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Abstract

We address the problem of detecting consensus motifs, that occur with subtle variations, across multiple sequences. These are
usually functional domains in DNA sequences such as transcriptional binding factors or other regulatory sites. The problem in its
generality has been considered difficult and various benchmark data serve as the litmus test for different computational methods.
We present a method centered around unsupervised combinatorial pattern discovery. The parameters are chosen using a careful
statistical analysis of consensus motifs. This method works well on the benchmark data and is general enough to be extended to
a scenario where the variation in the consensus motif includes indels (along with mutations). We also present some results on
detection of transcription binding factors in human DNA sequences.
© 2008 Elsevier B.V. All rights reserved.
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1. Introduction

The problem of detecting common motifs across DNA sequences for locating regulatory sites, transcription binding
factors or even drug target binding sites is of prime importance. The main difficulty is that these motifs have
subtle variations at each occurrence. This problem has been of interest to both biologists and computer scientists.
A satisfactory practical solution has been elusive although the problem is defined very precisely:

Problem 1 (The Consensus Motif Problem). Given t sequences s; on an alphabet Y, a length [ > 0 and a distance
d > 0, the task is to find all patterns p, of length / that occur in each s; such that each occurrence p; on s; has at most
d mismatches with p.

The problem in this form made its first appearance in 1984 [19]. In this discussion, the alphabet X is {A, C, G, T}
and the problem is made difficult by the fact that each occurrence of the pattern p may differ in some d positions and
the occurrence of the consensus pattern p may not have d = 0 in any of the sequences. In the seminal paper [19],
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Waterman and coauthors provide exact solutions to this problem by enumerating neighborhood patterns, i.e., patterns
that are at most d Hamming distance from a candidate pattern. Sagot gives a good summary of the (computational)
efforts in [17] and offers a solution that improves the time complexity of the earlier algorithms by the use of
generalized suffix trees. These clever enumeration schemes, though exact, have a drawback that they run in time
exponential in the pattern length.

This problem of detecting common subtle patterns across sequences is nevertheless of great interest and various
statistical and machine learning approaches, which are inexact but more efficient, have been proposed [11,12,4,8,6].
One of the questions that can be asked to compare and test the efficacy of such methods of consensus motif detection
systems is: Given a set of sequences that harbor (with mutations) k motifs, what percentage of the k motifs does the
system recover? When k is large, all of the above approaches give good average-case performance under this criterion.

Yet another question to ask is: Given a set of sequences that harbor (with mutations) ONE motif p, does the system
recover p? This is a rather difficult criterion to meet since these algorithms use some form of local search based on
Gibbs sampling or expectation maximization or even clever heuristics. Hence it is not surprising that they may miss
p. However, a question of this form is a biological reality. Consider the following, somewhat contrived, variation of
Problem 1 which is an attempt at simplifying the computational problem.

Problem 2 (The Planted (I, d)-Motif Problem). Given t sequences s, on X, a pattern p of length [ is embedded in s;,
with exactly d errors (mutations), to obtain the sequence s; of length n, for each 1 < i < ¢. The task is to recover p,
given s;, | <i <t and the two numbers / and d.

Pevzner and Sze tantalized the community with the challenge problem, which was Problem 2 with parameters
n =600, =20,] = 15 and d = 4 [13]. A thrust of this paper also was the need for the deployment of combinatorial
approaches to tackle this thorny problem. One of the algorithms they presented was an exact algorithm where the
challenge problem was reduced to finding a #-sized clique in a ¢-partite graph with at most n — [ 4 1 vertices in each
partition. Even the best known heuristics for clique finding problem failed to detect the clique corresponding to the
signal. The second algorithm was based on enumerating possible patterns and checking their candidacy for being the
subtle pattern using clever heuristics and an exhaustive search in a reduced space. A similar algorithm, with different
heuristics was presented in [15,9,7].

One of the most effective algorithms, we found, was the one discussed by Buhler and Tompa [5]. The probabilistic
algorithm uses a random projection & and hashes each input /-mer x into bucket A (x). Any hash bucket with
sufficiently many entries is explored as a potential embedded motif. This approach solved the challenge problem and
some more. There has been a flurry of activity around this problem of subtle motifs [7,10]. For instance, Improbizer[1]
uses expectation maximization to determine weight matrixes of DNA motifs that occur improbably often in the input
data. See also [16] for some practical implementations of exact approaches.

