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a b s t r a c t

A new constitutive formulation, the so-called Performance Dependent Model valid for normal and high
strength concretes is presented. The distinctive aspect of the proposed model is the consideration of rel-
evant properties of concrete mix components in the evaluation of the involved material performance or
quality at the macroscopic stand point. In this way, the composite features of concrete are appropriately
taken into account.

The model maximum strength surface is defined by means of the Performance Dependent Failure Crite-
rion proposed by the authors in previous works. Concrete behaviors in pre and post peak regimes are
modeled with a non uniform hardening law and an isotropic softening rule, respectively. To realistically
reproduce the concrete ductility in pre and post peak regimes under different load scenarios, the harden-
ing and softening laws are defined in terms of the acting confining pressure. Concrete dilatancy behavior
is approached by means of a volumetric non associative flow rule. The softening law is embedded in frac-
ture energy concepts for mode I and II types of failure. The model considers two main input material
parameters: the uniaxial compressive strength and the performance parameter, a quality index defined
in the context of the Performance Dependent Failure Criterion.

The proposed constitutive model is able to capture the substantial differences in the failure behavior of
normal and high strength concretes as well as of concretes with the same compressive strength but dif-
ferent mix components. The predictive capability of the model is demonstrated in the numerical analyses
included in this paper where the numerical predictions are compared with experimental results related
to concrete specimens of different qualities and subjected to stress histories under both compressive and
tensile regimes.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

In recent years, there has been a significant growing trend to
use concrete characterized with a superior performance to conven-
tional, both in terms of their uniaxial compressive strength f 0c

� �
and

of their elastic properties. This was aided by the need for greater
slenderness in structures and the demands of higher strengths.
From the concrete technology standpoint, the progress made dur-
ing last decades is relevant. At present, concrete strengths of over
100 MPa can easily be achieved, what it is more than double the
strength achieved in the early ’90s.

In general terms, concrete presents a complex non linear behav-
ior, characterized, among other features, by confinement sensitiv-
ity, inelastic dilatancy, softening, and path dependency. Its failure
mode may vary from fragile in tensile regime, to quasi ductile in
the low confinement regime and ductile in the high confinement
one. On top of previous mentioned complexities, the experimental
evidence demonstrates that failure behavior of normal strength
ll rights reserved.
concretes (NSC) substantially differs from that of high strength
concretes (HSC), see e.g. van Mier (1997), Chen and Han (1988),
Giaccio et al. (1993), Xie et al. (1995), Imran and Pantazopoulou
(1996) and Rashid et al. (2002).

From the computational mechanics standpoint, substantial pro-
gress has been made in the modeling and simulation of failure
behavior of conventional concrete. Much of this research was
aimed at the macroscopic level of observation and based on the
‘‘smeared crack’’ concept, in which the post-peak strength decay
of quasi-brittle materials like concrete is modeled through the
stress–strain constitutive relation. Despite the advantages of the
continuous approach from the numerical stand point, the strong
mesh dependency of its computational predictions when localized
failure modes are activated is a relevant shortcoming. To avoid or,
moreover, to limit this effect, different enriched theories were pro-
posed. This is the case of plasticity and damage-plasticity theories
enriched with fracture mechanics, theories based on rate depen-
dency, higher strain gradients, micropolar theory, etc. All of them
invariably incorporate a characteristic length in the stress–strain
relationship which is related to different properties of the involved
structural problem, see e.g. Han and Chen (1987), Oller (1988), Pra-
mono and Willam (1989), Dvorkin et al. (1989), Etse (1992), de
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Fig. 1. Uniaxial compression – experimental results for different concrete
strengths.
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Borst (1993), de Borst et al. (1993), Luccioni et al. (1996), Lee and
Fenves (1998), Etse and Carosio (2002), Etse et al. (2003), Vrech
and Etse (2009), etc. Nevertheless, most of the available concrete
models were developed and calibrated for NSC. Therefore, their
applicability to HSC may be questionable or would require com-
plex calibration processes based on extensive experimental data-
base. Some researchers have explicitly analyzed the case of HSC
(see e.g. Imran and Pantazopoulou, 1996; Kang and Willam,
1999; Li and Ansari, 1999; Jason et al., 2006; Grassl and Jirásek,
2006; Vrech, 2007; Papanikolaou and Kappos, 2007). However,
no existing proposal is able to capture within a unified approach
the considerable differences in the failure behavior of concretes
of arbitrary quality, covering the wide spectrum from NSC to HSC.

