
INFORMATION AND CONTROL 71, 95-130 (1986)

An Ideal Model for
Recursive Polymorphic Types*

DAVXD MACQUEEN

A T & T Bell Laboratories, Murray Hill, New Jersey 07974

GORDON PLOTKIN

Department of Computer Science,
University of Edinburgh, Edinburgh EH9 3J2, United Kingdom

AND

RAVI SETHI

AT& T Bell Laboratories, Murray Hill, New Jersey 07974

1. INTRODUCTION

When constants are added to the pure lambda calculus, run-time errors
can occur if the constants are used improperly, for example, if an at tempt is
made to apply a natural number as if it were a function or if the first
argument of a conditional is not a truth value. We consider "types" as
somehow being or generating constraints on expressions. A consistent type
discipline ensures that any expression satisfying the constraints will not
produce a "run-time error."

1.1. Expressions and Their Semantics

In the following syntax for the language in this paper, e ranges over
expressions, c over a suitable set of constants, and x over variables:

e : :=c [x] 2x.e I e(e).

A routine denotational semantics for this language appears in Section 5.
The semantic domain of values allows constants to represent truth values,

* A condensed version of this paper was presented at the Eleventh Annual ACM Sym-
posium on Principles of Programming Languages, January 1984, Salt Lake City, Utah. The
semantic model in this paper supplants that of [17].

95
0019-9958/86 $3.00

Copyright © 1986 by Academic Press, Inc.
All rights of reproduction in any form reserved.

96 MAC QUEEN, PLOTKIN, AND SETHI

natural numbers, functions, products, and sums (wrong formalizes run-time
errors):

V ~ T + N + (V-*V) + (V x V) + (V + V) + {wrong}±.

The basic theory of domains and the solution of such domain equations is
summarized in Section 2.

1.2. Types

During any evaluation of the expression f (x) , if the value of x satisfies
type constraint a, then it suffices that f satisfies the constraint of being a
function that sends all values satisfying a to values satisfying some con-
straint ~. These constraints on the values of f and x will be written as

x : f f

f :a--}r.

The inference that the value of f (x) satisfies z can be written as the rule

f : a-~ ~ x : f f

f (x) :z

Inferences like f (x) : z will be made using a formal system of axioms and
rules in which constraints like a, ~, and s -~ r are called type expressions, or
simply types. The following productions in the syntax of types correspond
to summands of the value domain (a ranges over types):

a : :=boo l I int I a ~ a l a×al a + a .

Motivation for the following additional productions is
(t ranges over type variables):

a : : = t l V t . a l ~ t . a l l z t . ~ l a n a l ~ a .

given below

Types bound by V generalize the implicit form of polymorphism used in
the programming languages ML [13] and Hope [4]. A typical
polymorphic function is the identity function I = 2 x . x that maps truth
values to values, natural numbers to natural numbers, and so on, for any
type. Its type is represented by V t. t ~ t, of which bool ~ bool and int ~ int
are instances. Existential quantification can be used to represent abstract
data types, in the sense of information hiding, as pointed out by Mitchell
and Plotkin [20]. (See also Cartwright [5] and Reynolds [253.) Intersec-
tion of types has been studied by Coppo etal. [8], Pottinger [23], and
Sall6 [26].

IDEAL YIODEL FOR POLYMORPHIC TYPES 97

Self-applications like x(x) motivate types bound using #. Reasoning as
for f (x) above,

X:S

X:S---~'T.

If we equate the constraints on x, we get s = s -~ z. The notation #s.s - , z
denotes a solution of this equation. Morris [21, pp. 12~124] observes that
such recursive or circular types allow types to be inferred for combinators
like Y.

Any pure lambda expression has type #t. t ~ t, that is, t = t ~ t, since the
expression can be used either as a function or as an argument. It follows
that constants like 3 are needed to construct expressions like 3(x) that do
not have types.

The discussion of x(x) extends to the larger expression 2x.xx.1 Since the
type of x is s = s ~ z, xx has type z, 2x . xx has type s = s ~ z, and the type
of (2x . xx) (2x . xx) is z. No assumptions were made about the type z, so
(2x . xx) (2x . xx) has type z for any type expression z. The meaning of
(2x.x_x)(2x.xx) is _L (in the model we consider below), so _1_ has every
type. The sets of values used to model types must therefore always be non-
empty. Moreover, nonterminating expressions can have well defined types.

1.3. Semantics of Types

The semantics of types in Section 5 is a formalization of the naive view of
types as sets of values; a value a has a type a if a is a member of the set of
values modeling a. Types are modeled by sets of values sharing a common
structure, where "structure" represents notions like being a function, or
being a pair. The structural distinctions expressed by types are preserved
when we go

1. "downward" to approximations and

2. "upward" to least upper bounds of consistent sets of values.

These properties are noted in Milner [-19]; they form the basis for the
definition of types as "ideals" in Section 3 (see also Shamir and Wadge
[28, 31]). A precursor to the semantic model in this paper is described in
MacQueen and Sethi [17]. Other models (e.g., McCracken
[18]) ~ e v e l o p e d for the explicit form of polymorphism expressed in terms
of type parameters following Reynolds E24] and Girard [1 2] - - d o not lend
themselves to such an intuitive interpretation of types as sets of values.

It is nontrivial to model types as "sets of values" and find a set of values

As usual, function application is indicated by juxtaposition and associates to the left; xx is
equivalent to x(x); both f(x)y and fxy are equivalent to (f(x))(y).

98 MAC QUEEN, PLOTKIN, AND SETHI

s satisfying the equality s = s--, ~. The main technical innovation of this
paper is the use of a metric structure on types to establish the existence and
uniqueness of solutions of this and similar equations, using the Banach
fixed-point theorem. Arnold and Nivat [1] and de Bakker and Zucker
[11] have given semantics for nondeterminacy and concurrency using
topological completion to create complete metric spaces. It seems fair to
say that their concern was to develop alternatives to methods using com-
plete partial orders; here there are, as yet, no alternatives to metric techni-
ques. See Coppo [6] , however.

1.4. Informal Types for Self Application

The constraint f : a ~ 3 requires that f map all values satisfying o- to
values satisfying r. If a' is a weaker constraint than ~, then, informally, a'
denotes a larger set than a. Weakening ~ to a' has the opposite effect on
the type o- ~ z of functions from a to ~, because f : a ' ~ r requires f to map
the larger set a ' to values satisfying 3; ~r '~ 3 is thus a stronger constraint
on f than a--* z. This inverse effect is limited to the first argument a in
o-~ r because the set of functions satisfying a ~ 3 increases or decreases as
the set of values satisfying the second argument r increases or decreases,
respectively.

Intuition about the role of ~ can be provided by considering a par-
ticular sequence of sets associated with the equality s = s ~ T. The semantic
counterpart of the operator ~ on types is the operator [] on sets of values
modeling types. Informally, I [] J is the set of all functions that map
elements of I to elements of J, where / , J~_V. So if I~_I' and J~J' , then
I [] J ~ I ' [] J'.

In keeping with the view of types as sets, let J be the set of values
denoted by the type 3. Starting with the set V of all values, we estimate the
set I modeling s by writing the sequence:

/ o = V

11 = I 0

12 = 11

I3 = 12

[~] J = V [] J

[] J=(V [] J) [] J

[] J=((V [] J) [] J) [] J.

Since Io is the entire set V of values, 11 consists of functions that map all
values in V to elements of J - - a fairly restrictive condition. By definition, 11
must be a subset of Io -- V, and 11 ~ Io implies 11 [] J ~ Io [] J. Therefore,
/2 is a larger set than 11. The inclusions we get are (see Fig. 1):

11 c _ I 3 ~ I 5 _ " ' .

IDEAL MODEL FOR POLYMORPHIC TYPES 9 9

l o = V

lj

FIG. 1. The sequence I0, 11,... converges t o / , yielding a solution to the equat ion s = s ~ ~.

Fortunately, it can be shown that the limits, An ~> 0 I2n and U n/> o I2, +1, of
the even and odd sequences are the same, and there is a unique set I
corresponding to a solution of the equality s = s--* ~. However, the techni-
ques used to show this result are not directly based on the convergence of
such nested sequences. Instead, convergence is established using a metric
on sets modeling types.

The progression in this paper is as follows:

1. We begin with the semantic domain of values V in Section 2.

2. In Section 3, types are modeled by the so-called weak ideals of V,
used in [17].

3. Recursive type equations are solved by considering the conver-
gence of particular sequences of types. Note that the sequence converging
to I in Fig. 1 is neither monotonically increasing nor decreasing. Con-
vergence of sequences cannot therefore be proved using monotonicity or
continuity properties. Instead, we set up a "complete" metric space of weak
ideals, defined in Section 3 via a rank function on the finite elements of V.
The solution of domain equations is reviewed in Section 2 because the
definition of the rank function is based on the structure of the domain V.

4. The Banach fixed-point theorem [2] establishes the existence of
unique fixed points for "contractive" functions on complete metric spaces.
We show in Section 4 how the various constructions of interest on ideals
become contractive functions, so this theorem can be applied to the metric
space of types.

The above results enable us in Section 5 to give a semantics to type
expressions permitting recursion and universal and existential quan-
tification. This semantics is used to show the soundness of a suitable set of
type-inference rules in Section 6. Finally, in the Appendix we consider a
variant, the strong ideals that also appeared in [17]. Analogous results
hold for the strong ideals, except that certain of the type-inference rules are

643/71/1-2-7

100 MAC QUEEN, PLOTKIN, AND SETHI

no longer sound, and it is not clear if there are alternative sound rules of
interest.

2. DOMAINS

Expressions will be interpreted using a space of values ¥ satisfying the
isomorphism:

V~-T + N + (V- , V) + (V x V) + (V + V) + {wrong}±. (2.1)

In words, V is (isomorphic to) the sum of the truth values T, the natural
numbers N, continuous functions from V to V, the product of V with itself,
the sum of V with itself, and a value wrong standing for (dynamic) type-
errors. This section contains a quick overview of the definitions and results
needed to solve equations like (2.1). These mathematical ideas are due to
Scott [27]; details may be found in many places, such as the notes by
Plotkin [22].

