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ABSTRACT A novel method of parameter optimization is proposed. It makes use of large sets of decoys generated for six non-
homologous proteins with different architecture. Parameter optimization is achieved by creating a free energy gap between sets of
nativelike and nonnative conformations. The method is applied to optimize the parameters of a physics-based scoring function
consisting of the all-atom ECEPP05 force field coupled with an implicit solvent model (a solvent-accessible surface area model).
The optimized force field is able to discriminate near-native from nonnative conformations of the six training proteins when used
either for local energyminimization or for shortMonteCarlo simulated annealing runs after local energyminimization. The resulting
force field is validated with an independent set of six nonhomologous proteins, and appears to be transferable to proteins not
included in the optimization; i.e., for five out of the six test proteins, decoys with 1.7- to 4.0-Å all-heavy-atom root mean-square
deviations emerge as those with the lowest energy. In addition, we examined the set of misfolded structures created by Park and
Levitt using a four-state reducedmodel. The results from these additional calculations confirm the good discriminative ability of the
optimized force field obtained with our decoy sets.

INTRODUCTION

Accurate prediction of protein structure when the only in-

formation provided is about amino acid sequence remains

one of the greatest challenges in computational chemistry.

Results of the CASP (Critical Assessment of Techniques for

Protein Structure Prediction) exercises (1) demonstrated that,

in many cases, the tertiary structure of a protein (especially a

homologous one) can be predicted with a high degree of

certainty. However, these predictions provide information

about protein structure at relatively low resolution (.3 Å),

which may not be sufficient for practical applications (for

example, for structure-based drug design). To achieve the

atomic level of detail in protein structure prediction, so called

refinement methods have been introduced (2–7), and signif-

icant attention has been paid to their development (2). These

methods are designed to be able to shift the low- and me-

dium-resolution models obtained either from statistics-based

methods (homology modeling and threading) or from the use

of physics-based course-grained force fields closer to the

native state. An important element of any refinement method

is an accurate scoring function that must be able to discrim-

inate nativelike conformations from nonnative folds. Many

different scoring functions, including empirical (3), knowl-

edge-based (4,5,8), and physics-based (2,6,7) functions, are

described in the literature. One type of scoring function, i.e.,

the one including physics-based all-atom force fields (2,6,7),

seems to be a very promising tool for refinement, because

these force fields are designed to model physical interac-

tions and may therefore help to shed light on protein folding

mechanisms. As such, they are also expected to have better

transferability.

According to the Anfinsen thermodynamic hypothesis (9),

a necessary requirement for energy functions to produce

accurate protein structure models is their ability to recognize

the native state of the protein as the conformation, or a set of

very similar conformations, for which the system, i.e., the

protein plus its surroundings, is of lowest free energy. Several

physical scoring functions, such as those based on the AMBER

(10–12), OPLS (13), CHARMM (14–16), and GROMOS

(17) force fields, combined with different implicit solvent

models, were reported to perform well when tested on large

sets of decoys generated for many proteins. Despite the sig-

nificant increase in accuracy of the available all-atom force

fields and treatment of solvation effects, the physics-based

scoring functions still exhibit some difficulty in differenti-

ating native structures from the sets of decoys generated

using very different methods. Their performance worsens

when some kind of energy relaxation method (for example,

short molecular dynamics (MD) runs) is applied to the decoys

(18). Limited success (19,20) has been achieved in refine-

ment of low- and medium-resolution protein models, espe-

cially when they have significant unstructured regions and

long loops (7).

The accuracy of a physics-based force field is directly re-

lated to its ability to reproduce the energetic balance between

different interactions accurately. Development of all-atom

force fields usually involves the use of a number of as-

sumptions and approximations, such as a simplified form of

the energy function, use of fixed charges, omission of po-

larization effects, and use of implicit solvent models. These

approximations definitely affect the accuracy of the resulting

force field; however, they are difficult to avoid without sig-

nificantly increasing the computational cost of the energy

calculations. The other source of inaccuracy is the lack of
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direct experimental data, and hence, torsional and solvation

energy terms are probably the most poorly determined parts

of the physics-based force fields. For example, the torsional

energy terms of all-atom force fields are often optimized by

using gas phase data (from high-level quantum mechanical

calculations) for small molecules and peptides. It has been

shown (21) that the propensity of a given residue to form a

particular secondary structure in the gas phase is different

from that in solution, and therefore, the torsional parameters

derived in this way are not directly transferable to larger

systems in a solvent environment.

There is also a lack of direct experimental data on solvation

free energies of proteins, which has led to the use of exper-

imental data for small molecules and peptides for parame-

terization of solvent models. The solvation free energy term

is intended to capture several complex effects involved for a

protein in solution, from solvent entropy to ionization effects.

All these effects maymanifest differently for small molecules

(or peptides) than for proteins. For example, the solvent ex-

posure of atoms of the same type may, on average, be very

different in proteins and small molecules. Moreover, the

solvation free energy contribution parameterized by using

experimental data for small molecules is usually added to the

total energy without any adjustment to take into account the

differences between small molecules and proteins. All these

factors may contribute to the poor performance of all-atom

force fields applied to proteins in solution.

One way to improve the accuracy of all-atom force fields is

to use explicit water simulations and available experimental

data (conformational equilibria of peptides and small pro-

teins) in force-field parameterization. For example, extensive

folding and unfolding simulations with an explicit solvent

model have been used for optimization of backbone torsional

parameters alone(22) and with solvation parameters (23).

Mohanty and Hansmann (24) used parallel tempering simu-

lations with implicit water, carried out for a small b-sheet
peptide, to reparameterize an empirical all-atom force field.

The relatively high computational cost of this approach and

the difficulties in applying it to more than one protein mol-

ecule at a time (to insure better transferability of the resulting

force field) are some of the main obstacles to its wide ap-

plication.

Another approach, which was also used in this work, is

based on the thermodynamic hypothesis and involves the use

of large sets of protein decoys to optimize the parameters of a

force field. It was applied initially to parameterize coarse-

grained protein models (25,26) and later to optimize all-atom

force fields (27–32). Thus, Meirovitch et al. (27,31) opti-

mized solvation parameters associated with solvent-accessi-

ble surface areas in all-atom physical energy functions

intended for use in predicting surface loops in proteins. Their

search of parameter space was restricted to a small number of

parameters and was not systematic. A force-field optimiza-

tion method, called MOPED, was used (28) to improve sol-

vation parameters by creating an energy gap between the

native conformations and a small number of decoys of two to

three training proteins. Okur et al. (29) applied a genetic al-

gorithm to optimize backbone torsional parameters using a

large set of decoys generated for two peptides. Herges and

Wenzel (30) parameterized their surface-area solvent model

to stabilize the native structure of a single a-helical protein
(the villin headpiece) against a large set of nonnative decoys.

The resulting force field (30) was shown to be transferable to

other a-helical proteins (but not to a/b or b-proteins because
they were not considered in the parameterization). In recent

work (32), the weights of the AMBER all-atom force field,

supplemented by an explicit hydrogen-bond potential, were

optimized to stabilize the native structures of a very large

number of proteins (namely, 58) against a large number of

decoy conformations. The authors also introduced additional

energetic and structural criteria into their parameter optimi-

zation procedure to achieve better correlation between the

energies of decoys and the similarity to the native structure.