In this paper, a new concrete constitutive formulation, so-called
Performance Dependent Model (PDM) is presented. The proposed
model is valid for concretes with f 0c from 20 to 120 MPa. The most
relevant contribution of this macroscopic constitutive formulation
is the inclusion of relevant aspects and features of the cement
paste microstructure through the so-called performance parameter
(bP). In this way the PDM is capable to reproduce both the superior
strength capabilities of HSC as well as the dramatic variations of
the fracture energy properties and ductility with the involved
material quality. It is also able to predict the variation in the
mechanical behavior of concretes characterized by the same f 0c
but fabricated with different mix components. The constitutive for-
mulation in this paper is based on the flow theory of plasticity. Its
maximum strength surface is defined by the Performance Depen-
dent Failure Criterion for Concretes (PDFC) (see Folino et al., 2009;
Folino and Etse, 2011). It considers a non uniform hardening law
and an isotropic softening rule. They are defined in terms of the
concrete quality, through bP, and of the acting confinement pres-
sure to take into account its influence on the material ductility in
both pre and post peak responses. A novel contribution in the hard-
ening rule of the PDM is the inclusion of yield surfaces of cap-cone
form with C � 1 continuity. The cone portion is defined by the
PDFC while the elliptical caps tangentially intersect the cone and
are normal to the hydrostatic axis. In this way the numerical
implementation of the model is considerably simplify, while pure
hydrostatic loading paths are also allowed. The softening law is
based on fracture energy concepts, leading to a variable internal
characteristic length regarding the failure mode (type I or II) and
the concrete quality. To limit excessive volumetric dilatancy in
the low confinement regime, a volumetric non associative flow rule
is considered which is also defined as a function of bP in order to
reproduce the differences in the volumetric behaviors of NSC and
HSC. After presenting the proposed constitutive theory for con-
cretes of arbitrary strength based on the performance parameter,
the paper focuses on its numerical predictions for different stress
histories in tensile and compressive regimes and involving con-
cretes qualities of a wide spectrum. The comparative analysis with
experimental results demonstrates the predictive capabilities of
the proposed model.

It should be also noted that the proposed material theory is
suitable to be extended to a multiscale-type constitutive formula-
tion based on microscopic calibrations of the performance param-
eter, which is the fundamental parameter of PDM. This can be done
numerically with appropriate definition of the involved RVE to
accurately evaluate the involved material quality by means of the
performance parameter.

2. Mechanical behavior of NSC and HSC

The mechanical behavior of NSC and HSC shows some analogies
but also fundamental differences. Due to the ongoing research pro-
cess on experimental tests related to HSC, some aspects of the
mechanical behavior of this particular material were so far not
fully appreciated, understood, or moreover, discovered. Neverthe-
less clear conclusions regarding the relevant differences in the
elastic properties, pre and post peak ductility, and the sensitivities
to the confining pressure of both NSC and HSC can be obtained.

To start with the comparative evaluation of NSC and HSC
mechanical behaviors, we evaluate in Fig. 1 the experimental re-
sults on uniaxial compression tests performed on concrete with
different strength properties. (Data extracted from Hurlbut
(1985), van Geel (1998), Lu (2005), and Xie et al. (1995).) In this fig-
ure, it can be appreciated that the elastic stiffness tends to increase
with the material strength properties in the initial regime of the
pre-peak or hardening response. This indicates that the elastic
stiffness of concrete mixture is very much dependent on the mor-
tar elastic properties, when normal or standards contents of coarse
aggregate are considered.