Overview of our approach. We first clarify the different “motifs” used in this paper: Our central goal is to detect
the consensus or the embedded or the planted motif in the given data sets which is also sometimes referred to as the
signal in the data or the subtle signal. When a motif is not qualified with these terms, it refers to a sub-string that
appears in multiple sequences, with possible wild cards (see Section 3.1.1 for the formal definition).

We propose an approach that uses unsupervised motif discovery to solve Problem 2. We show that this method
works well for the more general Problem 1 as well. Recall that the signal (“subtle motifs”) is embedded in ¢ random
sequences. The problem is compounded by the fact that although the consensus motif is solid (i.e., an /-mer without
wild cards or dont-care characters), it is not necessarily contained in any of the ¢ sequences. However, if we can
obtain a correct alignment of the m sequences, then it is relatively easy to extract the consensus motif satisfying the
(, d) constraint. In other words, one of the difficulties of the problem is that the sequences are unaligned. The extent
of similarity across the sequences is so little that any global alignment scheme cannot be employed. So we tackle
this problem in two steps: First, we identify potential signal (PS) segments of interest in the input sequences. This
is done by using the imprints of the discovered motifs on the input. Second, amongst these segments, we carry out
an exhaustive comparison and alignment to extract the consensus motif. This delineation into two steps helps us also
address a more realistic version of the problem that includes insertion and deletion in the consensus motif:

Problem 3 (The Indel Consensus Motif Problem). Given t sequences s; on an alphabet X, a length / > 0 and a
distance d > 0, the task is to find all patterns p, of length / that occur in each s; such that each occurrence plf on s; is
at an edit distance (mutation, insertion, deletion) at most d from p.
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The main focus of our method is in obtaining good quality PS segments and restricting the number of such segments
to keep the problem tractable. The Type I error or false negative errors, in detecting PS segments, are reduced by using
appropriate parameters for the discovery process based on a careful statistical analysis of consensus motifs which
is discussed in Section 2. The Type II error or false positive errors are reduced by using irredundant motifs [3] and
their statistical significance measures [2] discussed in Section 3.1. Loosely speaking, irredundancy helps to control the
extent of over-counting of patterns and the pattern-statistics helps filter the true signal from the signal-like-background.
In the scenario where indels (insertions and/or deletes) are permitted along with mutations, the unsupervised discovery
process detects extensible motifs (instead of rigid motifs that have a fixed imprint length in all the occurrences). Also,
the second step uses gapped alignments.

In general, it is hard to say how the other approaches can be modified to include indels. For exhaustive methods
the introduction of indels would clearly increase the computing time considerably.

All non-exact methods are based on profiles or on k-mers, both of which are rigid. It is reasonable to say that,
if the number of indels is much smaller than the size of the consensus, the chance of recovering the signal by such
methods may be high. However, when the number of indels grow, it is unclear how these methods would work. Also,
it is not immediately apparent to us how these methods can accommodate indels, since the rigidity in the profiles or
k-mers is intrinsic to the method. On the other hand, our approach of using extensible motifs is one possible solution
to overcome this bottleneck.

2. Statistics of consensus motifs

Here we make some calculations, under simplifying assumptions, to justify the unsupervised motif discovery
approach to the problem. We consider the most general version of the problem which is formally stated as Problem 3
in the last section. Recall that this setting permits insertion and deletion as well as mutation in the embedded motif.

Given ¢ sequences of length [ each, a pattern satisfies quorum K if it occurs in K’ > K of the given ¢ sequences.
Further it is of maximal size h, if in each of the K’ occurrences, the size cannot be increased without decreasing the
number of occurrences K’ (see Section 3.1.1 for a more rigorous definition).

For simplicity, the sequences are the same length / and all the ¢ sequences are aligned and we will further assume
that a pattern occurs at most once in each sequence.

Given a motif, let the embedded signal in each sequence be constructed with some d edit operations. Given one of
these edit operations, we assume
(1) mutation (M), with probability of mutation given as gy,

(2) deletion (X), with probability of deletion given as gx and
(3) insertion (I), with probability of insertion given as q;.

Since the only permissible edit operations are these three,

qum +qgx +qr = 1.

The model. We consider the following simplified model. Given a fixed pattern (or signal), pyignas, Of length [, we
construct ¢ sequences from py;gnq;. To construct each sequence, d positions in the pattern pj;gnq are picked at random
and an edit operation (mutation with probability g,s, deletion with probability gx and insertion with probability ¢q;)
is applied to produce the sequence. Then we study these ¢ sequences.