The force-field optimization led to a significant improvement

in performance of the AMBER-based force field. Thus, the

fraction of proteins forwhich the native structure had the lowest

energy increased from 0.22 to 0.90. It should be mentioned

that the protein decoys used by Wroblewska et al. (32) are

characterized by a high degree of similarity (in terms of the

secondary and tertiary structure) to the native conformation,

and therefore, the ability of the force field they describe to

discriminate native structures from very different compact

conformations, as well as from the decoys generated by using

different decoy generation procedures, remains to be estab-

lished.

In this work, we introduce a new method of decoy-based

force-field optimization. It is based on Anfinsen’s thermo-

dynamic hypothesis (9). Therefore, the optimization is aimed

at stabilizing nativelike conformations against a large set of

decoys by creating free energy gaps between the sets of na-

tivelike and nonnative structures. The search for the best

parameters of a force field is carried out with minimization in

parameter space. In general, the goal of this work was to test

the ability of the new optimization method to find a set of

parameters of a given energy function that stabilizes the na-

tivelike conformations of a number of proteins with different

folds against large sets of nonnative decoys. To the best of

our knowledge, the training set of proteins and the corre-

sponding decoy sets used in this work are among the largest

used to date for optimization of physics-based all-atom force

fields.

We applied the new method to optimize the torsional and

solvation parameters of the effective energy function built by

using the physics-based all-atom ECEPP05 force field (33)

coupled with the OONS (34) implicit surface-area (SA)

solvation free energy term. The original ECEPP05/OONS

force field fails to discriminate native structures from the

decoys for several nonhomologous proteins (see Results and

Discussion section). Although implicit solvent models, es-

pecially one as simple as a surface-area model, cannot ac-
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count completely for all the effects of solvation, they are

computationally very efficient and were shown to perform

well when applied to the prediction of surface loops in

proteins (27,31) and to the folding of small proteins (30,35)

and peptides (36,37). We decided to consider this simple

surface-area model and evaluate whether its accuracy can

be improved by parameter optimization. We find that the

optimization method succeeds in this task, and that the pa-

rameters obtained in learning from only a few proteins are

transferable to other proteins. As an independent test of the

optimized force field, we also considered the 4state-reduced

set of decoys of Park and Levitt (38).

METHODS AND MATERIALS

Form of the scoring function

The total free energy of a protein in solution can be represented approxi-

mately as the sum of two terms:

DGtot ¼ DGint 1DGsolv; (1)

where DGint is the internal free energy corresponding to the intramolecular

degrees of freedom of the protein. DGsolv is the solvation free energy of

transfer between the gas phase and water.

The internal free energy is given by

DGint ¼ Uint � TDSint; (2)

where Uint is the internal energy of the protein and DSint is the change in

internal entropy due to translational, rotational, and vibrational motions. The

entropy contribution in Eq. 2 is often omitted in protein simulation, because

of the high cost of its calculation. It has also been found that the vibrational

entropy contributions to the free energies of native, misfolded, or denatured

conformations are small and comparable (39,40). As a result, we considered

a so-called effective free energy,

DGeff ¼ Uint 1DGsolv; (3)

as a scoring function, instead of the total free energy given by Eq. 1.

The ECEPP05 force field (33) was used to compute the internal energy

(Uint) of a protein in the absence of solvent. The ECEPP05 internal energy is

a function of the torsional degrees of freedom, i.e., all the backbone and side-

chain torsional angles, of a protein (all bond angles and bond lengths are

fixed at standard values (41)). The Uint of a protein is given by

Uint ¼ EvdW 1Eel 1Etor; (4)

where EvdW and Eel are the van der Waals and electrostatic energies,

respectively.

The first two terms in Eq. 4 were computed as

EvdW ¼ +
ijðj.iÞ

�Aijr
�6

ij 1Bijexpð�CijrijÞ
h i

(5)

and

Eel ¼ +
ijðj.iÞ

332qiqj

erij
; (6)

respectively, where rij is the distance between atoms i and j separated by at

least three bonds; Aij, Bij, and Cij are nonbonded parameters; qi and qj are

point charges (in e.u.) localized on atoms. The dielectric constant ewas taken
as unity.

The torsional energy term, Etor, in Eq. 4 for each dihedral angle x was

computed as

Etor ¼ k
1

x 11 cosðxÞ½ �1 k
2

x 1� cosð2xÞ½ �1 k
3

x 11 cosð3xÞ½ �;
(7)

where x represents the backbone and side-chain torsional angles of each

decoy conformation (see Protein sets and decoy generation), and k1x ; k
2
x ; and

k3x are the torsional parameters; x varies from 0 to 180�.
It should be mentioned that there is no explicit hydrogen-bonding term in

the ECEPP05 potential function. This interaction is represented by a com-

bination of electrostatic and nonbonded interactions with the hydrogen in-

volved in a hydrogen bond treated as a separate atom type with parameters

different from those of the other types of hydrogens.

The solvation free energy,DGsolv, of each structure is estimated by using a

solvent-accessible SA model,

DGsolv ¼ +
i

siAi; (8)

where Ai represents the solvent-accessible SAs of various functional groups,

and si the solvation parameters of these groups. The OONS (34) SA model,

which includes the seven types of functional groups (shown in Fig. 1) and

their solvation parameters (s1, s2 . . . , s7) derived from the free energies of

transfer of small molecules from the gas phase to water, was used in this

work.

Scoring methods

The performance of a given scoring function depends not only on the ac-

curacy of its functional form and parameters but also on how it is applied.

Scoring of protein decoys using physics-based functions is usually carried

out through energy evaluation. Due to the roughness of the all-atom energy

surface characterized by huge energy variations corresponding to small

changes in structural parameters, such computations may not provide a re-

alistic picture, especially if the decoys were generated using a very different

force field. Scoring can also be carried out using local energy minimization,

which relaxes a given conformation to the closest energy minimum. All local

energy minimizations of the native structures of proteins from the Protein

Data Bank (PDB (42)) and of the corresponding structures from the decoy

sets considered in this work were carried out using the SUMSL minimizer

(43) as implemented in the ECEPPAK program (44–46).

For large all-atom systems such as proteins, which have a very rugged

potential energy surface, local energyminimization leads tominor changes in

the structure compared with the starting conformation and does not provide

information about the existence of lower energy minima corresponding to

conformationally very similar structures. A conformational search, limited to

FIGURE 1 Functional groups used in the OONS (34) solvent-accessible

SA model.
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the vicinity of the starting conformation, shouldmake it possible to overcome

this problem; therefore, in this work, we used two types of runs, 1), local

energy minimizations, followed by 2), short Monte Carlo simulated an-

nealing (MCSA) runs, to evaluate the energies of protein decoys. The ef-

fective free energy DGeff given by Eq. 3 was used as a scoring function for

both types of runs.

Each MCSA run started at T0 ¼ 1000 K, and the system was then cooled

in N cooling cycles to TN ¼ 200 K. The resulting structures at 200 K were

energy-minimized. The same number of steps was carried out at each cooling

cycle. The temperature of each cycle i was computed according to the for-

mula Ti ¼ T0 � iA (47), with

A ¼ lnðT0 � TNÞ
lnðNÞ : (9)

In each cooling cycle, new conformations were generated by performing a

short Monte Carlo search at a given Ti. Conformations generated during the

Monte Carlo simulation were obtained by a 10% perturbation of the

backbone and side-chain torsional angles.