From the comparison between mechanical behaviors in the uni-
axial compression tests shown in Fig. 1 follows also that the ductil-
ity in post peak regime varies with the involved material quality. In
this sense, it can be observed a reduction of the deformation capa-
bility in softening with increments of the involved concrete
strength capability. To demonstrate this, Fig. 2 shows the depen-
dence of the ductility factor in softening, evaluated as the ratio be-
tween the axial strain in softening at 50% f 0c and the strain at peak,
with f 0c . The decrement of the ductility factor in softening with the
strength capability of concrete is clear.

Based on the evaluation of many experimental results on con-
cretes of different strength properties, Lee (2002) proposed an
empirical equation to predict the uniaxial stress–strain response
of HSC of different strength qualities in the uniaxial compression
test. The prediction of this equation for different strength proper-
ties are illustrated in Fig. 3 where the differences in the mechanical
behavior of NSC and HSC can be identifies, based on the evalua-
tions by Lee (2002) for HSC and by Carreira and Chu (1985) for
NSC. One fundamental difference is the elastic stiffness. According
to Lee, the increment of concrete elastic stiffness in the pre-peak



Fig. 2. Uniaxial compression – ductility factor in softening vs. f 0c .

Fig. 3. Empirical uniaxial compression curves for different concretes.
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regime may be considered linear and almost continuous with the
increment of the involved concrete strength. Experimental results
in the literature (see a.o. Rashid et al., 2002; Giaccio et al., 1992)
demonstrate that Young’s Modulus is much more dependent on
the type and geometry of the coarse aggregates than on the com-
pressive strength of concrete.

When subjected to confining pressure, both NSC and HSC show
important increment of strength and ductility. Fig. 4(a) and (b)
illustrate the results of triaxial compression tests under different
levels of lateral confinements performed on 68 MPa and 119 MPa
concretes, respectively. (Data extracted from Lu (2005) and Xie
et al. (1995).) As can be observed in these figures, both curve series
show the increments of strength and ductility in pre and post-peak
regimes. Moreover, it can be observed that the elastic stiffness in
the initial loading process remains constant and practically does
not depend on the acting confinement. One relevant aspect is that
the sensitivity of the strain at peak strength on the acting confine-
ment decreases with the involved concrete quality. This can be
concluded from the comparison between the ratios of axial strains
at peak of the triaxial tests with rconf = 0.41 f 0c and rconf = 0 of the
f 0c ¼ 68 MPa concrete, on the one hand, and of the tests correspond-
ing to rconf = 0.40 f 0c and rconf = 0 of the f 0c ¼ 119 MPa concrete, on
the other hand. These ratios are 9.33 and 4.25 in case of the
f 0c ¼ 68 MPa and f 0c ¼ 119 MPa concretes. With other words, the
ductility at peak strength is much more sensitive to the confine-
ment level in NSC than HSC.

From the last figures corresponding to triaxial compression
tests on f 0c ¼ 68 MPa and f 0c ¼ 119 MPa concretes can also be con-
cluded that stress decay after peak increases with the involved
concrete quality.

Considering the major sensitivity of the axial strain on the act-
ing confinement observed in case of the NSC, it can be assumed
that the same conclusion can be obtained regarding the lateral
strains. Thus, the kinematic fields of NSC are more sensitive to
the confinement pressure than those of HSC.

