ppm) and TMR co-administrated with DLM for 48 days. The

FT-IR spectra of brain tissues reflect the significant changes in the area values of macromolecules

including proteins, lipids and nucleic acids in DLM-treated rats compared to control. In addition,

DLM caused increase in the malondialdehyde (MDA) level accompanied by decrease in antioxidant

enzymes activity such as superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase

(GPx) and glutathione reductase (GR). However, the TMR co-administered with DLM group,

exhibits appreciable restoration in area values and peaks of IR spectra and also the restoration

of the mentioned antioxidant enzyme activities. The group merely fed with TMR showed insignif-

icant changes in all investigated parameters. Therefore, the results reveal that, 1% of turmeric has a

protective effect against deltamethrin caused neural oxidative damage.
� 2016 The Egyptian German Society for Zoology. Production and hosting by Elsevier B.V. This is an

open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction

For the sake of more food production and domestic pest con-
trol number of pesticides and insecticides have been used in the

agricultural and non agricultural practices. Deltamethrin
(DLM) (Fig. 1) is fast acting neurotoxic pyrethroid obtained

from natural toxin pyrethrin (Aksakal et al., 2010; Guardiola
et al., 2014; Mani et al., 2014). It is chemically designed to
be more toxic to insects nervous system for the slow break

down and formulated with synergists increasing potency and
compromising the body’s ability of detoxification (Thatheyus
and Selvam, 2013; Haverinen and Vornanen, 2014).

Lozowickaa et al. (2014) have reported that, the residues of
DLM were detected on cereals at the range of 0.02–
0.88 mg kg�1. Owing to the extensive use of pyrethroids in

agriculture and domestic activities, there are more chances of
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Fig. 1 Molecular structure of deltamethrin.
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exposure to these chemicals, leading to neurodegenerative dis-
eases (Baltazar et al., 2014). Such exposures have been
observed more frequently in developing countries (Rother,

2014).
Although, DLM exhibits, relatively low mammalian and

avian toxicity (Haverinen and Vornanen, 2014). Several stud-

ies were demonstrated that DLM is one of the most neurotoxic
pyrethroids to insect and mammals too (Shafer et al., 2005;
Kim et al., 2006; Gullick et al., 2014; Olsvik et al., 2014). It

makes conformal changes in the structure of a- and
b-subunits of the sodium channels (Ding et al., 2004) which
lead to delayed closure of ion channels, resulting in a slow
influx of sodium, hence slow depolarization (Ding et al.,

2004; Chinn and Narahashi, 1985). Consequently, Shafer
et al. (2005) and Eriksson and Fredriksson (1991) have
reported that DLM is potential neurotoxicant, particularly in

developmental stages of infants and children. Poisoning of pyr-
ethroid induces some neurotoxic symptoms which include
hyperexcitation, convulsions, seizures, and paralysis in rats

(Symington et al., 2007). DLM also causes cerebrovascular
and neurodegenerative disorders in humans (Godin, 2007).
Neurodegenerative disease caused by DLM was shown to be

exerted through oxidative stress (Hossain et al., 2005). It
enhances the production of reactive oxygen species (ROS),
including superoxide anion (O2

��), hydrogen peroxide (H2O2
� )

and hydroxyl radical (�OH) thereby causing DNA damage in

rats (Roszczenko et al., 2013; Abdul-Hamid and Salah, 2013).
Indeed body has its own endogenous antioxidant

mechanism to scavenge the produced ROS in the metabolism.

However, the brain is an important, vital and delicate organ
having more demand for oxygen and contains relatively low
antioxidant enzymes. Studies demonstrated that, DLM

induces oxidative stress in functionally different tissues. It is
evidenced by increased MDA level, accompanied by the
simultaneous decrease in the levels of antioxidant enzymes,

including SOD, CAT, GPx and GR (Mazmanc et al., 2011;
Shivanoor and David, 2014). The SOD converts O2

�� into
H2O2

� , further, H2O2
� metabolism by peroxidases that include

CAT and GPx yields H2O (Wilcox, 2002). In addition to this,

GPx plays a major role in the neutralization of H2O2� and OH
to non-toxic products (Salvi et al., 2007). Thus, decreased
activity of these enzymes may lead to an enhanced generation

of ROS in the cells. Hence, measuring these enzyme activities
and by-products of lipid and protein oxidation can provide
evidence for oxidative damage (Ishrat et al., 2009). There are

several investigations demonstrating that, the increased ROS
causes oxidative damage to the macromolecules including pro-
teins, lipids, carbohydrates and nucleic acids (Shivanoor and
David, 2014; Bishnoi et al., 2008), consequently, oxidative
stress in neural tissue leads to neurodegenerative diseases
(Carloni et al., 2012).

In many situations exogenous antioxidant/s proved to

reduce the damage caused by the ROS either by scavenging
them or by enhancing the activity of endogenous antioxidant
enzymes. Therefore, extensive research was carried out to find

efficient natural herbal products to protect cells from damages
caused by ROS. On the other hand use of phytochemicals as a
therapy in diseases related to oxidative stress has gained

immense interest for their ability to scavenge free radicals
and their capability to protect body tissues against oxidative
stress (Nabavi et al., 2012).

The herbal powder of Curcuma longa L. is well known as

turmeric (TMR), has been traditionally used all over Asia to
prepare curries and also as a preservative (Gilda et al., 2010;
Prasad and Muralidhara, 2014; Mangolim et al., 2014).

TMR has been used extensively as an effective therapeutic
agent in an Ayurvedic and Chinese medicinal system (Sethi
et al., 2009; Mendonça et al., 2013). Therefore, attention was

paid on whole turmeric (C. longa L.), however curcumin is
an active ingredient of turmeric, a naturally occurring phenolic
phytochemical compound (Haiyee et al., 2009; Fu et al., 2014,

2015). It possesses anti-carcinogenic property in animal model
(Yanyan and Zhang, 2014), anti-HIV (Fu et al., 2014) antiox-
idant (Yang et al., 2014), anti-inflammatory (Aggarwal et al.,
2013; Antonyan et al., 2014) and anti-Alzheimer (Naksuriya

et al., 2010 a). Curcumin has been reported to possess strong
antioxidant properties that can inhibit the oxidative stress fur-
ther the brain damage (Ataie et al., 2010; Samini et al., 2013).