2.1. Complete Partial Orders

Solutions of equations like (2.1) can be found in a particular class of par-
tially ordered sets called complete partial orders. A complete partial order
(cpo for short) is a pair (D, ~_) consisting of a set D and a partial order E_
on D, such that

(i) there is a least element J_ in (D, E_), and

(ii) each increasing sequence x0 ~_"" E_ x, ~ _ ' " h a s a least upper
bound (lub) L[,~>o x , .

The set D can be identified by writing E_ D and J_ D instead of E and 1.
Any set X yields t he f la t cpo X± = X u { l } , ordered by putting x ~ y iff
x = _L or x = y. In particular, the right side of (2.1) contains

T = T± = { true, fa lse } ±

N = N±

W = { w r o n g } ±

cpo of truth values

the cpo of natural numbers

the type error cpo.

The functions of interest between cpos are the continuous ones, preserv-
ing lubs of increasing sequences; that is,

n~>0 n~>0

Functions preserving ± are termed strict. Every continuous function
f : D ~ D has a least fixed point, namely]l ,>~of ' (1D).

IDEAL MODEL FOR POLYMORPHIC TYPES 101

Any function f : X ~ Y on sets can be considered as a strict and con-
tinuous function f." X~ --, Y±. We shall make particular use of the functions

+ 1: N --, N add one

- 1: N ~ N subtract one (with 0 - 1 = 0)

Z: N ~ T test for zero.

The identity function i d D : D ~ D is continuous, and continuous
functions are closed under composition, as are the strict continuous ones;
thus we have a category of cpos and continuous functions and a sub-
category of the strict continuous functions.

2.2. Constructions on CPOs

The right side of the isomorphism (2.1) uses three constructions on cpos:

1. the function space (D--, E) of all continuous functions from a
cpo D to another E with the pointwise ordering,

2. the Cartesian product (D x E) of two cpos D and E with the coor-
dinate-wise ordering, and

3. the coalesced sum (D + E) consisting of the disjoint union of two
cpos D and E, with their least elements identified, and with the evident
inherited orderings.

Details of these constructions are given in Table 1. Elements of cpos can be
denoted using the typed).-calculus [3, Appendix A].

A few useful continuous functions are also shown in Table 1. The details
of the functions isr, inr, and outr associated with the coalesced-sum con-
struction are similar to those of isl, inl, and outl, respectively. Analogous
functions exist for the n-ary disjoint sum (0 ~< i < n):

i s ~ : D o + " " + D . _ I ~ T

i n ~ : D ~ (Do+ " " + D n _ I)

o u q : (D o + "" + D . 1)--)'Di.

It will be important later that the injection functions ini are strict and
indeed both preserve and reflect any existing lubs . 2

z A function fpreserves lubs if whenever the lub x ~ y exists, the lub f(x) u f (y) also exists
and f(x) u f (y) = f (x m y). A function f reflects lubs if whenever the lub f(x) m f (y) exists,
the lub x u y also exists and f (x) u f (y) = f (x ~ y). The definitions of preserve and reflect
apply equally to other notions such as glbs.

102 MAC QUEEN~ PLOTK1N~ AND SETHI

TABLE 1

Constructions on Complete Partial Orders

Construction
Ordering

Functions
Notation

Construction
Ordering

Functions

Notation

Construction

Ordering

Functions

Function Space, D -* E
f r - D ~ e g iff Vx~D,f(x) E_eg(X)
Y: (D--*D)~D least fixed point operator, where Yf=ll~>~of"(L)
If e denotes an element of E continuous in the free variable x (if it
appears at all) where x is a variable ranging over D, then the abstraction
(2x e D.e) denotes the function f : D--, E where f (x)= e. The function
(2x e D.e) is continuous in any variable that e is.
If el and e2 are expressions denoting elements of D - , E and D, respec-
tively (given values for their free variables), then the application el(e2)
denotes the element of E obtained by applying the denotation of e~ to
that of e2. The element e l (e j is continuous in any variable that e~ and e2
are.

Cartesian Product, D x E
(u, v> E_D×e <x, y> iffu ~ o x and v E_ey
pair: D --* (E ~ (D x E)), where pair (d)(e) = (d, e>
n~:DxE--,D a projection function
n2 : D x E ~ E a projection function
It will be convenient to write pair (el)(e2) as (e l , e2>, for functions
f : D x E--* F to write f(el, ez) instead of f ((e l , e2>), and similarly for
the general n-ary case.

Coalesced Sum, D+E={<O,d) ldeD, d C L } w { < l , e) l e e E ,

±, or

x r - o + e y i f f x = (O,x'>,y=(O,y'>,andx' G D y ' , o r

<1, x'>, y = <1, y'>, a n d x ' E E Y '

isl, isr: (D + E) ~ T, where

true

isl(x) = false

±

(x = <0, d> for some dinD)

(x = (1, e> for some e in E)

(otherwise)

inl: D ~ (D + E) and inr: E ~ (D + E), where

inl(d) = { iO ' d> (d= (d # l) L)

outl: (D + E) ~ D and outr: (D + E) ~ E, where

outl/x,={ =<0 orsomedinO//otherwiso

IDEAL MODEL FOR POLYMORPHIC TYPES 103

Finally, the continuous conditional function cond: T ~ (D --* (D ~ D)) is
defined by

cond txy = l
x (t = true)

y (t = false)

1 (t = I)

We write i f e~ then e 2 else e 3 instead of cond e~e2e3.
Both the function space and Cartesian product constructions can be

taken as functors on the category of continuous functions by the following
definitions of the exponentiation and product of functions (note that f is a
member of different cpos in the two cases):

for f : D ' ~ D and g : E ~ E ' we have (f ~ g) : (D ~ E) ~ (D ' ~ E ') ,
where

(f --* g)=2h~ (D ~ E) .gohof

for f : D - * D ' and g : E ~ E ' we have (f×g):(D×E)-*(D'×E') ,
where

(f × g) = 2z ~ D × E. (f(~l(z)), g(~2(z))).

Exponentiation, product, and sum can be taken to be functors on the sub-
category of strict functions, with the same definition for the exponential
and product. Sums of functions are defined by

for f : D ~ D ' and g : E ~ E ' we have (f + g) : (D + E) ~ (D ' + E ') ,
where

(f + g) = 2z e O + E. if isl(z) then inl(f(outl(z))) else inr(g(outr(z))).

In fact, the first two functors show why the category of continuous
functions is Cartesian closed and the last one is the categorical sum in the
subcategory of strict functions.

2.3. Construction of CPOs

The value space V can be constructed using embeddings; a continuous
map ~b: D ~ E is an embedding if there exists ¢: E ~ D such that ~p o ~b = idD
and ~b o ¢ ~_ ide. The map ~b is called a projection and being determined
uniquely by ~b is written ~b R. Projection pairs (0, ~) are a special case of
adjoint pairs of maps between partial orders [22], which can be charac-
terized by:

1. for all x in D and y in E, x E_ Cy if and only if ~bx E y, and

2. ~b preserves all existing lubs and ¢ preserves all existing glbs.

104 MAC QUEEN, PLOTKIN, AND SETHI

As an example, the functions inl, inr, in~ are embeddings with the
corresponding projections being outt, outr, and ou L. The identity is an
embedding and a projection; embeddings and projections are preserved by
composition. For two embeddings

D ~o E , 1 F we have (~blO~bo)R=~boRO~bf.

Finally, if ~bo: D O ~ E o and ~b~: D 1 ~ E1 are embeddings, we get

Embedding Corresponding Projection

(~R ~ ~1) (~0 ~ ~R)
(,~oX~) (¢,~ x,C,f)
(¢o + ~,) (¢~ + ~1 ~)

The cpo V is constructed via a limiting process. First define cpos Vn
starting from Vo = ~ ± ,

V n + l = T + N + (Vn ~ Vn) + (V,, x Vn) + (Vn + Vn) + W.

Next connect them up by embeddings ~bn: V n ~ V n + l starting from
~bo(X) = l and then putting:

q~n+l = idx + idN + (~b~ ~ ~bn) + (~b, x ~b~) + (~b~ + q~) + idw.

Then V is the colimit of the chain (V~, ~b~) in the category of embeddings.
That is, there is a cone #: (Vn,~bn)-- ,V such that (# , o R #n),,~>0 is an
increasing sequence with lubidv. (To say that #---(#,) .~>0 is a cone
means that for all n, #~: Vn--+ V and that # .=# .+~o~b , .)

The desired isomorphism 0 is constructed via a cone

vn: (V~+ 1, ~b~+ 1) --~ (T + N + (V---~ V) + (V x V) + (V + V) + W)

of embeddings where

v~ = idT + idN + (/~ ~ #n) + (#n x #n) + (#~ + #~) + idw

R ~ Note that the cones by putting 0 = l] v~ o #n + 1 and its inverse is]l #~ + 1 ° v,,.
and v are related by the equations

Yn=O°#n+l

[An=O--leVn .

It will be very convenient, notationally, in what follows to regard both 0
and O-~ as actual identities and to view the evident injections of T, N,

IDEAL MODEL FOR POLYMORPHIC TYPES 105

(V ~ V), (V x V), (V + V), and W as actual inclusions. Below implicit use
will be made of the fact already mentioned that these injections preserve
and reflect the order and all existing lubs. See Smyth and Plotkin [29] for
further details on the construction of V.

2.4. Domains
It will be necessary to know much more of the structure of V than just

that it is a cpo. First it is consistently complete meaning that any consistent
subset of V has a least upper bound; here X_~V is consistent if it has an
upper bound in V, that is, there is a y ~ V such that x E y for all x in X.
All flat cpos are consistently complete and consistent completeness is
preserved by all the constructions considered above and by the kinds of
limits used to construct V.