Regarding the tensile strength f 0t variation with the considered
concrete quality (see Fig. 5 – data extracted from Navalurkar
(1996) and Li and Ansari (2000)), the analysis of several experimen-
tal results demonstrates that the ratio at ¼ f 0t =f 0c (normalized uniax-
ial tensile strength), although having a linear variation at low values
of f 0c , it turns not linear once f 0c equals the values of medium strength
concretes. From this level of concrete quality, the experimental evi-
dence demonstrates that the increase of f 0t is very small as compared
to that of f 0c . Consequently, the maximum strength normalized sur-
faces of concretes of arbitrary quality would show practically no
expansion of the tensile meridian when varying from medium to
high strength concretes. However, the compressive meridians
would show clear expansions. These features were considered in
the formulation of maximum strength surface for concretes of arbi-
trary quality by Folino et al. (2009) and Folino and Etse (2011).

In Fig. 6 can be observed deviatoric views of the maximum
strength criteria for NSC and HSC proposed by Folino et al. (2009).
In case of HSC these plots are less rounded than those of NSC due
to the lower normalized uniaxial tensile strength involved.

Usually, the quality of a concrete is identified by f 0c . Neverthe-
less, different concrete mixtures may lead to the same value of f 0c .
This fact motivated the authors to define an additional quality in-
dex in order to objectively quantify the material quality. Hence,
after an extensive parametric analysis, bP, the performance param-
eter for concretes was defined as (see Folino et al., 2009)

bP ¼
1

1000
f 0c
ðw=bÞ ½with f 0c in MPa� ð1Þ

where w/b is the water-binder ratio, being W the water content and
B the binder content, both in [kg/m3]. The binder is constituted by
the sum of the cement and the mineral admixtures contents. Con-
ceptually, the performance parameter reflects the different levels
of homogeneity of different concretes as it may be appreciated in
Fig. 7. In the case of NSC, the coarse aggregates are much more rigid
than the cement paste and the porosity is greater than the corre-
sponding to HSC. While increasing the concrete quality, the com-
posite material will be more homogeneous and less porous.
Ideally bP varies from 0 to 1.

It was demonstrated based on experimental results that for a gi-
ven f 0c value, the performance parameter lies between a minimum
and a maximum value. Then, the following approximation curves
were proposed for those limits which are plot in Fig. 8

bPmax ¼
0:00026 � f 0c þ 5

� �1:60 when f 0c 6 55 MPa

0:04 � eð0:025:ðf 0cþ5ÞÞ when f 0c > 55 MPa

(
ð2Þ
bPmin ¼
0:00026 � f 0c � 5

� �1:60 when f 0c 6 55 MPa

0:04 � e 0:025� f 0c�5ð Þð Þ when f 0c > 55 MPa

(
ð3Þ

If the w/b ratio is unknown, these approximation limiting curves
permit to select a medium value for bP and moreover, to know the
whole range of possible bP that corresponds to the target f 0c .



Fig. 4. Triaxial compression – experimental results (a) f 00c ¼ 68 MPa and (b) f 00c ¼ 119 MPa.

Fig. 5. Uniaxial tensile – experimental results (a) f 00c ¼ 45, 63, 80 MPa and (b) f 00c ¼ 47, 85, 107 MPa.
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3. Performance dependent constitutive model for concretes of
arbitrary strength : main equations

Regarding that for concretes the current stresses state depends
on the current strains as well as on the stress path followed to
reach this state, an incremental constitutive formulation is pro-
posed. The elastoplastic incremental non-associative flow theory
and the smeared crack approach are adopted as theoretical frame.
In order to describe the post peak behavior of concrete, fracture en-
ergy concepts are considered, leading to a non local elastoplastic
formulation.

Only infinitesimal strains are admitted. Elastic–plastic coupling
is neglected, accepting the additive Prandtl–Reuss decomposition
of the infinitesimal strain rate tensor into its elastic and plastic
parts. Denoting the time derivative as an upper dot, and using
the superscripts ‘‘E’’ and ‘‘P’’ to identify the elastic and plastic
contributions
_e ¼ _eE þ _eP ð4Þ

The elastic constitutive response is defined by the generalized
Hooke law

_eE ¼ E�1 : _r ð5Þ

In the above equation r is the Cauchy stress rate tensor, E is the

fourth order elasticity tensor depending on the material Young’s
modulus E and on the Poisson’s ratio m. A yield surface denoted as
f, limits the elastic range, which size and shape depend on a set of
state variables q. Inelastic material response is governed, by the fol-
lowing non associated flow rule

_eP ¼ m _k ð6Þ

where



Fig. 6. Deviatoric views for (a) NSC and (b) HSC.