Protein sets and decoy generation

The proteins considered in this work are listed in Tables 1–3. The training

(Table 1) and test (Table 2) sets of proteins were used for force field opti-

mization and evaluation, respectively. These sets contain a total of 12 pro-

teins with 20–76 residues each, and without any stabilizing ligands or

disulfide bonds, because these cannot be accounted for by this version of the

force field. All types of secondary structure, i.e., a (5), a/b (5), or b (2), are

represented in these sets of proteins. All proteins were considered with un-

blocked N- and C-termini. All ionizable residues and end groups were as-

sumed to be neutral.

Decoys for all the proteins from Tables 1 and 2 were generated according

to the procedure described in Ripoll et al. (48), i.e., starting from 1), native,

2), canonical a-helical (f ¼ �60.0�, c ¼ �40.0�, v ¼ 180.0�), and 3),

randomly generated conformations, by using the electrostatically driven

Monte Carlo method (44) with the ECEPP05 force field coupled with the

OONS solvent-accessible SA model. The generated conformations were

clustered by using the minimal spanning tree method (49) and assuming a

specific root mean-square deviation (RMSD) cutoff of 0.7 Å for all heavy

atoms and no cutoff in energy. For each protein, the size of the ensemble

generated from all three starting points varied from 1,203 to 7,191 confor-

mations and is characterized for most proteins by a uniform distribution of

RMSD from the native fold in the range 0.1–30.0 Å.

The decoy set generated for each protein also included the native struc-

ture. The coordinates for the native structure of each protein used in this work

(listed in Tables 1 and 2) were taken from the PDB and subsequently con-

verted to ECEPP-type geometry, i.e., with fixed (standard-value) bond

lengths and bond angles. This conversion provides an all-atom representa-

tion, including hydrogen atoms, for each of the selected proteins. The RMSD

for the heavy-atoms between the native structures before and after the con-

version is very low, as can be seen from the 6th column in Tables 1 and 2.

When more than one structure for a given protein is present in the PDB

(NMR-derived structures), the one corresponding to the PDB code in Tables

1 and 2 was selected. If several conformations were submitted under the same

PDB code, the model submitted as model number 1 was used.

It should be mentioned that most authors of force-field optimization

methods restrict their use to the native protein structures solved only by x-ray

diffraction measurements (avoiding NMR-derived models). The main reason

for this choice is the lower accuracy (uncertainties up to 2 Å) of NMR

structures (due to the much smaller amount of experimental data available for

each atom) compared to that of the x-ray structures. Although x-ray-derived

protein conformations are more accurate, uncertainties in atomic positions

for high-quality structures can be up to 0.6–1.0 Å. Atomic-resolution crystal

structures exhibit extensive, discrete conformational substates in which a

high percentage of side chains can exist in multiple conformations (50) or are

completely disordered. The main chains are more conserved, although un-

certainty in the positions of the main-chain atoms can become pronounced in

flexible surface loops. Kruskal (51) showed that crystal-packing effects are

not a main source of structural differences between NMR and x-ray struc-

tures of the same proteins, but he suggested that the crystalline environment

could have the effect of ‘‘freezing out’’ one conformation from the more

diverse ensemble present in solution. This effect may be widespread, since

most crystal structures reported today are determined at cryogenic temper-

ature (;100 K). Last but not least, it is not clear what aspects of these low-

temperature structures are relevant at room temperature (52). This evidence

suggests that use of x-ray diffraction structures has little advantage over that

of NMR-derived conformations, and we therefore considered both types of

experimental structures in this work.

As an additional test of the optimized force field, we also included the

4state-reduced set of decoys of Park and Levitt (38) (Table 3). This set

TABLE 1 Results obtained for the training set of proteins using the ECEPP05/OONS and the optimized ECEPP05/SA force fields

ECEPP05/SA (after optimization)z

Minimization§ MCSA{
Protein

(PDB code)

Experimental

method Class

No. of

residues

No. of

decoys

RMSD

range*

ECEPP05/OONS

RMSDy RMSDk DGeff** DDGeff
yy RMSDk DGeff** DDGeff

yy

1e0l NMR b 37 3563 0.1–18.0 11.2 1.66 �834.1 �22.5 2.01 �839.9 �4.0

1gab NMR a 53 7191 0.1–18.0 12.3 4.03 �701.6 �22.1 4.25 �700.8 �15.4

1igd X-ray a/b 61 1638 0.1–30.0 23.8 1.36 �922.6 �16.4 1.40 �946.2 �34.9

1l2y NMR a/b 20 4028 0.1–10.0 1.9 3.16 �450.0 �0.4 3.16 �449.6 �0.4

1csp X-ray b 76 1937 0.1–27.0 16.4 2.19 �1316.0 �5.1 12.8 �1315.7 3.2

1msi X-ray a/b 66 4229 0.1–25.0 14.5 2.35 �1397.8 �22.0 2.27 �1396.8 �29.8

*Range of RMSDs from the native structure for decoys of a given protein (Å). The first value corresponds to the RMSD of the native structure converted to

the ECEPP geometry (i.e., with standard values of bond lengths and bond angles).
yRMSD (Å) from the native structure of the decoy with the lowest ECEPP05/OONS energy (after only local energy minimization).
zResults obtained using the optimized ECEPP05/SA force field.
§Local energy minimization.
{Monte Carlo simulated annealing run after local energy minimization.
kRMSD of the lowest energy decoy from the native structure (Å).

**Effective free energy (Eq. 3) of the lowest energy decoy, kcal/mol.
yyDDGeff ¼ DGnat

eff � DGnonnat
eff ; where DGnat

eff and DGnonnat
eff are the effective free energies (in kcal/mol) of the lowest-energy nativelike and nonnative decoys,

respectively. DDGeff was computed only for the cases in which the energy distributions in Fig. 5 had two well-defined minima corresponding to nativelike

and nonnative decoys.
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contains decoy structures for seven proteins.We considered only five of these,

namely, 1ctf, 1r69, 3icb, 4rxn, and 2cro, because the native structures of the

remaining two proteins (4pti and 1sn3) are stabilized by disulfide bonds.

Parameter-optimization method

The parameter-optimization method described in this work makes use of

Anfinsen’s thermodynamic hypothesis (9). To develop a force field satisfy-

ing this hypothesis, two sets of conformations, namely, nativelike and

nonnative ones, were considered, and the optimized parameters were derived

by creating a free energy gap between these two sets. This approach differs

from other similar optimization methods described in the literature (28,30)

which make use of a single native structure instead of a set of nativelike

conformations. The similarity measure that we used to define a nativelike

structure is described in the next subsection.