In other words, given ¢ sequences we assume that they are aligned. For example, the table below on the left shows
exactly one edit applied to the signal motif and the table on the right shows the alignment of these embedded motifs.

| Edits | signal = ACGTAC \ y Alignment \
M [A C G T C C A CG -T ¢ C
X |A G T AC A - G - TAC
I /A CGATAGC A CGaTAGC
M |A CCTASC A C ¢ - TAC
M |G C G T A C g CG - T AC

Assume that d out of the / positions are picked at random on the embedded motif for exactly one of the edit
operations, insertion, deletion or mutation. / can be viewed as the size of the motif. Recall that we assume that the
sequences are correctly aligned. Then if a position in the aligned sequence is a mismatch, then either it is due to
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(1) a mutation (whose probability is g,7) or
(2) an insertion (whose probability is gj).

Then the probability of this position to be a dot character (mismatch) is

d
7 am +an).
Next, the probability g of a position to be a solid character in a motif is:
d
q=1-7(m+4qn.

q for three scenarios is shown below.

lam ax ar | g
(1) Exactly d mutations 1 0 0 1—-d/l
(2) Exactly d edits 1/3 1/3 1/3 || 1 —=2d/3l

Exactly d edits with,
equiprobable indel and mutation

A3) 12 1/4 1/4 | 1-3d/4

161

ey

When no more than d' edit operations are carried out on the embedded motif, it is usually interpreted as each

collection of 0, 1, 2, ..., d’ positions being picked with equal probability, and thus
d=d)2
for Eq. (1).

Estimating the probability of occurrence of a motif. Recall that g is the probability of a position (character) in the
input data to match a character in the pattern (signal). Let H be the number of solid characters and let the motif appear
in at least K sequences. For instance in the following alignment, for the first 4 rows, i.e. k = 4, the pattern has H = 3
solid characters, namely A, T and C, shown in bold at the bottom row. In other words, in these four rows, the solid

characters appear in each row of the aligned sequences.

Alignment Pattern
A C G - T ¢ C A C G - T ¢ C
A - G - T A C A - G - T A C
A C G a T A C A C G a T A C
A C ¢ - T A C A C ¢ - T A C
g C G - T A C g C G - T A C
A T C

Tt

k

For a pattern p with some H solid characters, let p occur in some k sequences (and not in the remaining (¢ — k)

sequences). Then

(1) the probability of matches in the (aligned) H solid characters in the k rows is

Hk
q )

and

(2) the probability of at least one mismatch in the (aligned) H positions in the remaining (r — k) sequences, is

(1 —qH)t_k.

Thus the probability of occurrence of pattern p is given by

1—k
<1 _qH> gtk

If £, denotes the event that p occurs in some fixed k sequences then for any two distinct events, i.e.,

P1 # P2,

(@3]
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Fig. 1. For t = 20,/ = 20, the expected number of maximal motifs E[Zg 4], is plotted against (a) quorum K shown along the X-axis (for different
values of ¢), and, (b) against ¢ shown along the X-axis (for different values of quorum K).

Ep, and E,, are not necessarily mutually exclusive. However, if the pattern is maximal, i.e., H is the maximum
number of solid characters seen in the k sequences, then for a fixed set of k sequences, there is at most one maximal
pattern that occurs in these k& sequences and not in the remaining ¢t — k sequences. Further, when the pattern is
maximal there is a guarantee of mismatch in the remaining (I — H) positions in all the k rows and the probability of
this mismatch is given as

(1—g5'=H. 3)

Thus to summarize, the probability of occurrence of some pattern with exactly H solid characters in exactly k
sequences is given by

Thus if Ppaximal (K, H, q) is the probability that some maximal pattern with H solid characters and quorum K occurs
in the input data, then using Eq. (4),

t

—k
Praximal(K, H, q) = Z (/i) (1 - qH)t qu(l - qk)l_H. 5

k=K

Let Zg 4 be a random variable denoting the number of maximal motifs with quorum K and ¢ as defined above, and,
E[Zg 4] denotes the expectation of Zk ,. Using linearity of expectations (for a fixed # and /),

/

l
E[ZK,q] = Z <h> Praximal (K, h, q)

h=1

_ Xl: <l) Xt: (f) (1 _qh)”k 7" (1 = g4
o\ S\

Now, it is rather straightforward to estimate E[Zk ] given different values of g corresponding to different scenarios.
Figs. 1 and 2 show some examples.