Next, V has a very pleasant kind of basis of finite elements. An element
of a cpo is co-finite if and only if whenever it is less than the lub of an
increasing sequence it is less than some element of the sequence. A cpo is
co-algebraic if and only if it has countably many co-finite elements and given
any element x, the set of co-finite elements less than x is directed and has x
as its least upper bound (whenever a and b are co-finite and a u b exists, it
is co-finite). The c0-finite elements in any subset X of a cpo are denoted by
X °. All co-algebraic cpos have lubs of arbitrary directed sets (sometimes
cpos are taken to the partial orders with such lubs and _L); the co-finite
elements are even finite, meaning that when one is below the lub of a direc-
ted set it is below some element of that set. Finally, a cpo is a domain if and
only if it is consistently complete and co-algebraic.

All countable flat cpos are domains (all their elements being finite) and
all the constructions send domains to domains. For the product and sum of
domains D and E we have the simple formulae: (D x E) ° = D ° x E ° and
(D + E) ° = inl(D °) u inr(E°); for the function space (D ~ E) we first define
the continuous step function (a ~ b) for any a, b in D °, E °, respectively, by

(a~b)(x)={b± (x ~ a)
(otherwise)

and then the finite functions are the finite lubs of step functions. (The lub of
al=~bl,..., an~b, exists if and only if whenever {a,.l,... , a,.k} is a subset of
the ai's with an upper bound, then {bi~,..., b~k } has an upper bound too.)
Finally, the kind of limit construction used for V produces domains from
chains of domains and the relevant formula here is V o = U #n(V~) which is
easily obtained from the fact that embeddings preserve the co-finite
elements and the formula idv--]ln~>0 # ,°#f f given above.

106 MAC QUEEN, PLOTKIN, AND SETHI

3. METRIC SPACE OF IDEALS

Type expressions will be interpreted using certain subsets of V, called
ideals, as mentioned in Section 1.3. The definition of ideals makes precise
the notion of a type as a collection of structurally similar values.

3.1. Ideals

For technical reasons the definition is given in two stages: a subset I of
some partial order P is an order ideal if and only if

1. i # ~

2. V y ~ I . V x ~ D . x ~_ y implies x~I .

We write Jo(P) for the order ideals of a partial order P.
A subset I of a domain D is an ideal if and only if it is an order ideal

satisfying the additional constraint:

3. V increasing sequences (x~) . (Vn .xn~I) implies [_]xneI.
That is, ideals are the nonempty left-closed sets closed under lubs of
increasing sequences. Nonemptiness is needed because _L has every type
(see Sect. 1.2 and 4).

If D is a domain then an ideal I is strong if and only if

4. V x, y ~ I .x u y exists implies x u y ~ L
The collection of all ideals is denoted by J (D) and of all strong ideals by
J + (D) . In this section we develop only the mathematics of ideals; the
strong ideals require more insight into the structure of V and are con-
sidered in the Appendix.

Ideals are determined by their finite elements. Regarding D ° as a partial
order (inherited from D) and ordering the ideals by subset we find

PROPOSITION 1. The correspondence I~--~I ° is an isomorphism of
(J (O) , ~_) and (Jo(D°), _~) with inverse J~-~ {[Aa, I (an) an increasing
sequence in J}.

Ideals in D might better be called closed ideals and in fact they are
exactly the nonempty closed sets in the Scott topology of D [27]; they
form a complete lattice with the glbs being the set-theoretic ones and the
lubs being given by the formula:

I;~ = I ~
2

(finite lubs are given by the set-theoretic union).

IDEAL MODEL FOR POLYMORPHIC TYPES 107

3.2. Distance between Ideals

As discussed above, the idea now is to solve recursive type equations by
structuring the ideals as a complete metric space. The distance between two
ideals will be measured via a notion of the smallest rank of a finite element
in one but not the other.

DEFINITION. A rank function in D is any function r: D ° ~ N. If I and J
are ideals then a witness for I and J is any element of I ° ® jo (the idea
being that a difference between I and J is witnessed). 3 The closeness c(I, J)
of I and J is the least possible rank of a witness for I and J, and if none
exists it is ~ .

Let us consider some fixed rank function r in what follows. The following
proposition gives the elementary properties of the closeness function.

PROPOSITION 2. (i) c(I,J)=oc i f f I=J .

(ii) c(L J) = c(J, I).
(iii) c(I, K) >>. min(c(L J), c(J, K)).

Proof For part (i), c(I,J)=oe i f f I ° @ J ° = ~ i f f I ° = J ° i f f I = J (b y
the previous proposition). Part (ii) is clear from the definition of the
closeness function.

Part (iii) is immediate if c(I, K) = oe. Otherwise, let b be a witness of
minimum rank for I and K. Now b must be a witness either for I and J or
for J and K, since otherwise b ~ I iff b ~ K. In the first case we see that
c(L K) = r(b) >>. c(I, J) while in the second case c(I, K) >~ c(J, K). I

Given such a closeness function, one can, as is well known [16, 30],
define a metric. 4 Here we take d(I, J)=2 -c(I']) where, by convention,
2 -00 =0. This is even an ultrametric 1-16, Ex. 6, p. 70] meaning that

d(I, K) <~ max(d(/, J), d(J, K))

holds (by part (iii) of the previous proposition), which is stronger than the
triangle inequality.

Now (/~)i>~0 is called a Cauchy sequence if given any e > 0 there exists
an n such that for all i, j >>. n, d(Ii, Ij) < e. A metric space is complete if every
Cauchy sequence converges.

3 Given ideals I and J, l~)J is their symmetric difference (I - J) u (J-I) .
4 A metric d is a mapping from a set to the nonnegative reals satisfying three properties: (1)

d(LJ)=O iff l=J; (2) d(l,J)=d(J,I); and (3) the triangle inequality d(LK)<~
d(l, J) + d(J, K).

108 MAC QUEEN, PLOTKIN, AND SETHI

THEOREM 3. The metric space @¢(D), d) is complete. Indeed if (I~) i>~ o
is a Cauchy sequence then its limit is I where I °= { b ~ D ° [b is in almost all
13.

Proof Clearly I ° as defined is an ideal in D ° and so I is determined. In
terms of closeness, we must show

(1) Vm>.O.3n>~O.Vi>~n.c(I, I i)>m, and what we know is

(2) Vm>~O.3n>~O.Vi, j>~n.c(Ie,! j)>m.

To demonstrate (1) let m t> 0 be given and choose n as guaranteed by (2).
Take any i ~> n. Let b be a witness of minimum rank for I and I~ (if there is
none, it is trivially true that c(I, I~) > m). If b ~ I then b is in almost every Ij
and hence is in /j for some j ~> n; if b ~ I then b is not in Ij for infinitely
many j and hence not in Ij for some j/> n. In either case b is a witness for Ii
and Ij for some j/> n and we can calculate that

c(I, Ii) = r(b) >~ e(Ii, Ij) > m

by our choice of n, thereby concluding the proof. |

At first sight this theorem is a little surprising given the arbitrary nature
of the rank function. But note, for example, that if the rank function is
constant then the only Cauchy sequences are those that are eventually
constant. The topology determined by this metric turns out to be compact
iff every r - l (n) is finite.

3.3. Rank of an Element

In order to apply this result to V we need to construct a rank function
and consider its properties. Here we just take the rank of a finite element to
be the first place it appears in the chain; that is, r(c) is the least n ~> 0
with c ~ t , (V ~) (which is well defined by the above remarks on V°). The
following properties of this rank function will be used in Section 4 to show
that the standard type constructions are "contractive."

PROPOSITION 4. (i) r (c) = 0 i f f c = ±v .

(ii) Suppose a and b are finite elements whose lub exists. Then
r(a ~ b) <~ max(r(a), r(b)).

(iii) Any element c, other then _k, of N, T, or W has rank 1.

(iv) Any finite element c o f (V x V) , other than _k, is equal to (a, b)
with a and b finite, r(a) < r(c) and r(b) < r(c).

(v) Any finite element c of (V + V), other than _k, is equal either to
inl(a) with a finite and r(a) < r(c) or to inr(b) with b finite and r(b) < r(c).

(vi) Any finite element c of (V-~V), other than ±, is equal to
(a l ~ b l) U "" ~(an=~bn) with the ai and bg finite and r(ai)<r(c) and
r(bi) < r(c) for all i.

IDEAL MODEL FOR POLYMORPHIC TYPES 109

Proof (i) Immed ia t e f rom the definition of r.

(ii) Suppose r(a)= n and r(b)= m with, say, m ~> n. Then a = p , (a ')
and b = #m(b') for some a ' ~ V, and b' ~ Vm. SO a = #m((k,ma'), where ~b,m is
the compos i t ion ~bm_ 1 ° "'" ° ~bn: V , ~ Vm. Therefore

#m((fb,ma') u b') =]gm(q~nmCl') U # m (b ') = Ct u b

since embeddings reflect lubs. Therefore, r(a u b) <~ m.
(iii) Suppose, for example, that c is t r u e e T , or more precisely that

O(c) = ino(true), where 0 is the i somorph i sm defined in Section 2.3. Then

c = 0-1(in0(t rue)) = 0 l(v0(ino(true))) = p l (ino(t rue))

since 0 o #n + ~ = vn. Thus r(c) ~< 1 and equali ty follows f rom par t (i).

(iv) To say tha t c is in V x V means that O (c) = { a , b } ~ V x V
(ignoring the injection into the sum). Since c is finite, so are a and b. As
c ¢ ± we can assume r(c)= n + 1 for some n >~ 0, and hence c = p~+ l(d) for
some d e V~+ 1. Then

{a, b} = O(c)= O(#,+ ,(d)) = vn(d)

and so d = { a ' , b ' } for some a ' , b ' ~ V ~ , , with a = p n (a ') and b = p n (b ') .
Therefore r(a), r(b) <~ n.

(v) Similar to (iv).