Recently, Yang et al. (2014) and Naksuriya et al. 2010 have
reported that curcumin is found to be neuroprotective. There
are few studies demonstrating that curcumin can be made

effective and bioavailable by the turmeric-diet and also exhibits
prevention to oxidative damage (El-Ashmawy et al., 2006;
Martin et al., 2012). Furthermore, Thapliyal et al. (2002,

2003) and El-Shahat et al. (2012) found that turmeric-diet acts
as an antioxidant by improving antioxidant enzyme activity in
rat and mice.

In the present study, FT-IR spectroscopic technique was

employed in addition to biochemical analysis; to evaluate the
protective effect of TMR against the DLM caused oxidative
damage in the brain. FT-IR spectroscopy is one of the vibra-

tional spectroscopic techniques, which has been widely used
as a quantitative and qualitative tool (Xiaonan et al., 2011;
Ozek et al., 2014; Shivanoor and David, 2015) to detect and

quantify the macromolecules in any biological samples
(Xiaonan et al., 2011; Krishnakumar et al., 2012). Therefore,
the present study uses this molecular fingerprinting approach
in addition to biochemical analysis to investigate the protective

effects of turmeric on DLM induced oxidative damage in rat
brain tissues.

Materials and methods

Chemicals

Deltamethrin (Fig. 1)-DECIS 2.5 EC is an insecticide pur-
chased from Bayer Pvt. Ltd, India. All other chemicals were

of analytical grade, purchased from commercial vendors’ in
India.
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Turmeric-diet

Turmeric power was obtained from Nani Agro Foods Pvt.
Ltd. Tamil Nadu, India and prepared turmeric-diet. Proximate
compositions of standard laboratory diet are presented in

Table 1. However, 1% turmeric-diet was considered to be a
therapeutic dose (El-Shahat et al., 2012; Reddy and Lokesh,
1994), it was prepared by thoroughly mixing 1 g of turmeric
with 99 g of standard laboratory diet. This diet was prepared

every week in the laboratory and stored at room temperature.

Experimental animals

Experiments were performed on Wister albino rats of approx-
imately 150 ± 10 g body weight (BW). The animals were kept
in plastic cages, the temperature (23 ± 2 �C), 12-h light/dark

cycle with 60 ± 5% relative humidity were maintained in the
animal house, Department of Zoology, Karnatak University,
Dharwad. All animals were provided with standard laboratory

diet (VLR, Mumbai) and ad libitum water. Animals were accli-
matized for two weeks before the initiation of experiments and
handled in accordance with the CPCSEA guidelines.

Experimental design

After acclimatization, rats were equally divided into the fol-
lowing four different groups.

Group I: Control; Rats (n= 6) were fed standard labora-
tory diet and received ad-libitum tap water throughout the

experimental period.
Group II: Turmeric (TMR); Rats (n= 6) received ad-
libitum tap water and fed turmeric-diet for 48 + 7 days.

Group III: Deltamethrin (DLM); Rats (n= 6) were fed on
standard laboratory diet with simultaneous DLM exposure
through water (41 ppm) for 48 days.

Group IV: DLM+ TMR; Rats (n = 6) were fed turmeric-
diet for 48 + 7 days and treated with DLM through water
(41 ppm) for 48 days.

Sublethal dose of DLM (41 ppm) was equal to 1/12th of
LD50, 40 mg kg�1 BW (Aydin, 2011) was used in this study.
DLM was given through the water because, it can completely

dissolve and rapidly be absorbed in the gastrointestinal tract
(Kim et al., 2006) and TMR was administrated with food
because it’s widely used in this approach. In the present study,
Table 1 Composition of standard diet for rats.

Contents Standard diet (%)

Moisture 6.00

Crude protein 18.40

Crude fat 4.35

Crude fibre 3.15

Calcium 1.10

Phosphorus 0.50

Total ash 4.50

Carbohydrates 62.00

Per kg of slandered diet provide 3140 kcal metabolizable energy to

the rats. The turmeric-diet contains 1% turmeric herbal powder.
TMR and DLM+ TMR group rats were fed with turmeric-
diet for 7 days before to start of DLM treatment and daily
thereafter throughout the study for 48 days for acclimatization

to turmeric-diet and it gives better protective results (Thapliyal
et al., 2003).

Sample preparation

Sampling and biochemical assays

Followed by the dissection brain was quickly removed, placed
ice-cold normal saline solution and placed on ice and the whole
brain was made into two parts right and left. For estimations

of different oxidative stress related to biochemical parameters
in the brain, 1 g of left half of brain tissue was minced into
small pieces and homogenized in 10 mL of ice-cold phosphate
buffer saline (PBS) (0.05 M, pH 7) to obtain 10% homogenate.

The homogenate was centrifuged at 1500g and the supernatant
was stored at �20 �C till further use. The right half of brain tis-
sues were also immediately frozen in liquid nitrogen. Then

minced and stored at �80 �C, further the tissues were dried
in a lyophilizer (VIRTIS 6 KBEL 85) for 12 h to remove the
water and the samples were used for the FT-IR analysis.

Brain biochemistry

Measurement of lipid peroxidation

Malondialdehyde (MDA), as a marker for lipid peroxidation,
was determined by the double heating method of Draper and
Hadley (1990). The Thiobarbituric acid (TBA) spectrophoto-

metric assay was used. For this purpose, 2.5 mL of 10% (w/v)
trichloroacetic acid (TCA) solution was added to 0.5 mL super-
natant in a centrifuge tube and placed in a boiling water bath for

15 min and cooled, further the mixture was centrifuged at 600 g
for 10 min, and 2 mL of the supernatant was transferred into a
separate test tube containing 1 mL of 6.7 g l�1 TBA solution and

placed again in a boiling water bath for 15 min for the reaction
to complete. The solution was then cooled and the absorbance
was measured at 532 nm. The molar extinction coefficient,
1.56 � 105 cm2 mmol�1 of malondialdehyde was used to calcu-

late the malondialdehyde production and expressed as nmoles
of MDA g�1 tissue.