2.1. Rationale for using unsupervised motif discovery

A motif of length [ that occurs across ¢’ < t sequences provides a local alignment of length [ for the ¢’ sequences
which, in a sense, justifies the simplified scenario of the last section. The best case scenario, for our problem, is when
the embedded motif m is identical in all ¢ sequences and the discovery process detects this single maximal motif with
quorum z. So the scenarios closer to the best case should have fewer (but important) maximal motifs. Fig. 1(a) shows
the expected number of motifs with different values of g and quorum K. Notice that the expected number of motifs
saturates for small values of K and falls dramatically as K increases. The saturation at lower values occurs since we
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Fig. 2. For t = 20, [ = 20, the expected number of maximal motifs E[Zk ], is plotted against quorum K shown along the X-axis, for different
values of ¢, in a logarithmic scale. Notice that when ¢ = 1, the curve is a horizontal line at y = 1. Note that for DNA sequences, g = 0.25
corresponds to the random input case.

are seeking maximal motifs. Thus as g increases the saturation occurs at a higher value of K. Fig. 1(b) shows the
variation of the expected number of maximal motifs with ¢ which is unimodal, for different values of K. The value of
q is determined by the given problem scenario and thus a large value of K is a good handle on controlling the number
and “quality” of maximal motifs.

The signal is embedded in the background and it is important to exploit the characteristics that distinguishes one
from the other. In our case, we assume that the background is random, in other words it is assumed to be randomly
generated using an i.i.d. process. Under this condition, it is easy to see that ¢ = 1/4. Thus we need to compare
E[Zk 4] with E[Zk 1/4], the expectation for the random case. To compare these expectation curves, particularly
around small values (close to 1 in the Y-axis), we study the plots of log(E[Zk 4]) against quorum K in Fig. 2.

For example, consider the case when g = 0.75; this is the approximate value of g for the challenge problem of
Section 1. In Fig. 2, this is shown by the red curve and for large K, say K > 16, the expected number of motifs
is small. Also, the corresponding expected numbers for the random case is extremely low, thus providing a strong
contrast in the number of expected motifs. Hence the reasonable choice for the quorum parameter K is 16 or more, in
the unsupervised discovery process.

Before we conclude this section, we must point out that in the case where the embedded motif is changed with
insertions and/or deletions (indels), the g value is computed appropriately using Eq. (1) and the corresponding
expectation curve in Fig. 2 is studied. However, the burden is heavier on the unsupervised discovery process and
we use the extensible (or, variable-sized gaps) motif discovery capability in Varun [2] available at:
http://www.research.ibm.com/computationalgenomics.

3. SubtleVarun: Our approach

Here we present our approach, SubtleVarun, which detects the consensus motifs in two steps. We first locate regions
in the sequence called potential signal (PS) segments. The statistical analysis of the previous section suggests that the
detection of PS segments via unsupervised motif discovery is indeed possible. The two important parameters in the
combinatorial discovery process are K and D: K is the quorum or the minimum number of sequences where the
pattern must occur and D is the size of the gap between any two solid characters in the pattern. In the second step we
carry out a local alignment of these short segments and extract the consensus motif.

3.1. (Step 1) Detecting PS segments

As seen in the last section, we expect to see more maximal patterns in the signal region than the background in an
appropriate range of quorum K. We extract all common motifs across sequences using an unsupervised combinatorial
motif discovery process. We use the system Varun [2] for this purpose. This allows us to discover motifs with “dont-
cares” or wild-cards. The number of such characters is controlled by the parameter D in Varun, which is a bound on
the number of “dont-cares” between any two solid characters in a pattern. Next, we simply count the number of motifs
that cover a position i on the input. The first prediction of the PS segments are the positions (i’s) with high counts.
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This elementary rule works well for simple cases like Problem 2 with n = 600, t = 20,/ < 10 and d = 2. Here
the PS segments are predicted accurately. However, for d > 2 we found that it is difficult to distinguish the true from
the false PS segments using this simple approach. To weed out these wrong PS segments, we explored other means
of pruning the motifs using some combinatorial and statistical approaches. Firstly, we use the idea of irredundant or
basis motifs [3], to avoid overcounting of patterns that cover the same region multiple times on the sequence. Secondly,
we consider only those motifs that have a significant z-score and also, biased the motif count at a position i on the
input with the probability of the occurrence of that motif. We briefly digress here, and give a short exposition, taken
from [3,2], to keep the paper self-contained.