(vi) Assume c is in V - ~ V , meaning 0 (c) ~ V ~ V (once again
ignoring injections where convenient) . Since c ¢ _k, we have r(c)= n + 1
and c = p n + l (f) for some n~>0 and f E V ~ + I . Then we have
O(c)=O(# ,+ l (f))=v ,~ (f)~V-}V and hence f ~ V n ~ V n. Thus by the
remarks above abou t the representa t ion of finite functions, f =
(a'l ~ b ' l) u " ' u (a ' ~ b ') . N o w for any x 6 V

O(c)(x) = v , (f) (x) = (#~ ~ # ,) (f) (x)

=/~,(f (/~ff(x)))

=m([[{b;, R ') #,(x)~_ai}

=p,([_] {b; l x~_#,(a;)})

= I I {#,(b;)lx~_#,(a;)}

110 MAC QUEEN, PLOTKIN, AND SETHI

Therefore O (c) = (a l = ~ b l) ~ "'" t~ (am=~bm), where ai=#n(a~) and
bi = #,(b;) and so r(ai), r(b~) <~ n < r(c). |

3.4. Unique Fixed Points

In order to find ideals satisfying such equations as t = t ~ int we use the
Banach fixed-point theorem [-2, 30, p. 130], which guarantees the existence
of unique fixed points for a certain kind of functions on complete metric
spaces. A (uniformly) contractive map f : X ~ Y on metric spaces is one
such that there is a real number 0 ~< r < 1 such that for all x, x ' E X, we have

dy(f (x) , f (x ')) <<. rdx(x, x'),

and it is nonexpansive if this holds but with r ~< 1 (we will usually omit the
identifying subscripts on the metrics when these are clear from the context).
The generalization to n-variable functions requires

d (f (x l x ,) , f (x ' l ,..., x'~)) <~ r max { d(xi, x;) I 1 <~ i <~ n }.

The Banach fixed-point theorem states that if X is a nonempty complete
metric space and f : X ~ X is contractive then it has a unique fixed point,
namely limn~of"(Xo), where x0 is any point in X. The next proposition
characterizes these concepts in the case of J (D) in terms of the closeness
function.

PROPOSITION 5. A function f : J (D) n --+ J (D) is nonexpansive i f f for all
ideals 11 ,..., In and J1 ,..., Jn we have

c(f(I1,..., In), f(J~,..., Jn)) >~ rain c(Ii, Ji);
i

and it is contractive i f f for all ideals 11 ,..., In and J1 Jn, with some I i ¢ Ji
we have

c(f(I1 ,..., In), f (J~ ,..., Jn)) > rain c(Ii, Ji).
i

Proof We confine ourselves to proving the second and harder of these
two assertions. Take Ii and J~ as required, supposing f to be contractive.
Then we calculate that for some 0 ~< r < 1,

c(f(It, . . . , In), f (J~ Jn)) = - log2 d(f(I~ In), f(J1,..., Jn))

>~ - l o g 2 (r max d(Ii, Ji))
i

= (- - log 2 r) + min c(Ii, Ji)
i

> min c(Ii, Ji)
i

(where by convention, - l o g 2 0 = ~) .

IDEAL MODEL FOR POLYMORPHIC TYPES 1 11

Conversely suppose that when I~ ¢ Ji for some i we have

c (f (I 1 ,..., In), f (J 1 ,'", Jn)) > min c(I~, Ji).
i

Then, as both sides are positive integers:

c (f (I 1 In), f (J t ,..., Jn)) >>- (min c(I~, J ,)) + 1.
i

Therefore,

d (f (I 1 In), f (J t ,..., Jn)) = 2 c(f(ll'""In)'f(Jl'""Jn))

<~ 2--(minic(li,Ji)- 1

= 1/2 max 2 cul,si)
i

= 1/2 max d(I~, Ji)
i

showing f to be contractive as required. I

A closer look at the above proof will convince the reader that in the
present case we get the same class of contractive functions if in the
definition we allow r to depend on the arguments of f, this is not true for
arbitrary metric spaces.

4. CONTRACTIVE M A P S ON IDEALS

In order to apply the Banach fixed-point theorem to determine ideals
modeling recursive types, we need to consider the contractiveness of maps
on ideals. Some care is needed, since union and intersection have the
weaker property of being nonexpansive.

4.1. Aux i l i a ry M a p s

The projection functions g;: X1 x . . . × Xn ~ X i are not contractive but
are nonexpansive. The composition of a map f : X1 x ... x Xn ~ Y with
gi: V1 x . . . x Vm ~ X i is nonexpansive if f and all the gt are; if f is con-
tractive and all the gi are nonexpansive then the composition is contractive
and this holds also if all the gi are contractive and f is nonexpansive.
Finally, we note that when Y is an ultrametric space then a map
f : X1 x -.. x Xn ~ Y as above is contractive (nonexpansive) iff it is contrac-
tive (nonexpansive) in each argument taken separately.

PROPOSITION 6. In tersec t ion and union are not contract ive but are non-
expansive, cons idered as binary f u n c t i o n s over ideals.

112 MAC QUEEN, PLOTKIN, AND SETHI

Proof Since d(Ic~I, J n J) = d (I u I , JwJ)= d(I , J)> ~max(d (LJ) ,
d(I, J)), neither union nor intersection are contractive. To show that inter-
section is nonexpansive it is sufficient, by Proposition 5, to establish that
for any ideals/ , J, I', J',

c(I c~ J, I' c~ J') >i min(c(/ , / ') , c(J, J')).

If I n J = I' c~ aT' this is immediate, so assume they are not equal and that b
is a witness of minimum rank for Ic~ J and I' c~ J', say b ~ (I n J) - (I' c~ J').
If b(~I' then it is a witness for I and I' so r(b)>~c(I, I'); otherwise b~J' ,
implying that it is a witness for J and J ' and r(b) >1 c(J, J'). Hence in either
case we find that

c(Ic~ J, I' c~ J') = r(b) >~ min(c(I, / ') , c(J, J')).

The equally easy proof that union is nonexpansive is left to the reader. I

4.2. Type Constructors

We define three binary functions on ideals corresponding to the three
basic type constructions. The sum I [] J, product I [] J, and exponentiation
(or function ideal) I [] J of two ideals I and J are defined by

I [] J = inl(I) u inr(J)

I [~ J = I x J

I [] J = { f 6 V ~ V I f (I)~_J}

where the right-hand sides of these definitions are subsets of V + V, V x V,
and V ~ V , respectively, that are viewed as subsets of V via the
isomorphism 0. It is straightforward to show that, when viewed as a subset
of V, each of these sets is an ideal. The idea behind the definition of the
function ideal appears in many papers (see [19, 17], for example). Hindley
[15] calls it the simple semantics and attributes it to Reynolds [24] and
Scott.

The next theorem is central to the results of this paper.

THEOREM 7. All three functions, sum, product, and exponentiation, are
contractive.

Proof The basic idea is that two distinct compound ideals (e.g., I [] J
and I' [] J ') have a compound witness of least rank (e.g., (i , j) e
I [] J - I ' [] J') whose components are, by Proposition4, simpler (i.e.,
lower rank) witnesses to the differences between the component ideals (e.g.,
i6 I - I ' or j ~ J - J ') . This implies that the compound elements are closer
together than their components.

I D E A L M O D E L F O R P O L Y M O R P H I C TYPES 113

Sum. Assume I [] J ~ I ' [] J ' and let c be a witness of minimum rank
for I [] J and I ' [] J ' , say c e (I [] J) - (I ' [] J ') . Now c¢_L so by
Proposit ion 4 we either have c = inl(a) for some finite a ~ I with r(c)> r(a)
or c = in r (b) for some finite b ~ J with r(e)> r(b). In the first case, since
c ¢ I ' [] J ' we have a ¢ I ' and so a is a witness for I and I ' and we have
c(I [] J, I' [] J') = r(c) > r(a) >~ c(I, I') >1 min(c(/, I ') , c(J, J ')) , as required
by Proposit ion 5. The second case is similar.

Product. Let c be a witness of minimum rank for I [] J and I ' [] J ' ,
with, say, c ~ I [] J. Since c # _L, Proposit ion 4 states that c = (a , b), where
a and b are finite elements of I and J respectively and
r(c)>max(r(a), r(b)). As c¢ I ' [] J' we must have either a ¢ I ' or b¢J ' . In
the first case a is a witness for I and I ' of rank less than r(c) and in the
second case b is a witness for J and J ' of rank less than r(c), and the proof
concludes as before.

Exponentiation. Let c be a witness of minimum rank for I [] J and
I ' [] J ' , being, say, only in the former ideal. Then c#_L and so by
Proposit ion 4, c = (a I ~ bl) u ..- u (a n => bn), where n > 0 and ai, b i a r e

finite elements of V with r(c)>max(r(ai), r(bi)). Since c ¢ I ' [] J' there
must be an x ~ I ' such that c(x)¢J ' . Let a = l l { a i [a i E _ x } a n d
b = l l { b i l a i E _ x } = c (x) . Then a e I ' as a E _ x ~ I ' and bCJ' and, by
Proposition 4, r(a) <<. max{r(ai) [a i ~_ x} < r(c) and similarly r(b) < r(c).

Now there are two cases. If a ¢ I then it is a witness for I and I ' of rank
less than r(c). Otherwise, a ~ I and so b = c(a) ~ J since c ~ I [] J, and thus
b is a witness for J and J ' of rank less than r(c). In either case, we have
c(I [] J, I' [] J') = r(c) > min(c(I, I ') , c(J, J ')) . |

Note that this theorem would fail if we kept the same definition of
exponentiation but allowed arbitrary sets. Since ~ [] ~ = V ~ V and
(V ~ V) [] ~ = ~ , exponentiation would not be contractive in its first
argument.

4.3. Quantification

Suppose f : ~¢(D) n+l ~ J (D) is a function of n + 1 arbuments. Then we
can produce a function of n arguments by "quantifying" over its first
argument. The universal quantification of f relative to a given collection of
ideals J f f _ o¢(D) is defined by

(VJcf)(J1,..., J n) = (-] f (I , J1,..., Jn)
I c ,~£e-

and the existential quantification by

(3~ f)(J1 Jn) = I[f (I , J1 J,).
I e dU

114 MAC QUEEN, PLOTKIN, AND SETHI

It is here that fixing on a particular collection of sets as the types-- the
ideals--makes a difference to the definition of our operations, since it
affects the range of variation of the ideal I in the above definitions.