We introduced a conformational free energy, (Fi(a)), of a native/non-

native set of structures, computed as

FiðaÞ ¼ �1

b
ln +

k2fig
exp �bDG

k

effða; xÞ
� �

; (10)

where a is a vector of force field parameters (k and s), and DGk
eff is the

effective free energy of the kth conformation; and x represents the backbone

and side-chain torsional angles of the kth conformation. b ¼ 1/RT, where R
is the universal gas constant and T is the absolute temperature. T was

considered an empirical parameter. By allowing T to vary, the value of the

conformational free energy of a given set of structures can be altered relative

to the energy distribution of this set. The value of T used in this work (b ¼
0.5 mol/kcal) was chosen in such a way that the conformational free energy

of each level (i.e., a set of nativelike or nonnative structures, as described in

next section) was close to the energy of the lowest-energy structure from this

level. The Boltzmann summation in Eq. 10 is taken over the conformations

from level i (i denotes the native or nonnative level).

Using the ECEPP05/SA energy function, we modified the force-field

parameters, a, in an attempt to satisfy the condition that, for a training set of

proteins, the conformational free energy of the nativelike conformations

should be lower than the conformational free energy of a set of nonnative

decoys:

Fnat � Fnonnat , �D: (11)

Thus, optimization of the force-field parameters was achieved by creating a

negative free energy gap between the native and nonnative levels. Target

gaps (D) were set to the same value of 5 kcal/mol for all the training proteins

considered in this work. This value was chosen based on the evidence that

native structures of proteins are marginally stable (53). We did not try to

maximize the gap, because that would lead to a nonphysical and poorly

transferable force field.

Force field parameters (a) were optimized by minimizing the target

function

FðaÞ ¼ +
N

j

wjg F
j

nat � F
j

nonnat;�D
j

� �
; (12)

where the summation runs over the number of training proteins N and

gðy; ymaxÞ ¼ 1=4ðy� ymaxÞ4 y. ymax

0 y# ymax

� �
: (13)

Dj is a target free energy gap for protein j, wj is an empirical weight which

was set to 1 for all training proteins, y ¼ Fj
nat � Fj

nonnat; and ymax ¼ �Dj.

TABLE 2 Results obtained for the test set of proteins using the optimized ECEPP05/SA force fields

Minimization MCSA
Protein

(PDB code)

Experimental

method Class No. of residues No. of decoys RMSD range RMSD DGeff DDGeff RMSD DGeff DDGeff

1bdd NMR a 46 1203 0.1–20.0 3.92 �1365.2 �72.7 3.66 �1381.0 �48.9

1vii NMR a 36 2271 0.9–13.0 3.07 �718.1 �18.5 5.45 �733.4 —*

1res NMR a 43 2824 0.1–21.0 2.69 �1494.6 — 2.66 �1503.9 —*

1fsd NMR a/b 28 3208 0.1–12.0 3.77 �1308.1 �46.0 6.47 �1330.4 8.3

1cc7 X-ray a/b 72 5755 0.1–27.0 1.72 �1166.2 — 1.53 �1171.8 —*

1ail X-ray a 73 3622 0.1–29.0 3.09 �2440.3 �35.7 3.19 �2430.4 �19.4

See Table 1 notes for descriptions of parameters.

*DDGeff was not computed (see Table 1, last note).

TABLE 3 Results for the 4state-reduced decoy set obtained using the optimized ECEPP05/SA force field

Energy evaluation* Minimizationy MCSAz
Protein

(PDB code) Class

No. of

residues

No. of

decoys RMSD§ DGeff
{ RMSD§ DGeff

{ RMSD§ DGeff
{

1ctf a/b 68 630 3.20 �430.5 1.17 �906.7 1.73 �962.0

1r69 a 63 675 0.14 �1339.7 0.76 �1914.0 1.23 �1981.3

3icbk a 75 653 1.80 �715.4 — — — —

4rxn** a/b 54 677 0.31 �337.8 — — — —

2cro a 65 674 0.14 �1230.1 2.65 �1909.7 1.17 �1934.3

The 4state-reduced decoy set was developed by Park and Levitt (38).

*Energy evaluation for a fixed conformation.
yLocal energy minimization.
zMonte Carlo Simulated Annealing run after local energy minimization.
§RMSD from the native structure for the lowest energy decoy, Å.
{Effective free energy (Eq. 3) of the lowest energy decoy, kcal/mol.
kCalcium binding protein.

**Metal-binding protein.
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The energy of a given conformation, represented by a set of backbone and

side-chain torsional angles, x, is a function of the force field parameters, a,
i.e., all k and s. As the force-field parameters vary, the conformations based

on the initial parameters may no longer correspond to energy minima;

therefore, the effective free energies (Eq. 3) computed with the new pa-

rameters will not reflect the real relative stabilities of native and nonnative

levels. To solve this problem, we employed the following approach. The

parameter optimization is an iterative procedure in which each iteration first

involves optimization of a while holding the conformations fixed. Then, all

conformations are energy-minimized with the resulting interim parameters,

a. This procedure is repeated until all the free energy gaps reach the pre-

defined value Dj (Dj ¼ 5 kcal/mol for all j). Both the minimization of the

target functionF as a function of a and the minimization of the effective free

energy, DGeff, for each conformation as a function of x are carried out by

using the SUMSL minimizer (43). At each iteration, we computed the local

energy minima with the current force-field parameter set by performing

energy minimizations from the fixed initial native and decoy conformations.

For each training protein, all decoys plus the native structure are included in

the optimization procedure. The flowchart of the optimization method is

shown in Fig. 2.

The method described above was applied to optimize the backbone f and

c torsional (k1x ; k
2
x ; and k3x in Eq. 7) and solvation (si in Eq. 8) parameters.

The force field parameters for the remaining torsional angles (v and x) were

kept fixed at the original ECEPP05 values (33). We also attempted to sta-

bilize the nativelike conformations of the training proteins by varying the

relative contributions of different energy terms of the effective energy

function (Eq. 3) by optimizing the weights (w) of the equation

DGeff ¼wvdW3EvdW1wel3Eel1wtor3Etor1wsolv3DGsolv:

(14)

The w values were constrained to positive values. However, it was not

possible to achieve the target free energy gaps by varying only the weights

when more than one protein was considered. Therefore, we focused on

optimization of only the torsional and solvation parameters, with all w set at

1. In the rest of this article, we report results and discuss these simulations.

Similarity measures used in parameter
optimization and analysis of the results

As mentioned earlier, we considered a set of nativelike conformations (de-

fined below) instead of a single native structure to optimize parameters of an

all-atom force field. Our decision to use a set of nativelike conformations is

based on the fact that a protein under physiological conditions exists as a

dynamic ensemble of conformations. Ideally, NMR experiments should be

able to provide information about this ensemble. Although protein structures

solved by x-ray diffraction are represented by a single conformation, work on

the interpretation of crystallographic data (54) showed that dynamics and

heterogeneity remain even in the crystalline state, and suggested that a single

conformation may not provide the best solution to the crystallographic

structure-determination problem (54,55). In addition, the authors concluded

that use of a single conformation may introduce a bias in the computation of

protein properties such as solvent-accessible SA, total energy, etc., which are

sensitive to small variations in atomic positions.

All decoy conformations were divided into two groups (levels), namely,

nativelike and nonnative, according to two criteria: 1), fraction of residues

with the same conformation (according to the conformational letter code of

Zimmerman et al. (56)) as in the corresponding fragment of the experimental

structure, and 2), fraction of contacts in a fragment matching those in the

corresponding fragment of the experimental structure. Thus, the similarity of

packing of the secondary structure fragments was defined in terms of the

fraction of the interfragment native contacts.