Reduced glutathione (GSH)

The assay for GSH was determined by Ellman
spectrophotometric method (1959), based on the development
of a yellow colour when 5,5-dithiobis (2-nitrobenzoic acid)

(DTNB) react with sulfhydryl groups. Briefly, 3 mL of 20%
TCA and 1 mM Ethylenediaminetetraacetic acid (EDTA) was
added to 0.5 mL of supernatant to precipitate the proteins. The

mixture was kept at room temperature for 15 min, centrifuged
at 2500g for 15 min at room temperature. The supernatant was
used for the assay, the assay mixture contained 0.5 mL super-

natant, 2.5 mL Ellman’s reagent and was kept at room tempera-
ture for 20 min. The absorbance was read at 412 nm. The tissue
glutathione level was calculated from the standard curve of
known GSH concentration and expressed as mg g�1 tissue.

Determination of antioxidant enzymes activities

CAT activity was assayed spectrophotometrically by the

decomposition of hydrogen peroxide (H2O2) according to the



Fig. 2 Effect of TMR on DLM-induced alterations of MDA in

rat brain. Values are mean ± SE for six rats in each group.

P < 0.05; **P< 0.01; ***P < 0.001 for DLM alone treated group

and merely feed turmeric-diet (TMR) groups vs. control and
+P < 0.05; ++P < 0.01 for (DLM + TMR) group vs. DLM

alone treated group.

Fig. 3 Effect of TMR on DLM-induced alterations in the level

of GSH in rat brain. Values are mean ± SE for six rats in each

group. *P < 0.05; **P < 0.01; ***P < 0.001 for DLM alone

treated group and merely feed turmeric-diet (TMR) groups vs.

control and +P < 0.05; ++P < 0.01 for (DLM+ TMR) group

vs. DLM alone treated group.
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method of Aebi (1984) and the enzyme activity was expressed
as mmol H2O2 consumed min�1 mg�1 protein. SOD activity
was evaluated following Kakkar et al. (1984) and the activity

was expressed as U mg�1 of protein.
GPX activity was measured according to Hafeman et al.

(1973) and activity was expressed as nmoles of GSH oxidized

min�1 mg�1 protein. GR activity was assayed by the method
of Carlberg and Mannervik (1975) modified by Iqbal et al.
(1998) and the enzyme activity was calculated as nmol

NADPH oxidized min�1 mg�1 of protein.

Protein determination

Protein content in all tissue was determined according to

Lowry et al. (1951) using BSA as a standard.

FT-IR analysis

Lyophilized tissue samples were ground in an agate mortar

and pestle and made into a fine powder. Then powder sample
was thoroughly mixed with completely dried IR grad potas-
sium bromide (KBr) powder in the ratio 1:100 and dried again

under a halogen lamp in order to remove any trace of water.
Then all powered samples were subjected to a high pressure
of 5 tonnes for 5 min to produce a clear transparent disc of

1 mm thickness. Finally, absorbance spectra of tissue samples
pallets were recorded at room temperature (25 ± 1 �C) in the
region �4000–500 cm�1 on a Nicolet-6700 FT-IR spectrome-
ter equipped with KBr beam splitter and an air cold deuterated

triglycine sulphate (DTGS) detector. Each sample was scanned
with three different pellets under identical conditions. These
replicates were averaged and these averaged spectra for each

sample were then used for further analysis. The spectra were
analysed using Origin 8 software.

FT-IR second derivative analysis

The rat brain FT-IR spectra were composed of numbers of
complex and overlapped peaks and to resolve these spectra
the second derivative also used (Susi and Byler, 1986). The

lipid band region (�3050–2800 cm�1), amide-I band region
(�1700–1600 cm�1) was considered for the analysis of second
derivative of the lipid and protein. The maxima in the FT-IR

absorption spectra were minima in the second derivative.
Statistics

The data were analysed by using SPSS 16.0 for Windows. The

significance of differences were calculated using ANOVA, fol-
lowed by Tukey’s or Students t-test for multiple comparisons.
P < 0.05 was considered statistically significant.
Results

Effect of deltamethrin on brain MAD and GSH content

The changes in the tissue MDA level in different experimental

groups represent (Fig. 2) there is a significant (P < 0.001)
increase (42.05%) in the DLM treated group compared to con-
trol. There is a remarkable decrease in the MDA level which

was observed when TMR is co-administrated with DLM
(DLM + TMR) compared to the DLM treated group.
The GSH level decreased by 38.12% (P < 0.001) in the

DLM treated group compared to control (Fig. 3), while
TMR co-administration with DLM, shows significant
(P< 0.05) increase in the level of GSH when compared to
DLM treated ones. In the present study the group merely

fed on turmeric-diet (TMR) shows insignificant (P > 0.05)
changes in MDA and GSH levels compared to control.

Antioxidant enzymes activities

The antioxidant enzyme activity has been represented in
Table 2. SOD and CAT activity in brain tissues of DLM trea-

ted group were shown to be decreased significantly
(P< 0.001) by 40.74% and 35.86% respectively, compared
to control. Co-administration of TMR exhibits significant

(P< 0.05) restoration in the activity of these two enzymes
compared to DLM treated group. GPx activity was also inhib-
ited significantly (P < 0.001) by 40.43% in the brain tissue
after DLM treatment compared to control, while TMR co-

administration with DLM (DLM + TMR) shows restoration



Table 2 Effect of turmeric (TMR) on deltamethrin (DLM) induced changes in the activity of brain antioxidant enzymes (SOD, CAT,

GPx and GR).