THEOREM 8. I f f: J (D) n+l - -* j (D) is contractive (nonexpansive) in its
last n arguments, so are its universal and existential quantifications.

Proof. For universal quantification, assume f is contractive in its last n
arguments and let g = V ~ f Let b be a witness of minimum rank for
g(J1 J~) and g(J'l,..., J'n), with, say, b e g (J) - g(J'). Since b ¢ g(J ') there
exists an ideal I e g f such that b(Ef(I ,J ') , while b e f (L J) since
b E Oi~ ~ f (K, J). Hence b is a witness for f (L J) and f (I , J ') and we have

e(g(J) , g(J ')) = r(b)

>>. c(f(I, J), f (I , J '))

> rain c(Ji, J;)
i

by the assumption that f is contactive in its last n arguments.
The proof that Vx. f is nonexpansive when f is in its last n arguments is

very similar, differing only in the last step. The proofs for existential quan-
tification are also similar, given the fact that (ll~ Ia) ° = Ua I2, and are left
to the reader. |

4.4. Fixed Points

Our last construction makes sense in a general metric space setting. Let
f : X x Y1 x . . . x Y,-+ X be a function of non-empty complete metric
spaces that is contractive in its first argument. Define the "parameterized
fixed-point" function pf: Y, x .. . x Y, ~ X by taking (#f)(Yl,. . . , Y,) to be
the unique element x of X such that x = f (x , yl y ,) as guaranteed by the
Banach fixed-point theorem.

THEOREM 9. I f f is contractive (nonexpansive) so is # f

Proof Suppose f is contractive with coefficient 0 < r < 1. It is easy to
show that f is contractive in its first argument for each fixed set of values
for its last n arguments, so the function g = # f is well defined. We define a
sequence of functions gin: Y~ x " " x Yn ~ X converging to g as follows:
take some fixed xo and let

go(Y) = Xo

gm + ~(Y) = f(gm(Y), Y)"

Then for all y, g(y)=l imm~o gm(Y)"

IDEAL MODEL FOR POLYMORPHIC TYPES 115

Next we prove by induction on m that each gm is contractive with coef-
ficient r. For m = 0 this is immediate, since go is a constant function. For
m + 1 we calculate

d(gm+l(Y), gin+ I(Y'))

= d(f(gm(y), y), f(gm(Y'), Y'))

<~ r max { d(gm(y), gm(Y')), d(yl , y'l),..., d(y, , y;)}

~< r max{(r max d(yi, y~)), d(yl , Y'I),.-., d(yn, Y'n)}
i

= r max d(yi, y;).
i

(f is contractive)

(induction hypothesis)

Now to show that g itself is contractive with coefficient r we note that,
by the triangle inequality, for every m ~> 0 we have

d(g(y), g(y')) ~< d(g(y), gin(Y))+ d(gm(Y), gm(Y')) + d(gm(Y'), g(Y'))

~< r max d(yl, y;) + d(g(y), g,,(y)) + d(gm(Y'), g(Y')).
i

Since the latter two summands tend to 0 as m goes to infinity, this
establishes that g is contractive as required.

The proof of nonexpansiveness is essentially the same, but with the coef-
ficient r satisfying the weaker constraint 0 < r ~< 1. |

The functions shown to be contractive/nonexpansive in the above
theorems are the semantic counterparts of constructors appearing in the
type expressions below. The results of this section will be applied to show
that the semantics of type expressions is well defined.

5. EXPRESSIONS AND THEIR SEMANTICS

Here we formally specify a language Exp of expressions (ranged over by
e) and a language TExp of type expressions (ranged over by tr, ~). As may
be expected from the above, our expression language is nothing but the
untyped 2-calculus equipped with a suitable set of constants. It is given by
the following abstract syntax grammar, where x ranges over the set of
value variables, Var, and c ranges over the set of constants: true, false,
cond, 0, + 1, - 1 , Z, pair, nl , n2, inl, inr, outl, outr, isl, isr.

e : : = c l x l 2 x . e l e (e) .

643/71/1-2-8

116 MAC QUEEN, P L O T K I N , AND SETHI

The syntax of type expressions is also given by an abstract syntax gram-
mar, where t ranges over the set of type variables, TVar.

o- ::=bool [int [t{ o ~ o] a x e] o-+o- J a r i a] o u o] Vt.o] 3t.o[#t.o-

In fact, we cannot allow all such expressions since we can only give
meaning to #t.o- when 0. denotes a contractive function of t. So say o- is
(formally) contractive in t i f f one of the following conditions hold:

1. o- has one of the forms bool, int, t ' (with t' ~ t), 0.1 ~ 0.2, O-I X 0"2, or
o 1 + 0" 2 .

2. o- has one of the forms 0"1 c~ 0"2 or o-1 u o-2 with both o-1 and o-2 con-
tractive in t.

3. o- has one of the forms Vt'.o-1, 3t'.o-~, or #t'.o- 1 with either t ' = t or
o-1 contractive in t.

Now we take TExp to be the set of well-formed type expressions where o
is well formed iff one of the following conditions hold:

1. 0" is bool, int, or t.

2. 0" has one of the forms 0"1......+0"2, 0"1XO-2, 0"1-t-0"2, 0.1t'~0.2, or
o-~ w o-2 with both 0"~ and o-2 well formed.

3. o- has one of the forms Vt.o-1 or 3t.o-1 with ol well formed.

4. o- has the form ~tt.o~ with o-~ well formed and contractive in t.

Note that if we omit the ~ and u operators, as we normally shall in a
practical type system because of the type checking difficulties associated
with those operations, then the only type expression that is not contractive
in t is t itself, so the only type expressions that are not well formed are
those containing ;tt. t.

We provide semantic interpretations of these languages by defining the
two semantic functions

d°: E x p -+ Env -+ V

Y : T E x p --, TEnv -+ J (V)

where Env = V a r ~ V is the set of environments (ranged over by p) and
TEnv = TVar ~ J (V) is the set of type environments (ranged over by v).

The definition of go is by structural induction:

do ~true]] p = true

doEcond]p = 2a E V.if iso(a) then cond a else wrong

do~x~p = p~x~

IDEAL MODEL FOR POLYMORPHIC TYPES 117

8~ 2x, e]lp = 2a ~ V . ~ e ~ p[a/x]

8~e'(e)~p = if is2(d~We']]p) then (~e']]p)(g[Ve'lp) else wrong

where p[a/x] is the environment that is identical to p except that it maps x
to a. In the above we have made free use of the convention that V can be
regarded as given by an actual equality and that the evident injections can
be regarded as inclusions. We have also only treated two of the constants;
the others are handled in a similar way.

3- is defined by the following structural induction, in which 5 f _ J (D) is
the collection of ideals not containing wrong.

[[bool~ v = T

3 - [in t~ v = N

Y~t~v = v[t~

3 - ~ 1 --" a:~v = 3-E(rl?v [] 3-E(r2~v

oJ--~G 1 X G2~Y= oJ-'-~GI~V [] ~'-~(72~V

~-"[~0-1 -.1- O'2~ V ---- ~-'-[~0"1~ V [] ~'-~-0"2~ V

:Ea~ u a2]v = : I a i '] v u 3-Ea~]v

3- ~Vt. a~ v = Vor(2I e J(D). 3-Ea~ (v [I/t]))

3-W~ t.a~v = : l ~ (/ l l e J (D) . 3 - Eo']] (v[I/ t]))

3- E#t. tr~ v = # (Z I ~ J(D). 3- Ea]] (v l i l t])).

THEOREM 10. The semantic function 3- is well defined.

Proof We prove by structural induction on a that: (1) for all v, 3-Wa~v
is well defined; (2) for any t, 2I~ J(D) . 3-~(r~ (v[I/t]) is nonexpansive, and
is contractive if a is contractive in t. The results of the last section make
such a proof quite straightforward. It is straightforward to prove that
provided v(t) does not contain wrong for any t then neither does

3-1I-o]v. I

6. RULES FOR TYPE INFERENCE

We give rules to infer type assertions of the form e : a, relative to an
assignment d of type expressions to a finite set of variables. Thus the rules
concern sequents of the form ~¢ w--e:a , where the type expression a is
assumed to be well formed.

118 MAC QUEEN, P L O T K IN , A N D SETHI

The rules are keyed to the syntax of type expressions, with most of them
being introduction and elimination rules for the various type constructs:

Constants . Types are assigned to the constants as follows:

true: bool false: boo i

O: int z: int ~ bool
+ 1: int ~ int - 1: int ~ int

pair:Vs.Vt.s--*t~(sxt) ~za:Vs.Vt.(sxt)~s
inl: Vs. Vt.s ~ (s + t) outl: Vs.Vt. (s + t) ~ s
inr: Vs.Vt.t ~ (s + t) outr: ¥s.Vt. (s + t) ~ t

cond: ¥ t .booi ~ (t ~ (t -~ t))

•2 :Vs-Vt . (sx t) ~ t

isl: V s . V t . (s + t) --* bool
isr: Vs.Vt. (s + t) ~ bool .

The rule for constants is then

d ~ - - c : a (if c : a appears above).

Variables. d ~-- x : a (if d assigns a to x).

Exponent ia t ion . Below, d , x : a is the assignment identical to ~ ,
except that it assigns a to x,

Introduct ion

El iminat ion

~ ~-- 2 x . e : a ~ ~'

d ~ - e : a ~ r ~ ¢ ~ - - e ' : a

d ~-- e(e') : z

Intersection.

In troduct ion
d ~ - - - e : a d t - - e : z

, f ~ t--- e : f f f3 T

Eliminat ion
d ~ - - e : a d ~ - - e : r

Union. Below, e ' [e / x] is the expression obtained from e' by sub-
stituting e for x, renaming bound variables as necessary,

Introduct ion

El iminat ion

~ - - e : a d ~ - - e : r

d w - - e : a w r

d l - - - e : a ~ q '

d~- -e :aw~'

sJ, x : a ~ - - e ' :~ ~ ' , X : ¢7 ~ ~--- e p : "c

~ ~---e '[e/x] : z

Universal Quanti f icat ion. Below, "t is not free in d " means that t is
not free in any type assigned by d , and a [~ / t] is the result of substituting

for t in a, renaming bound variables as necessary (which can easily be
shown to preserve well-formedness),

IDEAL MODEL FOR POLYMORPHIC TYPES

In troduct ion
d ~---e : a

d ~---e : V t . a

d ~ - - e : V t . a

(t is not free in d) ,

119

El iminat ion
d ~-- e : a i r / t] "

E x i s t e n t i a l Quant i f icat ion.