A decoy is defined as nativelike if both the secondary structure and

packing of the secondary structure elements are similar to those in the native

structure. The first of these requirements, i.e., similarity of the secondary

structure, means that at least 60% of consecutive residues in each secondary

structure element should be from the same regions (defined by Zimmerman

et al. (56)) of the Ramachandran (f-c) map as the corresponding native

residues.

To quantify the similarity of the packing of secondary structure elements

to that in the experimental structure, we used the Q parameter introduced in

Furnham et al. (57), i.e.,

Q ¼ 1

M
+
L�1

i¼1

+
L

j¼i11

+
NðiÞ

k¼1

+
NðjÞ

l¼1

jdkl � d
nat

kl j
d
nat

kl

; (15)

where L is number of secondary structure elements; N(i) is the number of

residues (Ca) in the ith element; M is the total number of distances; and dkl
denotes the distance between the a-carbon atoms of residues k and l,

respectively, of the conformation under consideration. The same quantities

with the ‘‘nat’’ superscript denote the distances in the experimental structure.

A conformation was assigned to the ‘‘native’’ level if the value of Q was

lower than or equal to the similarity threshold uE. Otherwise, the conforma-

tion was added to the list of nonnative conformations. The value of the uE

parameter was chosen empirically (by trial and error) as 0.18.

A set of nativelike conformations defined according to the twofold

similarity measure introduced above includes more diverse structures than

is described by an average experimentally determined native ensemble

(RMSD # 2 Å); there is no direct correspondence between the measure

described above and RMSD. However, the nativelike structures correspond

roughly to those with RMSD# 4 Å from the PDB structure. Since the goal of

this work was to develop a force field capable of discriminating nativelike

from nonnative protein conformations (i.e., those with different tertiary and

even secondary structure), we felt that the use of the definition of a nativelike

structure introduced here is justified.

For analysis of the results, the structural similarity between two protein

conformations was also expressed as the RMSD between the best overlap of

the heavy atoms (i.e., all atoms except hydrogens) of the two conformations.

RESULTS AND DISCUSSION

In this section, we report the application of the parameter

optimization method presented in this article to the devel-

opment of an accurate all-atom force field including hydra-

tion. First, the accuracy of the original ECEPP05/OONS

force field to score protein decoys is evaluated. Next, we

report optimization of the force field parameters (torsionalFIGURE 2 Flowchart of the parameter-optimization method.
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and SA solvation parameters (see below)) using the proce-

dure described in the Methods section and shown in Fig. 2.

The optimization procedure minimizes the target function F
(Eq. 12, Fig. 2) and is aimed at stabilizing nativelike con-

formations relative to nonnative decoys for a set of training

proteins. Finally, the resulting optimized force field was used

in two types of simulations: 1), local energy minimizations;

and 2), MCSA runs after the local energy minimizations.

Performance of the force field in these tests carried out for the

training and test sets of proteins, as well as for the 4state-

reduced decoy set of Park and Levitt (38), is discussed.

Performance of the original ECEPP05/OONS
force field

Decoys of the training proteins (Table 1) were first energy-

minimized using the all-atom ECEPP05 force field (33)

combined with the OONS implicit SA solvation model (34)

with the original parameters (ECEPP05/OONS). The results

of the calculations are reported in Table 1, column 7, and in

Fig. 3. For all the proteins but one (1l2y) from the training set,

nonnative structures have lower energies than nativelike

ones. The nativelike conformation with an RMSD of 1.9 Å

from the experimental structure was obtained as the lowest-

energy one for 1l2y. For all the other proteins from the set, the

ECEPP05/OONS force field favors all-helical structures. In

the case of the a-helical protein, 1gab, the lowest-energy

structure (a two-helix bundle) differs from the native con-

formation (a three-helix bundle).

Low energies of nonnative helical conformations with

ECEPP05/OONS are due to the large contribution of the sum

of the nonbonded and torsional energies, which constitutes

;90% of the total energy. Since this part (i.e., EvdW 1 Eel 1
Etor) of the force field was parameterized to reproduce the ab

initio (gas phase) f-c map of terminally blocked alanine,

which has a global minimum corresponding to the a-helical
conformation, the ECEPP05 force field is expected to favor

this type of conformation. On the other hand, the solvation

FIGURE 3 Scatter plot of the structures obtained by local minimization of the energies of the decoys from the training set with the original ECEPP05/OONS

force field versus all-heavy-atom RMSDs from the experimentally determined native structure. (a) 1e0l. (b) 1gab. (c) 1igd. (d) 1l2y. (e) 1csp. (f) 1msi.
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energy is more favorable for extended structures. However,

the solvation energy contribution to the total energy for the

OONS model is very small (;10%) and does not signifi-

cantly affect the relative stabilities of different conforma-

tions. Most of the high-RMSD decoys shown in Fig. 3 are

noncompact a-helical conformations, which are favored by

both the gas phase and the solvation energy terms of the

ECEPP05/OONS force field. Only in the case of 1l2y is the

low total energy of the 1.9-Å nativelike conformation de-

termined by the (Enb 1 Etor) contribution.

These results indicate that the ECEPP05 force field com-

bined with the OONS solvent model (with their original

parameters) is not able to discriminate nativelike structures

and has to be improved.

Force-field optimization

In this work, we attempted to optimize the force-field pa-

rameters by minimizing a target function F (Eq. 12). The

backbone torsional f and c and the solvation parameters

were selected as candidates for the optimization because they

are the most difficult ones to derive from first principles and,

therefore, their values may contain a high degree of uncer-

tainty. First, only the torsional parameters were allowed to

vary during the optimization. When more than one training

protein was considered, the optimization did not lead to any

significant improvement in the stability of the nativelike

structures relative to the nonnative decoys. On the other hand,

when the target function, F, was optimized as a function of

either solvation alone or both solvation and torsional pa-

rameters, the target free energy gaps were achieved in a small

number of iterations. There was also more than one set of

parameters that minimized the target function F. As a result,

it may be necessary to consider a very large set of proteins

to obtain a unique set of parameters. Since consideration of

a large number of proteins simultaneously (with a large

number of decoys) is computationally very demanding, we

decided to focus on optimization of the full range of s pa-

rameters of the solvation model, allowing only a limited

variation of the torsional parameters (within610% of the gas

phase values). The torsional parameters were not fixed during

the optimization, because their original values were derived

from ab initio (gas phase) calculations and therefore may not

be adequate for a protein in solution. No restrictions were

placed on possible values of the solvation parameters; how-

ever, we assumed that the OONS parameter set represents a

reasonable starting point for reparameterization, and there-

fore, we did not attempt to explore the space of solvation

parameters for alternative optimized parameters (i.e., only

one starting set of parameters (OONS) was considered).

Before starting the optimization, we evaluated how the

size of the training set influences the resulting values of the

force-field parameters. Five sets, containing 2, 3, 4, 5, and 6

proteins, respectively, were considered. These sets were

composed of the proteins from Table 1 by adding one protein

at a time, e.g., 1e0l and 1gab (set 1), 1e0l, 1gab, and 1igd (set 2),

and so on. Fig. 4 shows the values of the solvation parameters

as a function of the size of the training set. The parameters

that depend the most on the size of the training set are s1, s2,

s5, and s6 (the corresponding functional groups are shown in

Fig. 1). The solvation parameter for the aliphatic group (Fig. 1),

s1, is the most sensitive to the number of proteins used for its

optimization. In general, changes in the solvation parameters

as a function of the training set size are small (,4%) and

become even smaller when the set size reaches five proteins.