Parameters Experimental groups

Control TRM DLM LTC+ TRM

Catalasea 14.85 ± 1.23 15.16 ± 2.31 8.80 ± 1.36*** 12.67 ± 2.43+

Superoxide dismutaseb 11.04 ± 0.83 11.42 ± 1.02 7.08 ± 0.54** 10.15 ± 0.46+

Glutathione peroxidasec 32.58 ± 1.64 31.36 ± 1.2 20.48 ± 0.68*** 25.71 ± 0.72++

Glutathione reductased 46.08 ± 1.17 47.08 ± 2.41 35.60 ± 1.16*** 40.04 ± 1.06+

Values are means ± SE for six rats in each group. *P< 0.05; **P < 0.01; ***P< 0.001 for DLM and merely turmeric-diet feed (TMR) groups

vs. control group and +P< 0.05; ++P < 0.01: (DLM+ TMR) group vs. DLM group.
a Catalase = lmmoles H2O2 degraded min�1 mg�1 protein.
b Superoxide dismutase = units mg�1 protein.
c Glutathione peroxidase = units mg�1 protein.
d Glutathione reductase = nmoles NADPH oxidized min�1 mg�1 protein.

Fig. 4 The representative Fourier transform-infrared (FT-IR) spectra of rat brain tissues in the control., turmeric-diet (TMR).,

deltamethrin (DLM) treated and TMR co-administrated with DLM (DLM + TMR) groups in the �4000–500 cm�1 region.
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in the GPx activity. The group treated with DLM, exhibits sig-
nificant (P < 0.001) decrease in GR activity (22.74%) com-

pared to control. The DLM + TMR group shows
appreciable restoration in the GR activity, compared to
DLM treated group, while the group merely fed on turmeric-
diet (TMR) shows insignificant (P > 0.05) changes in all the

antioxidant enzymes activity.

FT-IR analysis

The FT-IR absorption spectra between �4000 cm�1 and
�500 cm�1 (Fig. 4) and the peak assignments (Table 3) shows,
the changes in various macromolecules including lipids, pro-

teins, polysaccharides and nucleic acids in control and treated
groups. The detailed spectral analysis was performed in three
distinct frequency ranges, namely �3600–3050 cm�1 (Figs. 4
and 5), �3050–2800 cm�1 (Figs. 4 and 6) and �1800–

800 cm�1 (Figs. 4 and 6) to know more details of the above
said macromolecules. In addition to this, secondary derivative
of the amide-I region (�1700–1600 cm�1) and lipid region

(�3050–2800 cm�1) was analysed for protein and lipid sec-
ondary structure in the brain tissue (Fig. 6).
Fig. 5A mainly consists of amide-A vibrations of proteins
in brain tissues range between �3600 and 3050 cm�1. The

band appearing at �3301 cm�1 in control was shifted to
�3297 cm�1 in the DLM treated group and �3298 cm�1 in
TMR co-administrated with DLM (DLM + TMR) group.
Table 6 shows that there is a significant decrease (29.18%) in

the �3301 cm�1 band area in the DLM treated group com-
pared to control. It reveals that the protein content in the brain
tissues of DLM treated group is lesser than that of the control.

While TMR co-administration with DLM (DLM + TMR)
group shows significant (P < 0.05) increase in the correspond-
ing area by 18.81% compared to DLM treated group, the

group fed merely on turmeric-diet shows insignificant
(P > 0.05) changes in the area values of this band compared
to the control. The shoulder peak of amide-A was assigned
to amide-B (Cakmak et al., 2006). The band appearing at

�3085 cm�1 in control was shifted to �3073 cm�1 in the
DLM treated group and the band area was significantly
(P < 0.01) decreased by 28.54% compared to control, while

TMR co-administrated with DLM reverse vibrational shifting
in amide-B towards the control at �3080 cm�1 and band area
by 18.60% compared to DLM group. This result shows tur-



Table 3 General band assignments of the Fourier transform-infrared (FT-IR) of control, turmeric (TRM), deltamethrin (DLM) and

TMR co-administered with DLM treated brain tissues based on the literature (Nabavi et al., 2012; Rother, 2014; Salvi et al., 2007;

Samini et al., 2013; Sebnem et al., 2007).

Wave number in cm�1 Vibrational peak assignments

Peak No Control TMR DLM DLM+ TRM

1 3301 3299 3297 3298 Amide-A: mainly N–H stretching of proteins with negligible contribution

from O–H stretching of intermolecular hydrogen bonding

2 3085 3083 3073 3080 Amide-B: N–H stretching of proteins

3 3014 3015 3012 3014 Olefinic ‚C–H stretching: unsaturated lipids

4 2962 2961 2956 2960 CH3 asymmetric stretching: mainly lipids

5 2927 2928 2923 2925 CH2 asymmetric stretching: mainly lipids

6 2876 2876 2870 2874 CH3 symmetric stretching: proteins

7 2856 2855 2852 2853 CH2 symmetric stretching: lipids

8 1746 1743 1737 1739 Ester C‚O stretching: lipids

9 1654 1655 1652 1653 Amide-I (protein C‚O stretching)

10 1544 1543 1542 1543 Amide-II (protein N–H bend, C–N stretch)

11 1465 1465 1467 1467 CH2 bending; lipids & proteins

12 1404 1406 1396 1401 COO– symmetric stretching: fatty acids

13 1307 1308 1305 1307 CH3 CH2 stretching: collagen

14 1242 1241 1236 1239 PO2– asymmetric stretching: nucleic acids & phospholipids

15 1172 1170 1168 1170 CO–O–C stretching: glycogen

16 1075 1074 1072 1073 PO2– asymmetric stretching: nucleic acids
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meric administration that brought back the protein content in
the brain tissue is correlated with protein estimated by Lowry

et al. (1951) method for both (DLM + TMR) and control
groups. The band at �1544 cm�1 assigned to the amide-II pro-
tein in the brain tissue (Table 3). DLM treated caused signifi-

cant (P < 0.001) decrease in the area of this band compared to
control. TMR co-administration with DLM (DLM + TMR)
brings back to the band area value towards the control values.

In addition to this the results of calculated ratio of amide-II to
amide-A protein showed significant (P < 0.001) increase in the
DLM treated group compared to control (Table 6). TMR co-
administrated with DLM (DLM + TMR) shows the restora-

tion in the ratio towards the control, while the group fed
merely on turmeric-diet showed insignificant (P > 0.05)
changes in the both the amide bands, compared to control.