In troduct ion

El iminat ion

d ~-- e : t r [v / t]

d ~ - - - e : ~ t . a '

d w - - e : 3 t . a d , x : c r F - - - e ' : z

d ~- - -e ' [e /x] : z
(t is not free in d or ~).

Recursion.

d ~ - e : t r [# t . a / t]
In troduct ion

d ~--e : # t . t r

d ~---e : # t . t r
E l iminat ion

d w - e : a [# t . a / t] "

We say that d ~-- e : a holds iff there is a proof of it using the above
rules, and read: "e is well typed, with type a, relative to d . " Note that if
d w- e : a holds then d assigns types to all free variables of e and, further,
for any d , d ~ e : a holds iff d ' ~ e : a holds, where d ' is the restr ict ion

of d to the free variables of e. That the rules do not all come in
introduction/elimination pairs (Gentzen style) is due to our use of con-
stants to treat types where possible (Hilbert style). Intersection, universal
quantification, and perhaps (see below) recursion, union, and existential
quantification do not seem best treated in this way; they seem descriptive
rather than computational.

Table2 shows the use of the rules to show t h a t , - - - Y : V t . (t ~ t) ~ t
indeed holds (we omit d when it is empty). Recall that

Y =)of. (2 x . f (x x)) (2 x . f (x x)) .

The exponentiation rules are those of Curry's system of functionality [9]
treated in the fashion of Milner 1-19]. They bear a clear relation to the
usual types 2-calculus: ~ e : a holds under these rules iff there is a typed
term e' of type a that becomes e when the types are removed.

The rules for intersection are found in the work of Coppo et al. [7, 8]
and Pottinger [23]. Coppo et aL [8] also consider a universal type -I- that
we discuss below, taking q- =aef 3t. t. From Coppo and Dezani-Ciancaglini
[7] and Pottinger [23], a term is typable in this intersection type dis-
cipline iff it is strongly normalizable, an undecidable property. The rules for

120 MAC QUEEN, PLOTKIN~ AND SETHI

TABLE 2

Proof of ~---Y: Vt. (t --* t) ~ t

Type Assignment ~-- Expression : Type Ruel

x : # s . (s ~ t) , f : t ~ t ~ - -

x : l ~ s . (s ~ t) , f : t ~ tw--
x : # s . (s ~ t) , f : t ~ t ~ - - -
x : # s . (s ~ t) , f : t - - , t ~--

x : l~s.(s ~ t) , f : t ~ tw--

f : t ~ t ~ - - - -

f : t ~ t ~ - -

f : t ~ t w - -

b---

x : l~s.(s ~ t)
x : (u s . (s -~ t) -~ t)

x x : t

f : t ~ t
f (x x) : t

Z x . f (x x) : (US. (S ~ t) ~ t)
2 x . f (x x) : # s . (s ~ t)

(Z x . f (x x)) (Z x . f (x x)) : t

2f . (2 x . f (x x)) (2 x . f (x x)) : (t ~ t) ~ t

Z d . (Z x . f (x x)) (2 x . f (x x)) : Vt. (t ~ t) ~ t

Variable
Recursion elimination
Exponentiation elimination
Variable
Exponentiation elimination
Exponentiation introduction
Recursion introduction
Exponentiation elimination
Exponentiation introduction
Universal quantification

introduction

union seem to be novel; the introduction rule is obvious, and the
elemination rule is intended as a finite analog of the elimination rule for
existential quantification, discussed below. As remarked above, type-
checking difficulties seem to make intersection and union awkward in
practice; moreover it is not clear if there are any potential benefits from
their use.

The rules for universal quantification are related to Reynolds' second-
order typed 2-calculus in much the same way that the rules for exponen-
tiation were related to the ordinary typed Z-calculus (see [-25]). With the
addition of the rules for existential quantification this relation can be exten-
ded to Girard's broader second-order calculus [12]; however, the lack of a
linguistic correlate for the elimination construct for existential types in the
typed 2-calculus forces us to use substitution instead. Perhaps it would be
better to have a construct, with e for x in e', meaning the same as e ' [e / x] ,

and the corresponding typing rule:

~ ¢ ~--- e : 3 t . tr ~ ¢ , x : tr ~--- e ' : z
(t not free in d or z).

F-- (w i t h e f o r x in e ') : z

A similar construct might lead to the right elimination rule for union types.
As particular cases of quantification we can consider "universal" and

"empty" (better, "top" and "bot tom") types, q- =der 3t. t and l =def Vt. t
with the following derived rules for T:

~¢ ~--- e : o-
I n t r o d u c t i o n

~¢~--e: Y '

~ F--- e : T s~C, x : t F- - e ' : tr
E l i m i n a t i o n (t not free in ~¢ or ~r);

d ~ e ' [e / x] : tr

IDEAL MODEL FOR POLYMORPHIC TYPES 121

and for ±:

d ~ - - e : t
Introduction

d w - - e :_l_

~¢t w-- e : _l_
Elimination

d ~ - - e : a "

(t not free in d) ,

Note the difference from the rules of Coppo et al. for T; these arise because
T is not in fact universal, since it does not contain wrong.

Finally, the rules for recursion are motivated by our solving type
equations, not just isomorphisms. It is not clear how useful the rules are in
this form. They are hardly very restrictive, since, as noted in Section 1.2,
every term of the untyped 2-calculus receives the type ~ t . t ~ t. On the
other hand, they are not sufficient to establish compatibility between cer-
tain equivalent recursive type expressions (i.e., type expressions having the
same infinite unfoldings). In practice, the use of recursive types is often
mediated by certain explicit constructs, such as pointers in Pascal or con-
structors in Standard ML, and these simplify the problem of type checking
with recursive types.

Turning to the soundness of the system, we define ~ p,v ~1 as meaning
that E ~ x ~ p e J ~ a ~ v whenever d assigns a to x; then we define
d ~ p , v e : t r as meaning that if ~ p , v d then BWeT]pe~[ra'~v; finally,
~¢ ~ e : a means that for all p in Ear and v in TEnv, ~¢ ~ p,~ e : a.

THEOREM 11 (Soundness). I f e t ~--e : a then ed ~ e : a.

Proof. The proof proceeds by induction on the size of the formal proof
tree of d ~ e : a. We content ourselves with a few illustrative cases.

For the conditional it is enough to show ¢[Feond~p (=f , say) is in
T [] (I [] (I [] I)) for any ideal / . But this is equivalent to showing that
fabc e I whenever a • T, b • L c • L Since the only possibilities for a are true,
false, and _1_, we have that f abc is either b, c, or _1_, and hence it is i n / .

For exponentiation the proof goes as in [19, 14], for intersection, the
proof goes as in [8], and we leave the cases of union and universal quan-
tification to the reader.

For existential quantification, first consider the introduction rule. Sup-
pose, by the induction hypothesis, that d ~ e : a [z / t] and we wish to
show, for given p, v, that d ~ e : 3t.a. Assuming that ~p,v d , we have

8~e~p • J-[[cr[z/t]~v = J-[[a~ (v[3-Wz'~v/t]) c J-~3t.cr~v

where the equality follows by an easily proved substitution lemma.
As for the elimination rule, by the induction hypothesis we can suppose

122 MAC QUEEN, PLOTKIN, AND SETHI

that d ~ e : 3t, a and d , x : a ~ e' : z (with t not free in d or z) and we
wish to show for given p, v satisfying ~p,v d that ~¢ ~p,v e'[e/x]:v. We
have g~e~peY~3t.a~v by the definition of ~ . Let a be finite with
a ~ g~e~p. Then since aeJ-[[3t.a~v, Proposition 1 yields an ideal I e X
such that a~Y-[a~v', where v '= v[I/t]. Now letting p' =p[a/x] we have
~p,,v, d , x :a, as t is not free in d . Hence ~[[e'~p'EY[[z~v' =~-~z~v, as t
is not free in z. Thus

g~e'[e/x]]]p = g~e'~ p[N[ge]]p/x]

= II {g[[e'~ p[a/x] I a finite and a ~_ g~e~p}

by an easy substitution lemma and the continuity of g, respectively. The
latter expression is in Y[Fz~v by the closure of ideals under limits.

Finally, the soundness of the recursion rules is straightforward. |

7. CONCLUSION

This paper justifies the extension of the type system of [17] to include
recursive types. However, in contrast to the type system of Milner [19, 10],
it is difficult to decide in general whether a given expression has a given
type. It can be shown that this is a Hi-complete question, even when
restricted to terms of the pure 2-calculus and the type |nt --. int. It follows
that no recursively enumerable axiomatic type system can be complete for
the true-type assertions.

On a practical level, this paper justifies the extension of unification-based
type checking algorithms for the type systems of [14, 19, 10] to allow
circular unification. Similar algorithms can be applied to check the Algol
family of languages, even though the types of procedure parameters are not
specified. Note that dialects of Pascal that require full declaration of the
types of procedure parameters do not allow self-application to be
expressed, since they do not support recursive functional types.

A P P E N D I X : STRONG IDEALS

Here we obtain results for strong ideals completely analogous to those
obtained for the weak ideals. In the case of weak ideals, we could use finite
elements to treat lubs as set-theoretic unions, using the formula
(111~)°= U I~. This equality does not hold for the strong ideals, which
can, however, be treated by using more special kinds of elements than the
finite ones.

IDEAL MODEL FOR POLYMORPHIC TYPES 123

A.1. Primal Domains

DEFINITION. Let D be a cpo. An element p of D is prime (resp. an
co-prime) iff whenever X is a finite subset (resp. any countable subset) of
D, whose lub exists, such that p ~_ I[X, then p E_ x for some x e X.