Although the parameter values obtained from the optimiza-

tions carried out using five and six proteins, respectively, are

very close, we decided to use six proteins to ensure better

transferability of the resulting force field.

The training set containing the six proteins listed in Table 1

was considered in the parameter optimization carried out by

using the procedure (Fig. 2) described in the Methods sec-

tion. The force-field parameters that satisfy Eq. 11, with D ¼
5 kcal/mol, were obtained in a small number of iterations

(approximately three). The resulting backbone torsional and

solvation parameters are given in Tables 4 and 5, respec-

tively. The most significant changes in the parameter values

arose for three types of groups, namely, aliphatic, aromatic,

and carboxyl/carbonyl oxygen. The aliphatic and aromatic

groups became more ‘‘hydrophobic’’ (large positive values

of s), whereas carboxyl/carbonyl oxygen became more

‘‘hydrophilic’’ (more negative values of s).
Fig. 5 shows energies of the decoys versus all heavy-atom

RMSDs from the native structure for the six training proteins.

The energies (Fig. 5, red circles) correspond only to the local
energy minima of the optimized force field before im-

plementation of MCSA. The optimized ECEPP05/SA force

field stabilizes near-native conformations against the com-

peting low-energy decoys for all six proteins (the energy gaps

between the lowest-energy nativelike and nonnative decoys

(Table 1, column 10) are all negative). The best result, in

terms of the RMSD from the native structure, was obtained

FIGURE 4 Optimized values of the solvation parameters (s) as a function

of the size of a training set. The zero in the number of proteins indicates that

the values of s are the initial OONS (34) values.
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for 1igd, for which the lowest-energy decoy was only 1.36 Å

from the x-ray conformation (Fig. 5 c, red circles). For 1gab,
the lowest-energy decoy (�701.6 kcal/mol) has a nativelike

structure, although its RMSD from the native structure is

relatively high (;4 Å, Fig. 5 b). The only protein for which

the optimized force field performed less well than ECEPP05/

OONS was 1l2y (Trp-cage, Fig. 5 d). The lowest-energy

decoy (�450.0 kcal/mol) of 1l2y has a relatively high RMSD

(3.16 Å) from the native structure and is only marginally

more stable (;0.4 kcal/mol) than the low-energy nonnative

conformations (Fig. 5 d and Table 1). At the same time,

optimization of the force field led to increased stability of a

set of nonnative decoys of 1l2y, with RMSDs around 6.4 Å

and general flattening of the effective free energy surface for

the 2–6.5 Å RMSD range (Fig. 5 d), indicated by the ap-

pearance of the large number of decoys in this RMSD range

with similar and very low energies (Fig. 5 d).

Performance of the optimized ECEPP05/SA force
field evaluated using short MCSA runs on the
training set of proteins

The parameters obtained by using the optimization procedure

described in this work (see Methods and Fig. 2) and reported

in Tables 4 and 5, are not guaranteed to be optimal, even for

the training proteins, because low-energy decoys, not in-

cluded in the training decoy sets, can exist. The free energy

relaxation carried out by performing short MCSA runs after

energy minimization was used to explore the free energy

surface in the vicinity of the minima corresponding to the

training decoys. These simulations yielded results (Fig. 5,

blue circles, and Table 1, columns 11 and 13) very similar to

those obtained from local energy minimization (Table 1,

columns 8 and 10). For five out of six training proteins, na-

tivelike structures were scored by the optimized force field as

the lowest in energy. Only in the case of 1csp did nonnative

all-helical decoys have lower free energies (DDGeff . 0

(Table 1, column 13)) than nativelike b-barrel conforma-

tions. It should be mentioned that the energies of these new

nonnative conformations produced by MCSA runs are still

higher (�1315.7 kcal/mol) than the energies of the lowest-

energy nativelike structures obtained from local energy mini-

mizations (�1316.0 kcal/mol) (Table 1, columns 12 and 9,
respectively). Comparison of the free energies obtained

separately by either local energyminimization orMCSA runs

after local energy minimization shows that only in the case of

1e0l and 1igd did the MCSA search lead to a significant de-

crease in energy of the decoys compared to those obtained

from local energy minimization (�839.9 vs. �834.1 and

�946.2 vs. �922.6 for 1e0l and 1igd, respectively (Table 1,

columns 12 and 9)). TheMCSA runs did not yield any lower-

energy nativelike decoys for 1gab and 1 csp (decoys with

RMSD , 5 Å in Fig. 5 b and decoys with RMSD , 4 Å in

Fig. 5 e for 1gab and 1csp, respectively) or any nativelike or

nonnative conformations for 1l2y and 1msi (Fig. 5, d and f,
respectively). For 1l2y, a small 20-residue protein, this result

may be caused by good sampling of the conformational space

during decoy generation. However, for 1gab, 1csp, and 1msi,

MCSA seems to be less efficient in finding new low-energy

minima. 1csp and 1msi are the largest proteins in the training

set (76 and 66 residues, respectively), so it makes sense that

generating near-native decoys would not be easy, because

even small conformational changes in the interior residues

may lead to atomic clashes and high energies.

The MCSA runs intended to explore the vicinity of free

energy minima corresponding to the decoys, and therefore

provide additional information about the free energy surface

of a protein, did not locate any nonnative conformations with

energies lower than those of the nativelike structures. In other

words, considering the combined results of the local energy

minimizations and the MCSA runs, the optimized ECEPP05/

SA force field is able to discriminate nativelike structures for

all six training proteins as the lowest in effective free energy.

Evaluation of transferability of the optimized
ECEPP05/SA force field using a test set
of proteins

To evaluate whether the optimized ECEPP05/SA force field

is transferable to other nonhomologous proteins, i.e., whether

it is able to score near-native conformations as those with

lowest energies, we considered sets of decoys generated for

the six proteins (test set) listed in Table 2. The test set in-

cluded four a-helical and two a/b proteins. Both local energy

minimization and free energy relaxation (MCSA) runs after

TABLE 5 Initial (OONS) and optimized values of the solvation

parameters (s)

Chemical group sOONS sopt

Aliphatic (CH3, CH2, CH) (s1) 0.008 0.171

Aromatic (¼CH�) (s2) �0.008 0.155

Hydroxyl (�OH) (s3) 0.427 0.416

Amide and amine (NH2, NH) (s4) �0.132 �0.187

Carboxyl and carbonyl carbon (s5) �0.172 �0.245

Carboxyl and carbonyl oxygen (s6) �0.038 �0.269

Sulfur –S� and thiol –SH (s7) �0.021 —*

Values are given in kcal/mol�Å2.

*The training proteins did not have sulfur-containing residues in their

sequences.

TABLE 4 Initial and optimized values of the backbone f

and c torsional parameters (kcal/mol)

u c

Parameters k1 k2 k3 k1 k2 k3

Initial �1.43 1.41 0.19 �1.70 1.95 �0.46

Optimized �1.41 1.41 0.17 �1.64 1.95 �0.49

Initial values were taken from Arnautova et al. (33). Force field parameters

for the torsional angles v and x were taken from ECEPP05, and were kept

fixed during the parameter optimization.
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energy minimization were carried out for the decoys of these

six proteins. The results of the calculations are given in Table 2

and Fig. 6.