In order to investigate the changes in lipid content of rat
brain tissues, the IR spectral region from �3050 to
�2800 cm�1 was considered. In this region peaks arise from

absorptions of olefinic (‚CH), CH3 and CH2 stretching
groups (Fig. 5B). The band at �3014 cm�1 was mainly due
to unsaturation in the acyl chain of phospholipids in the brain
tissue (Akkas et al., 2007). DLM alone treated group showed

significant (P < 0.001) decrease by 53.33% in the area of band
at �3014 cm�1 DLM alone treated group compared to con-
trol, whereas in TMR co-administrated with DLM (DLM

+ TMR) group shows restoration in the unsaturation in the
acyl chain of phospholipids (Table 6). One more important
band observed at �2856 cm�1 is assigned to the saturated

lipids in the brain tissue (Akkas et al., 2007). The band area
of this was decreased significantly (P < 0.001) in the DLM
alone treatment group compared to control. However, the

ratio of saturated to unsaturated lipids was significantly
increased in the DLM alone treated group compared to con-
trol (Table 6). TMR co-administration with DLM in DLM
+ TMR group showed appreciable restoration in the area

and ratio value of unsaturated and saturated lipids in brain tis-
sue (Tables 4 and 5). The bands at �2962 cm�1 and
�2924 cm�1 were assigned to the methyl and methylene groups
of lipids respectively in the brain tissue. The area values were

significantly (P < 0.001) decreased from 0.16 ± 0.09 to 0.09
± 0.01 in methyl and from 2.98 ± 0.11 to 1.47 ± 0.55 in the
methylene population in the brain tissue of DLM alone treated

group compared to control. The group feed with turmeric-diet
with simultaneous DLM exposure in DLM+ TMR group
showed restoration in the values of these bands towards the

control, while the group feed merely on turmeric-diet showed
insignificant (P > 0.05) changes compared to control (Table 6).

Fig. 5C shows that absorptions are primarily due to the
continuation of polysaccharides, nucleic acid, phospholipids

and carbohydrates in the range of �1800-800 cm�1. The band
assignments are given in Table 3. The main band at
�1240 cm�1 was due to the asymmetric phosphate stretching

vibration of phospholipids and the band observed at
�1160 cm�1 was due to C–O asymmetric stretching of glyco-
gen. Significant (P < 0.001) decrease in the area from 2.06

± 0.05 to 1.39 ± 0.005 and 0.02 ± 0.00 to 0.01 ± 0.00 in
phospholipids and glycogen respectively of these bands was
observed in the DLM alone treatment group compared to con-
trol, whereas TMR co-administrated with DLM (DLM

+ TMR) group showed appreciable restoration the area val-
ues of these bands compared to DLM alone treated group,
while the group fed merely on turmeric-diet showed insignifi-

cant (P> 0.05) changes compared to control (Table 6).
Fig. 6A shows the changes in the secondary structure of

protein and the changes in the peak position, peak intensity

and peak assessments are given in the Table 6. The intensity
of all the bands were affected in the DLM alone treated group
compared to control. The intensity of the antiparallel b-sheet
and random coil structure was significantly increased in the
DLM treated group compared to control. DLM alone treated
group showed a significant decrease in the intensity of the a-
helix, b-sheet and aggregated b-sheet significant increase in

the antiparallel b-sheet and random coils compared to control.
While the group co-administrated with TMR (DLM + TMR)



Fig. 6 Second derivative Fourier transform-infrared (FT-IR)

spectra in the �1700–1600 cm�1 (A) and �3050–2800 cm�1 (B)

region of the control., merely fed on turmeric-diet (TMR).,

deltamethrin (DLM) treated and TMR co-administrated with

DLM (DLM+ TMR) groups rat brain tissues.

Fig. 5 The FT-IR spectra of rat brain tissues in the control.,

merely fed on turmeric-diet (TMR)., deltamethrin (DLM) treated

and TMR co-administrated with DLM (DLM + TMR) groups in

the �3600–3050 cm�1 (A), �3050–2800 cm�1 (B) and �1800–

800 cm�1 regions.
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showed the restoration in the intensity of all peaks compared

to DLM alone treated group.
Fig. 6B shows changes in the lipid containment of control

and treated rat brain tissue in the region from �3050 to
2800 cm�1. The two bands are mainly due to CH2 asymmetric

and symmetric stretching in the brain tissue (Table 6). The
intensities of the CH2 asymmetric and symmetric stretching
bands decreased significantly in the DLM-treated brain tissues,

which correspond to decrease in the lipid content, while in the
group co-administrated with TMR showed significant
restoration in the brain contain compare to DLM alone
treated group. The group merely feed with turmeric-diet

(DLM + TMR) showed insignificant changes in the intensity
compared to control.

Discussion

Usage of insecticides and pesticides has been increased, as
there is a great demand for food production for increased pop-

ulation. Therefore, it is undeniable for the Government to give
permission for the production of more number of pesticide or
insecticides, however, preferably those are less mammalian and
high insect toxic. Pyrethroids are the class of insecticides that

cause low mammalian and high insect toxicity (Haverinen
and Vornanen, 2014). Now a days increased use of pyrethroids
cause a number of neurodegenerative diseases in humans

(Baltazar et al., 2014). These diseases are mainly because of
oxidative damage and imbalance in lipid metabolism in the
neural tissue (Roszczenko et al., 2013). Fendri et al. (2009)

demonstrated that neurons in the nervous system are more sus-
ceptible to free radical toxicity as they have a high amount of
catecholamine oxidative metabolic activity and contain low

levels of antioxidant enzymes. Studies reported that pyre-
throids cause oxidative stress in neural tissue (Kim et al.,
2006; Gullick et al., 2014). Together, it is predictable that
oxidative damage is a key to the aetiology of neurodegenera-



Table 4 Changes in the band areas IR bands for the control, TMR, DLM alone treated and TMR co-administrated with DLM brain

tissues of rats (n= 6).