3.1.1. Irredundancy of motifs [3]

Let s be a sequence from an alphabet X' U {.}, where " ¢ ) denotes a don’t care (dot, for short) and the rest are
solid characters, we use o to denote a singleton character. For characters e; and e, we write e; < e if and only if
ey is a dot or e; = e. Allowing for spacers in a string is what makes it gapped. Such spacers are indicated by a dot
character. Whenever defined, D will denote the maximum number of consecutive dots allowed in a string. A string m
occurs at position / on s if for 1 < j < |m]| the following holds:

m[j] Zsll+j —11.
For a sequence s and positive integer k, k < |s|, a string m is a motif of s with |m| > 1 and location list
L =1{l1,l2,....1p},
if both of the following conditions hold:

(1) m[1] and m[|m]|] are solid and
(2) L, is the list of all and only the occurrences of m in s.

Given a motif m let m[j1], m[j2], ..., m[j;] be the [ solid elements in the motif m. Then the sub-motifs of m are given
as follows: for every j;, j;, the sub-motif m[j; ... j;] is obtained by dropping all the elements before (to the left of)
Jji and all elements after (to the right of) j; in m. We also say that m is a condensation for any of its sub-motifs. For
example, let

M| = X..yZW..X.X.
Then some sub-motifs of m are
X YZW..X.X,  YIW..X.X, ZW.X.X, YIW..X, YIW, ZW.X, W..X.

We are interested in motifs for which any condensation would disrupt the list of occurrences. Formally, let m1,
my, ..., my be the motifs in a string s. A motif m; is maximal in length if there exists no my, [ # i with |L,,;;| = | Ly, |
and m; is a sub-motif of m;. A motif m; is maximal in composition if no dot character of m; can be replaced by a solid
character that appears in all the locations in L£,,,. A motif is called maximal if it is maximal in composition and in
length.

Requiring maximality in composition and length limits the number of motifs that may be usefully extracted and
accounted for in a string. However, the notion of maximality alone does not suffice to bound the number of such motifs.
It can be shown that there are strings that have an unusually large number of maximal motifs without conveying extra
information about the input.

A maximal motif m is irredundant if m and the list £,, of its occurrences cannot be deduced by the union of a
number of lists of other maximal motifs. Conversely, we call a motif m redundant if m (and its location list £,,,) can
be deduced from the other motifs without knowing the input string s. More formally:

Definition 1 (Redundant, Irredundant Motif). A maximal motif m, with location list £,,, is redundant if there exist
some p > 1 maximal motifsm;, 1 < j < p, such that

Lo = Loy ULy -+ U Ly,

(i.e., every occurrence of m on s is already implied by one of the motifs my, ma, ..., mp).
A maximal motif that is not redundant is called an irredundant motif.
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Thus the set of irredundant motifs, denoted by B (also called the basis set), selects only those motifs that can
describe the entire motif space. It also reduces the search space dimensionality from exponential to polynomial,
without any loss of information.

For a given k, the basis is unique and a more detailed description can be found in [3]. In particular if # is the length
of the input string and k is the minimum quorum one can prove that [3]

|IB| <n—1whenk =2,

and that in general [14]

n—1
IBls(k_1>.

Extensible motifs. The motifs described above are also called rigid motifs. In other words, the length of the imprint of
each occurrence of a motif is the same. However, we can define extensible motifs where this imprint length may change
(in a controlled manner) at each occurrence [2]. In other words an extensible motif is a concatenation of rigid strings
(each with possible dot characters) and the gap between the rigid sections is denoted by a dash (°-’) character which
represents up to D gaps in the imprint of each occurrence. In other words the number of dot characters corresponding
to a dash character is

0,1,2,...,D.

Note that there is no pre-determined bound on the number of dash characters in a motif since the motif is assumed to
be maximal.

In [3], we show that given a string of length n and k = 2, each element of the basis corresponds to an autocorrelation
of the string and since there are no more than n autocorrelations, the size of the basis is no more than n. However,
when the motifs are extensible, this number does not hold.

Assume that a rigid segment of the motif must be of at least length r, then the number of autocorrelations is

0 (nﬁ).

It is unclear to us whether we can get a better bound on the size of the basis of extensible motifs. Nevertheless, the
use of irredundancy is useful even in extensible motifs, since repetitive motifs can be filtered without leading to over
counts.

3.1.2. Statistical significance of motifs [2]

When the alphabet size | Y| << n, the chances of finding recurring motifs even in random sequences increase
dramatically. Thus after the “combinatorial” elimination of candidate motifs, using quorum, density parameters (D)
and irredundancy, we also use “statistical” elimination using z-scores.