Clearly, every co-prime is an co-finite prime; the converse holds in any
consistently complete cpo. Note that _L is not a prime according to this
definition. Primes play a very important role in lattice theory. The reader
should beware that our primes are often termed the co-primes by other
authors as their primes are the duals of ours.

DEFINITION. A consistently complete cpo is co-primal iff it has countably
many co-primes and every element is the lub of the co-primes beneath it.
The co-primal elements of any X _ D are denoted by X °.

Every co-primal consistently complete cpo is co-algebraic and the finite
elements are the finite lubs of co-primes. Conversely, every domain (co-
algebraic consistently-complete cpo) in which the finite elements are the
finite lubs of co-primes is co-primal. To show that some particular domain
D is co-primal it is enough, therefore, to display a set of co-primes and show
every finite element is a finite lub of some of these co-primes; that set is then
the set of all co-primes. The co-prime elements of an co-primal domain are
even completely prime in the sense that whenever less than the lub of an
arbitrary subset they are less than some element of the subset.

In an co-primal domain D, a decomposition of an element x is a set of
primes X _ D °, such that x = U X. Every finite element a ~ D ° has a unique
decomposition into a finite, "independent," set of primes, called the com-
ponents of a. The notion of independence is defined as follows:

DEFINITION. Let D be consistently complete cpo. Say x ~ D depends on a
consistent Xc_D if x m_ [I X. A set Xc_D is independent if no x in X
depends on X \ { x } .

FACT 12. Let D be an co-primal domain. Then for every element b of D °
there is a unique independent set X of primes such that b = I I X and further
X is a finite set of co-primes.

Now we turn to our constructions with the aim of showing V to be
co-primal. First, every flat cpo is co-primal as all its elements, except ±,
are primes.

Let D and E be co-primal domains. Their product D x E is co-primal as
we have

(D x E) ° = (D ° x {_l_E}) w ({-l-D} X E °)

124 MAC QUEEN, PLOTKIN, AND SETHI

since any finite element (a, b) can be decomposed into

{ (P l , _1_),..., (Pro, 2) , (_L, ql),... , (L , q ,)}

if a can be decomposed into {pl,..., p,,} and b into {ql,..., q,}. Further,
this decomposition is independent if those of a and b are. Their sum D + E
is m-primal with

(D + E) ° = inl(D °) + inr(E °)

as every finite element is either inl(a) with a ~ D °, in which case it can be
decomposed into {inl(pi)}, where {Pi} is a decomposition of a, or else it is
inr(b), which has decomposition {inr(qj)}, where {qj} is a decomposition
of b ~ E °. As in the case of products, independence, and uniqueness of
decompositions are inherited. Finally,

FACT 13. I f D and E are co-primal domains, then the function space,
(D -~ E), is co-primal and

(D ~ E)" = { a ~ q taED °, q~E°} .

I f f = [[{a i~ bi} is a finite function and if {qij} is a decomposition of bi into
primes, then {ai~qij} is a decomposition o f f

In some other parts of semantics, a strict product construction:

D @ E ~ f {(d, e) e D x EI s-- -1-o iffe = LE}

with partial order inherited from D × E, has been considered [22]. Unfor-
tunately, this is not co-primal even if D and E are. For example,
(W x W) ® (W × W) is not co-primal. So, if we had added an extra sum-
mand V ® V to the definition of V the approach via primes of this Appen-
dix would not work; it is an interesting open question how one should then
proceed.

Turning to V, we begin by relating embeddings to primes.

DEFINITION. Let f : D ~ E be a continuous function where D and E are
consistently-complete cpos. Then f is additive iff whenever x u y exists in D
then f (x u y) = f (x) u f (y) .

Clearly, the identity is additive and the additive functions are closed
under composition. Also all embeddings are additive.

LEMMA 14. Let qk: D ~ E be an embedding, where D and E are con-
sistently-complete cpos. Then if q~R is additive, (~ preserves primes (and so
also preserves m-primes).

IDEAL MODEL FOR POLYMORPHIC TYPES 125

it is easy to show that i f f and g are additive, so are (f + g), (f x g), and
(f ~ g). It follows by an easy induction on n that all the ~b~ are additive
(and of course the ~b, are additive, too).

LEMMA 15. The #Rn: V --¢. V n are additive.

Note that it follows that the v n are also additive and of course both 0
and 0 1 are additive as are all isomorphisms. Because of all this regarding
0 and 0-1 as identities does not create ambiguities as to which elements are
prime and neither does viewing the injection of T, N, (V ~ V), and so on,
in V as inclusions.

FACT 16. The domain V is co-primal and indeed we have

V " = U # . (v :).
n

Further, i f {Pi} is any decomposition of a in V 2 into primes, then {#,(Pi)} is
one of #,(a) into primes; it is independent i f that of a is.

A.2. Strong Ideals

Let D be an co-primal domain. Recall from Section 3.1 that J0(P) and
J + (P) denote the collection of all order ideals and of all strong ideals,
respectively, of any given partical order P. Then regarding D ° as a partial
order (inherited from D) and structuring ideals by subset we have

PROPOSITION 17. The correspondence I~-+I ° is an isomorphism oJ
(J + (D) , ~_ } and (J o (D ') , -~ } with inverse J~-+ { x e D [V p e D ' . p E_ x
implies p c J}. Further J + (D) is a complete lattice with meets given by
intersection and joins given by (l [~ I~)" = U~ I~" and finite joins by the for-
mula I u I' = { x u y] x e I, y e I', and x u y exists}.

Proof Let f : J+(D) - - - , Jo (D ') and g : J o (D ') ~ J + (D) name the
correspondences. Clearly f (I) is an order ideal in J0(D") by condition (2)
in the definition of strong ideals. To see that g(J) is a strong ideal note first
that ± e g(J), since p ~_ I never holds for a prime p. Next if y e g(J) and
x ~_ y then for any p e D" if p E_ x then p E_ y and so p e J, and therefore
we have x e g(J). Next suppose {x,} is an increasing sequence of elements
of g(J). Then if p ~_ L] x , is an co-prime, p E_ x , for some x , and so p e J;
therefore II x , is in g(J). Finally, a similar argument shows x u y is in g(J)
if x and y are and x u y exists. Thus g(J) is indeed a strong ideal.

Now note that

f (g (J)) = { q e D " I V p e D ' . p ~_ q implies p c J} = J

126 MAC QUEEN, PLOTKIN, AND SETHI

since J is an ideal of D °. Also x E g(f (I)) iff Vp E D °, p ~_ x implies p ~ I °.
So clearly, if x ~ I then x ~ g(f (I)) by condition (2) on strong ideals. Con-
versely, take x e g(f (I)) and let P0, Pl, P2 enumerate the co-primes less
than x (there may be none, or finitely many of them); they are all in I °.
Then each x n =aef Ili<n Pi is in I by conditions (1) and (4) and so x = II x ,
is in I by condition (3). Therefore g(f (I)) = I as required and we see that f
is indeed an isomorphism with inverse g. Both f and g are clearly
monotonic, as well.

Clearly [-]~ I~ = 0 I;. as the intersection of strong ideals is a strong ideal.
Hence the assertion for meets holds and J + (D) is a complete lattice. For
the first formula for joins, we calculate that

(U I~)" = U I;, (since f is an isomorphism)

= U i ; (since joins are set-theoretic
unions for ideals of partial orders).

Since (I • I ') ° = I ° w (I') °, to prove the formula for finite joints it suf-
fices to show that if J = { x u y l x ~ I , y~I ' , x w y exists} then
J = g (I ' w (I ') °) . Take x e I , y ~ I ' such that x u y exists. If p E_ (x u y)
is an co-prime then p ~_x or p E_ y and so p EI ° or p e(I ') °, and
hence (x u y)~ g(I ° u (I ') ') , thus showing that J c g(I" u (I ') ') .
Suppose z ~ g (I ° w(I ') °) and let x = k J { p ~ I ° [p ~_ z} and
y = l [{ p ~ (I ') " I p ~ _ z } . Then clearly z = x u y and x, yEI , so z~J ,
concluding the proof. I

Assume now that we have a rank function r: D ° ---, N. A prime witness for
two strong ideals I and J is simply a witness that is prime, that is, an
element of I ° ® J° . We define the closeness function c + (/, J) to be the least
possible rank of a prime witness for I and J, and if none exists, it is ~ .
Analogous to Proposition 2 we have for strong ideals:

PROPOSITION 18. (i) c + (I , J) = ~ i f f I = L

(ii) c+(I, J) = c + (J , I).

(iii) c+(I, K) >~min(c+(I, J), c+(J, K)).

Proof The proof is just like that of Proposition 2, but using the
previous proposition instead of Proposition 1. I

As before, we can now define an ultrametric, d+(I, J)=def2 -c+(1'J) and
we get, analogously to Theorem 3 (and with the analogous proof):

THEOREM 19. The metric space (J + (D) , d +) is complete. Indeed if
(Ii)i>~0 is a Cauchy sequence then its limit is I where I ° = { b e D ° [b is in
almost all Ii}. 1

IDEAL MODEL FOR POLYMORPHIC TYPES 127

Rather than repeating proofs, we could instead have defined c + (/, J) as
in Section3.1, but using the rank function r+(a)=aefmax{r(ps)}, where
{Ps} is the prime decomposition of a.

Now turning to V, Proposition 4 can be read

PROPOSITION 20. (i) Any co-prime element c of (VxV) is equal to
(a, b) , with a and b co-prime and r(a) < r(c) and r(b) < r(c).

(ii) Any co-prime element c of (V + V) is equal to inl(a), with a
co-prime and r(a) < r(c) or to inr(b), with b co-prime and r(b) < r(c).

(iii) Any co-prime element c o f (V ~ V) is equal to (a=:,b), with a
finite, b co-prime, r(a) < r(c), and r(b) < r(c).