Wave number (cm�1) Experimental groups

Control TMR DLM DLM+ TMR

3301 255.81 ± 3.11 261.88 ± 2.13 181.36 ± 8.31*** 223.39 ± 7.10+++

3085 0.49 ± 0.01 0.52 ± 0.01 0.35 ± 0.02 *** 0.43 ± 0.01++

3014 0.15 ± 0.01 0.14 ± 0.06 0.07 ± 0.005 *** 0.10 ± 0.007+

2962 0.16 ± 0.09 0.15 ± 0.07 0.09 ± 0.01*** 0.13 ± 0.03++

2924 2.98 ± 0.11 3.00 ± 0.53 1.47 ± 0.55 *** 1.80 ± 0.58+

2856 0.81 ± 0.03 0.76 ± 0.04 1.01 ± 0.04 *** 0.85 ± 0.03+

1744 0.87 ± 0.01 0.83 ± 0.03 0.54 ± 0.04 *** 0.66 ± 0.05+

1654 31.74 ± 0.71 36.69 ± 0.65 23.17 ± 0.78 *** 29.97 ± 0.51++

1544 9.50 ± 0.32 10.84 ± 0.46 5.38 ± 0.24 *** 8.02 ± 0.28++

1465 0.30 ± 0.09 0.34 ± 0.06 0.43 ± 0.02 *** 0.34 ± 0.09++

1311 2.53 ± 0.08 2.67 ± 0.012 1.83 ± 0.04 *** 2.18 ± 0.05++

1240 2.06 ± 0.05 2.14 ± 0.01 1.39 ± 0.05*** 1.62 ± 0.03++

1160 0.02 ± 0.00 0.02 ± 0.00 0.01 ± 0.00*** 0.02 ± 0.00+

Values are means ± SE for six rats in each group. *P < 0.05; **P < 0.01; ***P < 0.001 for DLM and merely turmeric-diet fed (TMR) groups

vs. control group and +P < 0.05; ++P< 0.01: (DLM+ TMR) group vs. DLM group.

Table 5 FT-IR absorption band area ratio for selected bands of control, TMR, DLM treated and TMR co-administrated with DLM

treated brain tissues of rat.

Band area ratio Experimental groups

Control TMR DLM DLM+ TMR

I1544/I3301 0.042 ± 0.002 0.043 ± 0.002 0.023 ± 0.001*** 0.032 ± 0.001++

I2962/I2856 0.19 ± 0.009 0.20 ± 0.005 0.09 ± 0.006*** 0.16 ± 0.01++

I1544/I1654 0.29 ± 0.006 0.29 ± 0.008 0.23 ± 0.009*** 0.26 ± 0.10+

Values are means ± SE for six rats in each group. *P < 0.05; **P < 0.01; ***P < 0.001 for DLM and merely turmeric-diet fed (TMR) groups

vs. control group and +P < 0.05; ++P< 0.01: (DLM+ TMR) group vs. DLM group.

Table 6 Band assignments of the secondary derivative and peak intensity of amide-I band (�1700–1600 cm�1) and lipid band

(�3050–2800 cm�1) region of control, turmeric (TRM), deltamethrin (DLM) and TMR co–administered with DLM treated brain

tissues based on the literature (Quitschke et al., 2013; Samini et al., 2013; Sethi et al., 2009; Sebnem et al., 2007; Shafer et al., 2005;

Sharma, 1976).

Wave number in cm�1 Peak intensity (au) Peak assignments

Peak No Control TMR DLM DLM+ TMR Control TMR DLM DLM+ TRM

Protein

1 1693 1693 1693 1693 �0.0010 �0.0015 �0.0023** �0.0022+ Antiparallel b-sheet
2 1673 1673 1673 1673 �0.0009 �0.0009 �0.0005* �0.0007+ Turns

3 1654 1654 1654 1654 �0.0061 �0.0057 �0.0021*** �0.0041++ a-helix
4 1646 1646 1648 1648 �0.0015 �0.0016 �0.0041*** �0.0038+ Random coil

5 1637 1637 1637 1637 �0.0037 �0.0035 �0.0018** �0.0031++ b-sheet
6 1629 1629 1629 1629 �0.0019 �0.0021 �0.0009*** �0.0013++ Aggregated b-sheet

Lipid

1 2921 2921 2921 2921 �0.006 �0.007 �0.003** �0.005+ CH2 asymmetric stretching

2 2850 2850 2850 2850 �0.011 �0.012 �0.006*** �0.009++ CH2 symmetric stretching

Values are means ± SE (±0.0003) for six rats in each group. *P < 0.05; **P < 0.01; ***P < 0.001 for DLM and merely turmeric-diet fed

(TMR) groups vs. control group and +P< 0.05; ++P < 0.01: (DLM+ TMR) group vs. DLM group.
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tive disorders. Thus, it had drawn the attention of a number of
researchers to find out capable antioxidants in order to reduce

oxidative damage. Therefore, in the present study, we have
made an attempt with turmeric for its efficient antioxidant
capacity. Naksuriya et al. (2010) and Lim et al. (2001) have

suggested that curcumin plays an important role in the neuro-
protection and reduced amyloid pathology in Alzheimer trans-
genic mice. However, none of the studies dealt with the

neuroprotection effect of turmeric as a whole, against pyre-
throid induced neural toxicity. This study explores the amelio-
rative effect of turmeric against DLM caused oxidative stress

leads to neurodegenerative diseases in the brain tissue of albino
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rats at the molecular level using FT-IR spectroscopy and bio-
chemical analysis. The FT-IR investigation provides structural
information of biomolecules including proteins, nucleic acids,

carbohydrates and lipids, and it allows for recognition, detec-
tion and quantification of changes in these macromolecular
components (Sivakumar et al., 2014).

In the present study care has been taken while preparing
turmeric-diet and preservation and also the preparation of uni-
form thickness of pellet with same quantity of sample and KBr

(1:100) for FT-IR analysis. The spectra were collected in triplet
and observed that they were identical. Therefore, it is possible
to directly relate the change in intensity and more accurately
the area of the absorption bands to the concentration of the

corresponding biomolecules in the tissue (Akkas et al., 2007;
Kong and Yu, 2007; Cakmak et al., 2006).