We recall the following from [2]. An extensible motif is degenerate if it can possibly have multiple occurrences at
a site i on the input s. Let m be an extensible non-degenerate motif generated by a stationary, iid source which emits
(o € X)) with probability p,. Let j, be the number of times o appears in m and let e be the number of dash characters
in m with gap sizes o1, oz, . . . e, then

pm =[] o) [ leil. 6)
i=1

oeX

Further, let M* denote a set of strings that has only the solid characters of at least s occurrences of m. For example,
consider the motif a-b with realizations

a.b, a.banda...b.
Then

M' ={ab,a.b,a..b}
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since m occurs once on each m € M!;
M?* = {a.bb,a..bb, a.b.b}

since m occurs twice on each m € M2,
M? = {a.bbb}

since m occurs three times on m € M>.
Let m be a degenerate (possibly with multiple occurrences at a site) extensible motif, and let

Pk = Z Pm’»
m' eMk

then
r—1
pm =Y (=D} (pu+1) . (7
k=0

This follows directly from the inclusion—exclusion principle. Notice that for a degenerate motif, Eq. (6) is the zeroth-
order approximation of Eq. (7). The first-order approximation is
Dm = Pyt — P2

and the second-order approximation is

Dm = Pyt — P2 + D3

and so on. Using Bonferroni’s inequalities, a kth-order approximation of p,, is an over-estimate of py,, if k is odd.

To summarize, if p,, be the probability of the motif m occurring at any location i on the input string s with n = |s|
and k,, is the observed number of times it occurs on s and if it can be assumed that the occurrence of a motif m at a
site is an i.i.d. process, then the z-score is given as:

km — NPm
vnpm (1 — pm)

Note that the non-maximal motifs are no more surprising, in terms of their z-score, than the maximal motifs, thus
allowing us to combine algorithmically maximality with z-scores. See [2] for a detailed justification and discussion.

®)

3.1.3. Back to PS segment computation
We use Varun to discover irredundant motifs in the input data. In the right, the motif

discovery parameters are K and D and/ = 15,d = 4,t = 20, n = 600 and the value of g K D[I]I]
1 20 2273
11
.~ 073, 19 2|01
15 20 3 |13 4
using Eq. (1). Column I shows the number of correct PS segments predicted using all 19 31 1]2
motifs and column I shows the same using only irredundant motifs. In all the cases, there 20 4]2]5

is an increase in the number of correctly detected positions for the latter.

We compute the z-score of each irredundant motif using the equation in the previous section and filter these motifs
based on a cut-off threshold z-score. We further use a weighted count for each input position in the imprint of the
motif m, where the weight is

1

Pm
and p,, is computed as in Eq. (7). Fig. 3 shows the results for a variety of settings comparing the use of statistical
methods (both z-score and weighted counting), called Method II, with the one that does not use them, called
Method 1.
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1=10,d =2

Motif params Methods Motif params Methods
K D M I] I K D M I | I

10 2 95 8 7 20 2 281 || 10 | 10
9 2 236 || 8 | 10 19 2 459 || 12 | 13
8 2 434 || 7 8 18 2 588 || 18 | 18

(a)n =100, =10 (b)yn =200, =20

]t=20,1=15,d=4\

Motif params Methods Motif params Methods
K D M I |1 K D M 1] I
20 2 539 2 4 20 2 1588 || 2 2
19 2 647 6 7 19 2 3526 1 1
18 2 837 12 | 12 18 2 5456 1 1
20 3 952 5 6 16 2 7316 1 2
19 3 1164 || 11 | 10 20 3 3348 || 4 4
18 3 1582 || 13 | 13 19 3 7885 || 2 2
20 4 1454 || 8 9 18 3 12444 || 1 1
19 4 1832 || 9 | 10 17 3 15318 || 2 3
18 4 2577 || 11 | 11 16 3 17017 || O 1
(c)n =300 (d) n =400

Fig. 3. Number of PS segment positions predicted correctly using Methods I and II for different parameters. The motif discovery parameters are K
and D and M is the total number of irredundant motifs discovered in the input. The values of ¢, obtained using Eq. (1), are as follows: (a) & (b)
q=0.8,(c)&(d)g=0.73.

Notice that using Method II, we can restore all 10 positions of the n = 200, t = 20,/ = 10 and d = 2 of Problem 2.
In the experiments for / = 15 and d = 4, we can recover 4 positions correctly out of 20. We find that only in two
cases Method I recovers more PS segment positions than Method II. However, in all the remaining 22 cases, Method 11
outperforms Method I.