Proof We prove just (iii) as an example. As c is co-prime, it is not _L
and so by Proposition 4(vi) we have c = 117_ 1 as =~ bi with as, bs finite and
r(as) < r(c) and r(bi)< r(c). But as c is co-prime, we have n = 1 and b I is
co-prime, employing Fact 13. |

A.3. Contractive Functions

The analog for strong ideals of Proposition5 holds with the
corresponding proof.

PROPOSITION

not, in general,

Proof This
expansive. So,
minimum rank

21. Meet and join (of strong ideals) are nonexpansive but
contractive.

is as for Proposition 6, except when showing I u J non-
suppose I S I ' or J ~ J ' and let p be a prime witness of
for I u J and I' u J', being, say, in the former, but not the

latter. As (I u J) ° = I ° u J ° and similarly for / ' and J', we have that
p ~ I - I ' (or J - J ') and the proof concludes as usual. |

The sum, product, and exponentiation constructions are defined as
before, it being easily seen that they send strong ideals to strong ideals.

THEOREM 22. The sum, product, and exponentiation constructions are all
contractive.

Proof We just consider the hardest case, exponentiation. Take strong
ideals L I', J, J', and let p be a prime witness of minimum rank for I [] J
and I' [] J', being, say, only in the first of these.

By Proposition20 we have p=(a=~q) with a finite, q co-prime,
r(a)<r(p) , and r(q)<r(p) . Since p C 1 ' • J', there is an x in 1' with
p(x) q~ J'. This implies that p (x) = q ¢ J' and hence a E_ x and so a ~ I'.

Now if q ~ J we are done, since then q ~ J G J ' implying c+(J,J')<<.
r (q) < r (p) = c + (I [] J, I' [] J'). If q¢I . Let {ss} be the unique indepen-

128 MAC QUEEN, PLOTKIN, AND SETHI

dent decomposition of a. Then for some i, s~ ¢ I since I is a strong ideal.
Also, s~ e I' since si _E a e I', so sg is a witness for I and I'. Furthermore,
r(s~) <<. r(a) by Fact 16 and the uniqueness of independent prime decom-
positions. Hence c+(I, I')<~r(si)< r(p) and we are done. I

Turning to quantification, we consider a collection J (C ~ J + (D) of
strong ideals and define universal and existential quantification as in the
case of weak ideals. Theorem 8 also holds for the strong ideals, the proof is
the same for universal quantification, but for existential quantification we
use co-primes as in the proof of Proposition 17 for finite lubs.

Finally, the general remarks on fixed points apply to strong ideals just as
well as they did to the weak ones.

Turning to type expressions and their semantics we may define
J - + : TExp ~ TEnv + ~ J + (V) in complete analogy to 3- in Section 5,
where of course, TEnv + = d e f T V a r - ~ J + (V) is the set of strong-type
environments. Along the way one notes that as a function of the
denotations of any of its free variables, the denotation of a type expression
is nonexpansive, and it is contractive if the expression is contractive in the
variable.

Turning to type inference, we define the truth of sequents s¢ ~ + e : a as
we did in the weak ideal case in Section6. Unfortunately, the
corresponding soundness theorem does not hold. Let e be the expression
nz(X)(nl(x)). Then, we have that x : a x (a ~ bool) ~-- e : bool holds for any
a. So, first, taking a to be int and bool and applying the elimination rule,
for union types, followed by the introduction rule for functional types, we
get w-)~x.e : ~ ~ bool, where z =d~f (int × (int ~ bool) w bool x (bool ~ bool)).
And, second, taking a to be t, we get, this time with the elimination rule for
existential types, that ~--2x.e : v' ~ bool, where z' =aef (3t. t x (t -~ bool)).
However, neither ~ + 2 x . e : z - ~ b o o l , nor ~ + 2 x . e : z ' ~ b o o l holds
(omitting the empty environment) and it is enough to prove the first of
these assertions. Note that a =def <0, I v) is in N [] (N [] T) and that
b=d~r < I v , 2xEV.condvx I v I v) is in T [] (T [] T) (where condv is
the denotation of eond). But under the strong ideal interpretation a ~ b is
in the denotion of z, and if x denotes a u b, then e denotes wrong and so

+ 2x. e : ~ ~ bool fails.
As may be supposed, the problem lies with the elimination rules for

union and existential types. They are not sound, in that under the strong-
ideal interpretation, their conclusions can be false although the premises
are true. On the other hand, all the other rules are sound, and it remains to
be seen whether adequate alternative elimination rules can be found.

RECEIVED October 3, 1985; ACC~PTEO April 2, 1986

IDEAL MODEL FOR POLYMORPHIC TYPES 129

REFERENCES

1. ARNOLD, A., AND NIVAT, M. (1980), Metric interpretations of infinite trees and semantics
of non deterministic recursive programs, Theoret. Comput. Sci. 11, 181-205.

2. BANACH, S. (1922), Sur les op6rations dans les ensembles abstraits et leurs applications
aux 6quations int6grales, Fund. Math. 3, 7-33.

3. BARENDR~GT, H. P. (1981), "The Lambda Calculus: Its Syntax and Semantics," North-
Holland, Amsterdam.

4. BURSTALL, R. M., MAcQUEEN, D. B., AND SANNELLA, D. T, (1980), Hope: An experimen-
tal applicative language, in "Lisp Conference," August, pp. 136-143, Assos. Comput.
Mach., New York.

5. CARTWRIGHT, R. (1985), Types as intervals, in "Twelfth Ann. ACM Sympos. Principles of
Programm. Lang." pp. 22-36.

6. CoPPo, M. (1985), A completeness theorem for reeursively defined types, in "12th Colloq.,
Nafplion, Lecture Notes in Computer Science Vol. 194, pp. 12(L129, Springer-Verlag,
New York/Berlin.

7. CoPPO, M., AND DEZANI-CIANCAGLINI, M. (1980), An extension of the basic functionality
theory for the 2-calculus, Notre Dame J. Formal Logic 21, No. 4, 685-693.

8. CoPPO, M., DEZANI~IANCAGLINI, AND VENNERI, B. (1981), Functional characters of
solvable terms, Z. Math. Logik Grundlag. Math. 26, 45-58.

9. CURRY, H. B., AND FEYS, R. (1958), "Combinatory Logic," Vol. 1, North-Holland,
Amsterdam.

10. DAMAS, L. AND MILNER, R. (1982), Principal type-schemes for Functional programs, in
"Ninth Annull ACM Symposium on Principles of Programming Languages,"
pp. 207-212.

11. DE BAKKER, J. W., AND ZUCKER, J. I. (1982), Denotational semantics of concurrency, in
"Fourteenth Annu. ACM Sympos. Theory of Computing" pp. 153-158.

12. GmA~D (1972), "Interpretation fonctionelle et 61imination des coupres de l'arithm6tique
d'ordre sup6rieur," Th6se d'l~tat, Universit6 Paris VII.

13. GORDON, M. J., MILr~R, A. J., AND WADSWORTH, C. P. (1979), "Edinburgh LCF," Lec-
ture Notes in Computer Science Vol. 78, Springer-Verlag, New York/Berlin.

14. HINDLEY, R. (1969), The principal type-scheme of an object in combinatory logic, Trans.
Amer. Math. Soc. 146, 29-60.

15. HINDLEV, R. (1983), The completeness theorem for typing A-terms, Theoret. Comput. Sci.
22, 1-17.

16. KAPLANSKY, I. (1972), "Set Theory and Metric Spaces," Allyn & Bacon, Boston, Mass.
17. MAcQUEEN, D. B. AND SETm, R. (1982), A higher order polymorphic type system for

applicative languages, in "Symposium on Lisp and Functional Programming, Pittsburgh,
Pa., pp. 243-252.

18. McCRACKEN, N. J. (1979), "An investigation of a programming language with a
polymorphic type structure," Ph.D. thesis, Computer and Information Science, Syracuse
Univ.

19. MILNER, R. (1978), A theory of type polymorphism in programming, J. Comput. System.
Sci. 17, No. 3, 348-375.

20. MITCHELL, J. C., AND PLOTKIN, G. D. (1985), Abstract types have existential types, in
"Twelfth Annu. ACM Sympos. Principles of Programming Languages," pp. 37-51.

21. MORRIS, J. H., JR.(1968), "Lambda-calculus Models of Programming Languages," Ph.D.
thesis, Sloan School of Management, MIT.

22. PLOTKIN, G. (1978), Advanced domains, Summer School, Pisa.
23. POTTINGER, G. (1980), A type assignment for the strongly normalizable 2-terms, in J. P.

Seldin and J.R. Hindley, "To H.B. Curry: Essays on Combinatory Logic, Lambda

130 MAC QUEEN, PLOTKIN, AND SETHI

Calculus and Formalism" (J. P. Seldin and J. R. Hindley, Eds.), pp. 561 577, Academic
Press, London.

24. REYNOLDS, J. C. (1974), Towards a theory of type structure, Lecture Notes in Computer
Science Vol. 19, pp. 408-425, Springer-Verlag, Berlin/New York.

25. REYNOLDS, J. C. (1985), Three approaches to type structure, in "Mathematical Foun-
dations of Software Development," Lecture Notes in Computer Science Vol. 185,
pp. 97-138, Springer-Verlag, Berlin.

26. SALLE, P. (1978), Une extension de la th6orie des types, Lecture Notes in Computer
Science Vol. 62, pp. 398-410, Springer-Verlag, Berlin/New York.

27. SCOTT, D. S. (1972), Continuous lattices, Lecture Notes in Mathematics Vol. 274,
pp. 97-136, Springer-Verlag, New York/Berlin.

28. SHAMm, A. AND WADGE, W. W. (1977), Data types as objects, "4th Colloq. Automata,
Languages and Programming," Turku, Lecture Notes in Computer Science Vol. 52,
pp. 465-479, Springer-Verlag, Berlin/New York.

29. SMVTtt, M. B. AND PLOTKIN, G. D. (1982), The category-theoretic solution of recursive
domain equations, SIAM J. Comput. 11, No. 4, 761--783.

30. SUTH~RLAND, W. A. (1975), "Introduction to Metric and Topological Spaces," Oxford
Univ. Press, London.

31. WADGE, W. W. (1978), Personal communication to R. Milner, March.