Fig. 5A and Table 3 show shifting in the frequency of amide-

A and amide-B band at �3301 cm�1 and �3078 cm�1 respec-
tively, which are mainly due to N–H stretching of proteins with
a negligible contribution from O–H stretching of intermolecu-

lar hydrogen bonding since unbound water was removed from
the system (Cakmak et al., 2006). The shift towards lower val-
ues and significant decreases (P < 0.01) in the area of these

bands were observed in the DLM alone treated rats (Tables 3
and 4). The decrease in the area value of these bands indicates,
that there is decrease in protein content in the brain tissue
(Akkas et al., 2007; Sivakumar et al., 2014), while in the

TMR co-administrated with DLM (DLM + TMR) group
was showed significant (P < 0.05) restoration in these band
areas. The increase in the area of amide-A and amide-B bands

indicates an increase in the protein synthesis in the brain tissue.
This is the supportive sign of the ameliorative effect of turmeric
over the pyrethroids induced oxidative stress or neurodegener-

ative diseases in the brain. These findings agree with the find-
ings of Quitschke et al. (2013), who demonstrated that, the
curcumin exhibits protective effect against Alzheimer disease.

The group merely fed with turmeric-diet (TMR) showed
insignificant (P > 0.05) changes in the area values and the area
ratio of these bands (Tables 3 and 4).

Several other studies demonstrated that the brain is a lipid-

rich tissue having relatively low antioxidative potential, is espe-
cially susceptible to the action of xenobiotic compounds, those
can induce oxidative stress and disturbing lipid metabolism

(Ong et al., 2010). Roszczenko et al. (2013) demonstrated that
nervous tissue contains a higher level of peroxidizable unsatu-
rated lipids and high oxygen utilization and more susceptible

to peroxidative damage than other organs. As seen from the
Fig. 5B and Table 6, the area of the olefinic band decreased
significantly (P < 0.001) in the DLM alone treated group,
indicating decreased 53.33% in the population of unsaturation

in acyl chains of lipid molecules. This band was used as an
index of relative concentration of the unsaturated lipids.
Ozek et al. (2010) have demonstrated that the decrease in the

unsaturation is responsible for the increased lipid peroxidation
caused by ROS. This was observed by the secondary derivative
of the lipid band in the �3050–2800 cm�1 region (Fig. 6B).

TMR co-administration with DLM in (DLM + TMR) group
shows a significant increase in the band area of olefinic unsat-
urated fatty acids. Such increases in the area of olefinic band

reveal that TMR can reduce the free radical damage in the
lipid molecules in the brain tissue of rats. Studies demonstrated
that the turmeric polyphenolic compounds can scavenge the
free radical generated in the functionally different tissues (Fu
et al., 2014; Yang et al., 2014). It implies that damage caused
by ROS in brain tissue may be reduced by turmeric supple-
mented diet offered to DLM+ TMR group rats. The band

observed at �3014 cm�1 gives information about the concen-
tration of unsaturated lipid, olefinic HC–CH stretching band
and observed band at �2856 cm�1 about saturated lipids,

CH2 symmetric. This result indicates that DLM caused a sig-
nificant (P < 0.01) increase in the ratio of saturated lipids to
unsaturated lipids (Table 6). With this ratio it has been con-

firmed that DLM causes degradation of lipid in the brain tis-
sue. The decrease in intensity of band at �1744 cm�1 also
provides the proof of decreased quantity of unsaturated acyl
chain in the DLM treated rats (Sebnem et al., 2007). Several

studies reported that DLM causes lipid peroxidation by gener-
ating ROS that further cause lipid degradation. However, lipid
integrities are playing an important role in regulating many

membrane functions, such as signal transduction, solute trans-
port, and activity of enzymes associated with the membrane.
Lipid peroxidation causes the decrease of CH2 bonds in lipid

chains and the production of lipid hydroperoxides, which react
with other lipids giving rise to an auto-oxidation cycle that
damage deeply cellular membrane (Ozek et al., 2010). The

studies provide evidence that changes in the membrane fluidity
and order of the lipid affect the kinetics and function of differ-
ent ionic channels, including sodium, potassium, and chloride,
and thus alters the membrane excitability (Awayda et al., 2004;

Sirvent et al., 2008). Probably such change in lipid order and
dynamics plays the main role in prolonged opening of ion
channels which, further may cause trailing current in the sig-

nalling, therefore, neurodegenerative diseases in the brain.
The biomedical analysis in the brain tissue was helped to con-
firm the same. All these observations in merely feed turmeric-

diet (TMR) group were same as in the control.
Biochemical estimation revealed that the DLM treatment

induced significant (P < 0.001) increase in the MDA level by

42.05% (Fig. 2). On the other hand DLM alone treatment sig-
nificantly reduces the activity of SOD, CAT, GPx and GR in
the brain tissue (Table 2). These findings coincide with the
findings of Fetoui et al. (2008). TMR co-administration with

DLM showed restoration in the MDA level and in all antiox-
idant enzyme activity. Studies show that curcumin can dis-
tribute throughout the body, including the brain and it can

inhibit or scavenge the ROS generated in the cells and tissue
(Sharma, 1976; Nishikawa et al., 2013; Quitschke et al.,
2013). Curcumin is shown to be neuroprotective, against etha-

nol and aluminium induced brain damage (Sethi et al., 2009;
Quitschke et al., 2013) and most importantly, it reduces amy-
loid pathology in Alzheimer transgenic mice (Lim et al., 2001).

DLM can alter the cellular reduced glutathione level, result-

ing in excessive production of ROS at the mitochondrial level,
leading to damage of cellular components. GSH plays an
important role in the balancing the generated ROS in cells.