As a result of local energy minimization with the opti-

mized force field, we find that for each of the six test proteins,

a near-native conformation emerges as the lowest in energy

when compared to other low-energy decoys (Fig. 6, red
circles). For all the proteins, the RMSD of the lowest-energy

decoys is,4.0 Å (Table 2, column 7). As seen in Fig.6 e, the

most stable decoy of 1cc7 is characterized by the lowest

RMSD of 1.72 Å from the native structure (the latter being

shown in Fig. 7 a). The highest RMSD, 3.92 Å, was obtained

for 1bdd (Fig. 6 a). The two (middle and C-terminal) helices

in the lowest-energy 1bdd decoy have the same tertiary

alignment as in the NMR structure, but with slightly differ-

ent orientation of the N-terminal helix (shown in Fig. 7 b).
The lowest-energy decoy of 1fsd also has a relatively high

(3.77 Å) RMSD from the native structure. The main difference

FIGURE 5 Scatter plot of the ECEPP05/SA energy (after parameter optimization) of the decoys from the training set versus the RMSD from the

experimentally determined native structure. (a) 1e0l. (b) 1gab. (c) 1igd. (d) 1l2y. (e) 1csp. (f) 1msi. Red and blue circles correspond to the results obtained from

either local energy minimization, or MCSA runs after local energy minimization, respectively.
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between this conformation and the NMR structure lies in the

shape of the N-terminal fragment (shown in Fig. 7 c).
Somewhat different results were obtained for the test de-

coy sets using free energy relaxation (MCSA runs after en-

ergy minimization (Fig. 6, blue circles)). For five out of six
proteins, namely 1bdd, 1vii, 1res, 1cc7, and 1ail, nativelike

structures are stabilized relative to nonnative decoys (Fig. 6

and Table 2, column 12). For the remaining protein, 1fsd, a

nonnative decoy with an RMSD of 6.47 Å (Fig. 6 d) was
scored as the most stable (�1330.4 kcal/mol). In the case of

1vii, the lowest-energy decoy (�733.4 kcal/mol) has a high

RMSD of 5.45 Å; however, it has overall nativelike topology

with slightly higher helix content and, compared to the NMR

conformation, a different relative orientation of helices 1 and 2

FIGURE 6 Scatter plot of the ECEPP05/SA energy (after parameter optimization) versus RMSD from the experimentally determined native structure for the

proteins from the test set: (a) 1bdd; (b) 1vii; (c) 1res; (d) 1fsd; (e) 1cc7; (f) 1ail. Red and blue circles correspond to results obtained from local energy

minimization, and MCSA runs after local energy minimization, respectively.
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(Fig. 8). It should be mentioned that, because of its small

size and fast folding, the villin headpiece (1vii) has been a

subject of many types of biomolecular simulations carried

out using a variety of search methods, such as global opti-

mization techniques and MD simulations, combined with

different force fields and solvation models. The results pre-

sented in this work cannot be compared directly with those of

MD simulations (for example, those reported by Lei et al.

(58)). On the other hand, the results reported for the villin

headpiece by Herges et al. (59) and Ripoll et al. (60) were

obtained using the same type of force field (torsional force

field with fixed valence geometry, ECEPP). A 3.3-Å back-

bone RMSD structure was found by Herges et al. (59) as the

one with lowest energy, whereas the search carried out by

Ripoll and co-workers (60) using the ECEPP03/OONS force

field yielded the lowest-energy structure, with RMSD;5 Å.

It should also be mentioned that the low-energy decoys

(native and nonnative) obtained in the work by Herges et al.

(59) had three-helix conformations with the native secondary

structure and slightly different packing of the helices. These

conformations were found to be very close to one another in

energy.

The MCSA runs also led to significantly decreased ener-

gies of the 1vii and 1fsd decoys, especially the nonnative

ones (RMSD . 4 Å (Table 2 and Fig. 6, b and d)). The free
energy relaxation for the largest test protein (1ail) did not

yield any conformations with energies lower than those ob-

tained from local minimization (Fig. 6 f and Table 2, columns
8 and 11). This result supports the earlier conclusion that the
energy relaxation procedure employed here appears to be

more efficient in the case of smaller proteins (1vii and 1fsd).

Analysis of the results obtained for the test proteins shows

that the scoring function, which combines the optimized

ECEPP05/SA force field and local energy minimization, suc-

ceeds in discriminating nativelike structures (RMSD , 4 Å)

from large sets of nonnative conformations for all six test

proteins. At the same time, the scoring function with a short

MCSA run after local energy minimization fails to identify

nativelike conformations as those with the lowest free ener-

gies for 1fsd (Table 2 and Fig. 6 d). This indicates that free
energy relaxation (MCSA), which provides additional in-

formation about the free energy surface of a protein, repre-

sents a more stringent test than local energy minimization for

the accuracy of a force field and should be used to obtain a

more realistic evaluation of its performance.

Evaluation of the optimized parameters using the
4state-reduced decoy set

When only one type of decoy set is used to evaluate the

performance of a scoring function, good discrimination may

be achieved by some special feature of this decoy set. To

check whether the optimized ECEPP05/SA force field per-

forms well for decoys generated by using a completely dif-

ferent method from that used in this work, we considered the

4state-reduced decoy set (38). It has been one of the most

popular decoy sets used for evaluation of different scoring

functions (11–15). This set not only spans the conformations

with RMSD ranging from 1 to 10 Å, but also includes a large

number of decoys with low RMSD (,4 Å) from the native

conformations, and therefore is very useful for assessment of

the ability of a given scoring function to discriminate both

nativelike structures from nonnative decoys and native

structure from nativelike conformations.

FIGURE 7 Overlay of the experimental structure (red) and the decoy with
the lowest ECEPP05/SA energy (green) obtained by local energy minimi-

zation for (a) 1cc7, (b) 1bdd, and (c) 1fsd, with RMSDs from the native

structure of 1.7, 3.9, and 3.8 Å, respectively.

FIGURE 8 Overlay of the experimental structure (red) and the decoy with
the lowest ECEPP05/SA energy (green) obtained from the MCSA run for

1vii. The RMSD from the native structure is 5.5 Å.
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We considered only five proteins, namely, 1ctf, 1r69, 3icb,

4rxn, and 2cro from the 4state-reduced decoy set (Table 3).

The native structures of 4pti and 1sn3 (the remaining proteins

from the set) contain several disulfide bonds, and therefore

were not considered in this work. First, energy evaluations of

fixed conformations were carried out for the decoys of 1ctf,

1r69, 3icb, 4rxn, and 2cro using the optimized ECEPP05/SA

force field (Table 3, column 5, and Fig. 9). The native

structures of 1r69, 4rxn, and 2cro score lowest in effective

free energy (�1339.7, �337.8, and �1230.1 kcal/mol, re-

spectively). In the case of 3icb, the nativelike decoy with an

RMSD of 1.80 Å from the native structure was scored as

having the lowest free energy (�715.4 kcal/mol).