Since it is very difficult to detect 100% of the PS segments correctly in this step alone, we use these partial PS
segments in the next step to reconstruct the true signal.

3.2. (Step 2) Processing PS segments

In the previous step we identified the potential signal (PS) segments in the input. Next, we merge the information
from each sequence by combining different PS segments. Assuming that the PS segment is predicted correctly, the
planted motif is embedded in this segment. If the length of the consensus motif is known, say /, then the PS segment
is constrained to be sub-string of length 2 x /. Thus given a candidate position i in sequence s, the signal is contained
in the interval s[i — [, 4+ [].

We next pick one PS segment from each sequence to “locally align” the segments across some ¢" sequences. We
enumerate all the

(v

Y

configurations here. Let the ' PS segments, each from a distinct sequence, be given as
(siy[biy» i1, siy[Diy s €ir], -, 5, [Diy 5 €1, ]).

We make the assumption that the starting position x;; of the consensus motif in sequence s;; lies in the sub-string
si;[bi;, ei)l,

Le., bi; < xi; < e;;. We are seeking all possible alignments of length / using these PS segments.
We use the following measure to evaluate an alignment. The majority string s,,, of length [, is simply the string
obtained by using the majority base at each aligned position (column). The score f is the sum total of the aligned



168 M. Comin, L. Parida / Theoretical Computer Science 395 (2008) 158-170

positions in all the ¢’ segments that agree with s,,. For example, consider the aligned segments on the right where
t=5,1=8,d=3andt =35.s,, is shown in bold and f = 28.

1) —A C T G C T C C—
2 —A G G G T T G A—
3 —C C G GT T G A—
4 —C C T CT A C A—
5) —A C G G T - C A—
sm= A CG G TT C A

Since our first step is very tightly controlled, we found in practice that there are only a few candidate PS segments.
Also, in the model that uses insertion and deletion (i.e., the length of the imprint of the occurrence of the consensus
motif in each sequence is not necessarily /), we use the same score by keeping track of the alignment columns:
deletions and insertions result in gaps in some sequences in the alignment (see sequence 5 in the above example). We
consider all those alignments, whose score f exceeds a fixed threshold

Thresh,.

In all our experiments we have used ¢’ = 3 and the threshold values are reported in the experiments.

Extracting the consensus motif across t sequences. At the previous step, we have multiple alignments, where each
alignment is across some t'(< r) sequences. From these we need to extract the consensus motif across all the ¢
sequences. For each alignment, we designate the majority sub-string s, (see last section) as the putative consensus
motif. Then we scan all the ¢ input strings for the occurrence of s,, with at most d errors which can be done in
linear time. For each sequence, we pick the best occurrence, i.e., the one with the minimum edit distance from s,,. In
practice, this step very quickly discards the erroneous consensus motifs and quickly converges to the one(s) satisfying
the distance constraint of d.

4. Results

Let P be the set of all positions covered by the prediction and S be the same set for the embedded motif. The score
of the prediction P, with respect to the embedded motif, can be given as (see [18]):

The score is 1 if the prediction is 100% correct. However, even for values much smaller than 1, the embedded motif
may be computed correctly. This measure is rather stringent and so we use yet another measure, the solution coverage
(SC) score. This is defined as the number of sequences that contains at least one occurrence of the predicted motif
whose distance from the prediction is within the problem constraint i.e., bounded by d. Again if the coverage is equal
to the total number of sequences ¢, then the prediction can be considered 100% correct.

Results on benchmark synthetic data. We report our results in terms of these two measures in Fig. 4 averaged over
eight random experiments.

Each experiment is defined by the four parameters n, ¢, [ and d. In the unsupervised motif discovery process of the
first step we use parameters K =t = 20and 0 < D < 4. The high K value was suggested by the statistical analysis in
Section 2 and confirmed by our experiments in Section 3.1. In the second step we use ¢’ = 3 based on our experiments
reported in Fig. 3. In Fig. 4(a)—(c), we show the performance measures for various instances of Problem 2.

We compare our results with what we found as the best performing algorithm, PROJECTION [5]. In all cases our
best results are similar, or slightly better, than PROJECTION as shown in Fig. 4. We observe that as we increase
the number of gaps D, the score improves. In particular if D = 0 (i.e., solid motifs), the chances of success drops
dramatically. We observe a similar tendency in Problem 3 as shown in Fig. 4(d) and (e). Although this version of the
problem, with indels, should be harder, we find that the method gives surprisingly good results.