On the other hand, decreased level of GSH may lead to the
increased lipid peroxidation in the brain tissue. In the present
study, the GSH content was significantly (P < 0.001)

decreased in the DLM treated group (Fig. 3). Studies demon-
strated that pyrethroids can cause oxidative stress by decreas-
ing the level of GSH in functionally different tissues (Sirvent

et al., 2008; Fendri et al., 2006; Rajakrishnan et al., 1999).
Reduced GSH level leads to accumulating H2O2 and promote
the formation of OH�, the most toxic molecule, it results in
more oxidant load and so oxidative damage (Ishrat et al.,
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2009). However, the brain is rich in polyunsaturated fatty
acids, highly susceptible to the free radicals (Gilda et al.,
2010). Enhanced ROS and decreased activity of antioxidants

result in the conversion of polyunsaturated fatty acids to satu-
rated fatty acids in the brain tissue. Altogether, we conclude
that pyrethroids induce oxidative damage in the neural tissue

results into neurodegenerative diseases in human and animals.
TMR co-administration with DLM (DLM + TMR) group is
significant (P < 0.05) in restoration of the activity of antioxi-

dants (Table 2). The ratio calculation show increased saturated
fatty acids over unsaturated fatty acids in DLM treated group
(Table 6). While in the TMR co-administered group observed
restoration in these biomolecules, which indicates that the tur-

meric is one of the good neuroprotector. The group feed
merely with turmeric-diet (TMR) shows insignificant
(P > 0.05) changes in saturated and unsaturated fatty acid

ratio. Studies demonstrated that turmeric contain phenolic
compounds like curcumin, it acts as anti-epileptic agent by
scavenging ROS (Fendri et al., 2006). The antioxidant activity

of phenolics is mainly due to their redox properties, which
allow them to act as reducing agents, hydrogen donators and
singlet oxygen quenchers (Kähkönen et al., 1999; Kaur and

Kapoor, 2002). Consequently, the present study shows that
turmeric supplemented diet acts as good antagonistic com-
pound against neurodegenerative diseases caused by DLM.

Fig. 5C and Table 5 show the changes in the ratio of methyl

and methylene band at �2962 cm�1 and �2856 cm�1 respec-
tively. DLM alone treatment was significantly brings down
the ratio of methyl group protein. This may be due to gener-

ated ROS can cause structural modification in proteins via
conversion of side chain amino groups to the corresponding
free radical-induced carbonyls (C‚O) at arginine, lysine, thre-

onine or proline residues (Aksenov et al., 2001). While the
TMR co-administration with DLM restore the methyl ratio
in DLM+ TMR group. The bands from �1700–1600 cm�1

are assigned to a-helix structure and b-sheet structures of pro-
teins (Toyran et al., 2004). Fig. 5B and Table 3 shows the
changes in the frequency and the area value of amide-I and
amide-II at �1654 cm�1 and �1544 cm�1 respectively. How-

ever, it is seen in Table 4 the area values of these bands were
significantly decreased in the DLM alone treated group. The
decrease in the band area of amide-I and amide-II was consis-

tent with the decrease in band area of amide-A band at
�3301 cm�1. These, bands of the proteins are mainly responsi-
ble for the other action in secondary structure of proteins. Sig-

nificant (P < 0.001) reduction in the area values of these bands
indicates that there is a decrease in the membrane proteins,
including, a- and b-proteins of the ion channels in the neurons.
The maxima of amide-I region (�1700–1600 cm�1) is used for

the protein secondary structure analysis (Surewicz and
Mantsch, 1988). The decreased in the intensity of a-helix, b-
sheets and turns which is accompanied by increase in the inten-

sity of antiparallel b-sheets and random coils in the proteins
has been observed in the DLM treated rat brain tissue
(Fig. 6A, Table 6). Aksenov et al. (2001) demonstrated that

the pyrethroids cause decrease in the protein content of the
brain. The loss of the protein, mainly takes place by the break-
down of the hydrogen and sulphide bands in the proteins. Such

breaks can lead to the unfolding of the proteins and results in a
disorganization of the internal structure (Toyran et al., 2005).
The secondary structure analysis indicates that the DLM
mainly cause the unfolding of the a-helix and b-sheet by
increasing the antiparallel b-sheet and random coils (Table 6).
Due to conformal changes in these protein secondary struc-
ture, channels may remain open which leads to slow neural

transduction. All these changes are mainly due to oxidative
damage in the neural tissue caused by ROS. However, TMR
co-administration with DLM shows restoring the structural

changes in these proteins. Which is confirmed by shift in the
band frequency DLM + TMR group. The group merely fed
with turmeric-diet (TMR) showed insignificant (P > 0.05)

changes in protein content. The increased ratio of amide-II
to amide-I confirm that turmeric restores the protein structure
in brain tissue (Table 6). The secondary structure of the pro-
tein was restored by decreasing the antiparallel b-sheets and

random coils and increasing the a-helix and b-sheet in the
TMR co-administered rat brain (Table 4). Similar to these
changes in the amide-I and amide-II, also confirmed by bio-

chemical improvement in the activity of antioxidant enzymes
and revels the oxidative damage to the proteins. Wang et al.
(2013) had reported that curcumin cross the blood–brain bar-

rier and inhibit the formation of amyloid b-oligomers and fib-
rils in mice, so it has been recommended that the use of
curcumin for the clinical trials to prevent or to treat Alzhei-

mer’s disease. The curcumin treatment decreases the oxidiza-
tion of the proteins in the brain tissue (Ataie et al., 2010).
Additionally, several other studies were reported that cur-
cumin is one of the preeminent protectors against Alzheimer’s

disease (Samini et al., 2013; Yang et al., 2005).
In conclusion, we have showed that DLM causes oxidative

damage by decreasing the activity of antioxidants in the rat

brain tissue. 1% Turmeric-diet was ameliorated against oxida-
tive stress in the neural tissues in animals and human. How-
ever, the protective effect of turmeric was successfully

evidenced by FT-IR analysis, including restoration of the
unsaturated fatty acids, protein contain and in the activity of
antioxidants. The present findings add to the current knowl-

edge on the usage of protective use of turmeric to prevent
the oxidative damages in the neural tissue caused by DLM.
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