The next step in the evaluation of the optimized force field

was local energy minimization and short MCSA runs after

local energy minimization for the decoys from the 4state-

reduced set. The experimental structures of 4rxn and 3icb

were solved as complexes with metal and calcium atoms,

respectively. Locations of these atoms in the loop regions

suggest that they play a crucial role in defining the native

conformations. It might be expected that energy minimiza-

tion of the native structures carried out without consider-

ing these atoms would lead to significant conformational

changes. Therefore, we did not carry out energy minimiza-

tions or Monte Carlo simulated annealing runs for the decoys

of 4rxn and 3icb. The RMSDs obtained for 1ctf, 1r69, and

2cro are given in Table 3 (columns 6 and 7) and Fig. 9. Local
energy minimization yielded the native conformations as

those with the lowest energy for 1ctf and 1r69 (�906.7 and

�1914.0 kcal/mol). The native structure of 2cro was obtained

as the second lowest (�1896.6 kcal/mol) after the nativelike

conformation with RMSD of 2.65 Å (�1909.7 kcal/mol (Fig.

9 c)). The MCSA runs after energy minimization discrimi-

nated nativelike conformations as those with the lowest en-

ergy for all three proteins, i.e., 1ctf, 1r69, and 2cro (Fig. 9 and

Table 3, column 7). In the case of 2cro, the force field per-

formed better when used for MCSA runs after energy mini-

mization than for energy minimization alone, as seen from

the lower RMSD value of the most stable decoy (1.17 vs.

2.65 Å, Table 3). The reason for the somewhat improved

discriminative ability of the scoring function including free

energy relaxation (MCSA runs) may be elimination of the

unfavorable contacts created as a result of conversion of the

original native structure to the one with the standard ECEPP

geometry with fixed bond lengths and bond angles. It is likely

that local energy minimization cannot relax these contacts,

whereas free energy relaxation (MCSA runs) may do so.

It should be mentioned that the low RMSDs (,2 Å) from

the corresponding native structure of the most stable decoys

from the 4state-reduced set suggest that the resolution of the

optimized force field is sufficiently high. On the other hand,

relatively high RMSDs (3–4 Å) of the lowest-energy na-

tivelike decoys of some training and test proteins considered

in this work may be a result of somewhat insufficient sam-

pling of the native region.

The 4state-reduced set of decoys has been used extensively

for evaluation of different all-atom physics-based scoring

functions including a variety of force fields, solvent models,

and scoring methods (i.e., energy evaluation, energy mini-

mization, and short MD runs) (11–15). In practically all of

these studies, the native structures scored as the most stable

ones. The only cases in which some scoring functions ex-

perienced difficulty recognizing the native conformations

FIGURE 9 Scatter plot of the ECEPP05/SA energy (after parameter

optimization) versus RMSD from the experimentally determined native

structure for the proteins from the 4state-reduced set: (a) 1ctf, (b) 1r69, and

(c) 2cro. Green, red, and blue circles correspond to results obtained from

energy evaluation of fixed conformations, local energy minimization, and

MCSA runs after local energy minimization, respectively.
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were 3icb and 4rxn (11,12), which is not surprising, since, as

mentioned earlier, the native structures of these two proteins

were solved with bound ligands, whereas ligands were not

taken into consideration in either of these works (11,12).

Comparison of the results obtained for the 4state-reduced

decoy set using the optimized ECEPP05/SA force field with

those from other works (11–15) shows that the optimized

force field performs well, even though it employs a very

simple solvation model.

CONCLUSIONS

In this work, we described the development and imple-

mentation of a new parameter optimization method based on

the use of protein decoys. The improved values of the pa-

rameters were obtained by creating free energy gaps between

the sets of nativelike and nonnative decoys. The parameter

optimization method has no restrictions on the number of

optimized parameters and functional form of the force field. It

can also be applied to large sets of proteins and decoys.

The new method was applied to optimize the backbone

torsional and solvation parameters of the physics-based all-

atom ECEPP05 force field coupled with a solvent-accessible

SA model. The optimized ECEPP05/SA force field performs

very well for the training proteins even after applying free

energy relaxation (MCSA runs), which explores the vicinity

of each decoy to locate additional low-energy conformations.

Thus, the force field discriminated nativelike structures (1.5–

4.0 Å RMSD) as those with the lowest energies for all six

training proteins.

Tests carried out for the proteins not included in the training

set showed that the optimized ECEPP05/SA force field is

transferable to other proteins, e.g., it was able to identify na-

tivelike structures as those with the lowest free energy for all

six test proteins when local energy minimization was used as

part of the scoring function. After theMCSA runs after energy

minimization, nativelike conformations for five out of the six

proteins emerged as the lowest in free energy. For the re-

maining protein (1fsd), competing lower-energy nonnative

decoys appeared as a result of free energy relaxation. This

failure to identify nativelike structures as the lowest free en-

ergy conformations for 1fsd can be a result of either deficiency

of the force field or insufficient exploration of the native re-

gion during decoy generation and free energy relaxation. For

example, the MCSA calculations implemented in this work

may be less efficient in the case of near-native conformations

that are more compact than nonnative decoys. To clarify this

problem, we plan to consider decoy sets generated using

different methods, as well as to modify the free energy re-

laxation procedure to enhance conformational sampling.

Another possible explanation for why the optimized force

field had difficulties recognizing the nativelike conforma-

tions of 1l2y, 1vii, and 1fsd may lie in the fact that all three

proteins are small and highly flexible. Taking the flexibility

of these proteins into account, as well as the small size of their

hydrophobic cores, it is plausible to suggest that the relative

contribution of different types of interactions and effects (for

example, enthalpy versus entropy) to stabilize the native

conformation of these proteins may differ from those in the

other proteins considered in this work.

An independent test on the 4state-reduced decoy set of

Park and Levitt (38) demonstrated that the optimized

ECEPP05/SA force field is able to discriminate the native or

near-native structures of the proteins from this set as those

with the lowest free energy, and therefore performs in a

manner comparable to the other (11–13,15) all-atom physics-

based scoring functions.

In this work, we demonstrated that the decoy-based pa-

rameter optimization method represents a useful tool for

development of accurate scoring functions applicable to

proteins with different folds (a, b, or a/b). Thus, the opti-

mized all-atom ECEPP05 force field coupled with a SA

solvationmodel is capable of discriminating near-native from

nonnative folds for numerous protein sets containing a very

large number of decoy structures. It is worth noting that the

good performance of the force field was achieved, first of all,

by using a very simple, but computationally efficient, sol-

vation model containing only a few parameters, and, second,

without introducing any additional empirical or ad hoc terms

or parameters.

The ability to discriminate nativelike structures from a

large set of nonnative conformations is a necessary but not

sufficient requirement for an accurate scoring function. Al-

though the free energy relaxation used in this work represents

a stricter test for a force field, it explores only the closest

vicinity of a given decoy and is less efficient for larger pro-

teins. An additional test, which will help to better assess the

accuracy of the force field, and which we plan to carry out in

the future, is to use the force field for folding of peptides and

small proteins with different architecture. Since our ultimate

goal is to obtain high-resolution protein models, we also plan

to use the force field, optimized in this work, for refinement

of low- and medium-resolution models produced by using

the UNRES/MD (61) and other methods.
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