Results on Human hmOlr data. We have tested the system on various real data sets and we give details of one
such case—that of detecting transcription binding factors on human DNA sequences on the data set suggested by
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K D || N | Score | SC
K_D || N Score | SC 20 0] 0] 002 |10 K D || N Score | SC
20 1 2 | 0.066 | 10
20 2 2 | 0415 12 20 1 1 0.49 11 20 1 2 0.75 11
20 3 4 0'95 20 20 2 1 0.8 20 20 2 2 0.95 20
0 4 3 0'94 20 20 3 1 0.93 20 20 3 4 1 0.95 20
. 20 4 2 091 20
@l=15d=4 ®I=17,d =5 ©)1=19,d=6
Scorepry = 0.93 Scorepry = 0.93 Scorepry = 0.96
K D | N | Score | SC K D | N | Score | SC
20 0 1 0.05 5 20 0 1 0.09 8
20 1 3 0.75 20 20 1 3 0.68 20
20 2 3 0.81 20 20 2 4 | 0.78 20

(d) I = 15, 3 mutations & 1 indel (e) ! = 15, 2 mutations & 2 indels

Fig. 4. In all cases, t = 20, n = 600. The motif discovery parameters are K and D and we use ¢’ = 3 and the values of Thresh, are as follows: (a)
32 (b) 36 (c) 40 (d) & (e) 30. The results are averaged over 8 random problem instances. N is the total number of PS segments predicted correctly.
See text for definitions of Score and SC. Scoreppy is the score for the PROJECTION algorithm by Tompa et al.

Tompa [18]. The details are as follows:

No pos Predictions M| 1
0] —101 T G A C G T C A — |1
1| =299 T G ¢ - G T C A 1| —
2 —71 T G A C A T C A 1|1
3 -9|A T G A - G T C A G|—|2
4| =527 T G ¢ G AT G A 2 |1
6 —173 T G A — C T A A 2 | =
7| —1595 T G A - A T G A 2| -
8| —221 T 6 G - G T C T 2| -
9 —69 T G A - C T G C 3| -

10| —105 T G A — A T C A 1| -

12 | =780 T G ¢ - G T C A 1| -

14| -1654|A T G A — A T C A 1|1

15 -69|A T G A - G T C A A|—-|2

16 —97 T G A — G T A A 1| -

17| -1936 |A T G A — A T C A 1|1
signal T G A G T C A

The parameters for this data set are n = 2000, + = 18. Note that we had to estimate / and d through a series of
trials. [ was estimated to be 7 and d to be 3. We use parameters K = 18 and D = 1 in the motif discovery process
in Step 1 and use t' = 3 and Thresh, = 12 in Step 2. We identify the signal in 15 of the 18 sequences at positions
given in the pos column. We miss the signal in only one sequence (sequence no 5) and the signal is absent in two
other sequences (no 11 and 13). Overall our prediction includes 114 true positives out of 236 positions covered by
this transcription factor. The remaining positions that are not covered by our prediction, excluding sequence no 5, are
left and right extensions of the results reported in the previous table. However, by definition these extensions cannot
be part of a planted motif.

We reconstruct the consensus sequence as

TGAGTCA

which is at most 3 edit distance away from the “embedded” signals. In the table M denotes number of mutations and
I the number of insertions; no deletions were found.

Interestingly, we notice that the performance on the same data by no-indels methods are consistently poor. In
particular out of 14 methods reported in [18], 5 report no prediction, 7 report predictions with no overlap, and only
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two methods, Improbizer [1] and MITRA [7], overlap the correct solution by respectively 5 and 9 positions (out of
236). For this data we can conclude that our prediction better approximates the real binding sites. Although more
experiments would be needed for definitive conclusions, this is an encouraging fact.

5. Concluding remarks

The problem of detecting subtle consensus motifs is tricky and a purely combinatorial or a purely statistical
approach has been unsatisfactory (see Section 1). It appears as it requires a delicate combination of the two methods.
We have presented a method that uses unsupervised combinatorial pattern discovery, followed by a careful statistical
refinement and processing. Since we use tried-and-tested tools such as pattern discovery, in the first step, and local
alignment, in the second step, we have focussed more on choosing and combining appropriate parameters. Also, the
extension of the method to handling a more general scenario such as inclusion of indels (insertion and/or deletion)
in the embedded motif has been relatively straightforward. We achieved this by using extensible motifs in the pattern
discovery process of the first step and gapped alignment in the second step. The results on benchmark data and some
real DNA sequences have been very encouraging. We are looking at the yet harder instance of the problem which is
the task of finding subtle motifs within the same sequence.
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