Fig. 7. The concept of the performance parameter bP.

Fig. 8. f 0c vs. bP – minimum and maximum limiting curves proposed.
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m ¼ @g
@r

ð7Þ

Being g the plastic potential surface, which does not coincide
with the yield surface f, and _k the plastic parameter (or plastic mul-
tiplier), a nonnegative function which is assumed to obey the fol-
lowing Kuhn–Tucker complementary conditions of optimization
theory

_k P 0; f 6 0; _kf ¼ 0 ð8Þ

Eqs. (4)–(6) lead to the following subtractive decomposition of the
total stress rates

_r ¼ E : ð _e�m _kÞ ) _r ¼ _rE � _rP ð9Þ

As a consequence of the fulfillment of the third Kuhn–Tucker condi-
tion, it follows the so-called consistency condition

_f ¼ n : _rþ @fq _q ¼ 0 ð10Þ

where

n ¼ @f
@r

and @fq ¼
@f
@q

ð11Þ

The evolution of the state variables _q is defined by the hardening/
softening laws.

_q ¼ h : _eP with h ¼ @q
@eP

ð12Þ

Defining the hardening tensor H as

H ¼ � @f
@eP
¼ � @f

@q
@q
@eP
¼ �@fqh ð13Þ

then the plastic multiplier may be derived from the consistency
condition as follows

_f ¼ n : _r� H : m _k ¼ n : E : _e�m _k
� �

� H : m _k ¼ 0 ð14Þ

) _k ¼
n : E

n : E : mþ H : m
: _e ð15Þ

The scalar magnitude resulting from the double contraction of the
tensors H and m is known as hardening modulus hp
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hp ¼ H : m ð15Þ

Then, by defining the material elastoplastic operator as

EEP ¼ E �
E : m n : E

n : E : mþ H : m
ð16Þ

the constitutive relation takes the final form

_r ¼ EEP : _e ð17Þ

Considering that a non associative flow rule is followed, the elasto-
plastic operator is non-symmetric. Nevertheless, it preserves the
minor symmetries EEP

ijkl ¼ EEP
jikl ¼ EEP

ijlk ¼ EEP
jilk

� �
.

4. Maximum strength criterion for concretes of arbitrary
strength

The maximum strength surface is defined by the Performance
Dependent Failure Criterion (PDFC) for concretes of arbitrary
strength which is briefly described in this section. For further de-
tails, see Folino et al. (2009). This criterion, covering the entire
spectrum of concrete quality from NSC to HSC, is defined in the
Haigh Westergaard stress space in terms of the normalized stress
coordinates (with respect to f 0c) �n; �q and h, depending therefore
on the three stress invariants I1, J2 and J3. These normalized coordi-
nates are defined as

n ¼ n
f 0c
¼ I1ffiffiffi

3
p

f 0c
; �q ¼ q

f 0c
¼

ffiffiffiffiffiffiffi
2J2

p
f 0c

; cosð3hÞ ¼ 3
ffiffiffi
3
p

2
J3

J3=2
2

ð18Þ

where: I1 = dijrij is the first invariant of the stress tensor r; J2 = sijsij/2
the second invariant of the deviatoric stress tensor s; and J3 = sijsjkski/3
the third invariant of the deviatoric stress tensor.

Concrete failure occurs when the normalized 2nd Haigh West-
ergaard stress coordinate reaches the normalized shear strength

Fmax ¼
�q
q�
� 1 ¼ 0 ð19Þ

The compressive and tensile meridians are defined by two parabolic
equations

h ¼ p
3
) Aq�c

2 þ Bcq�c þ C�n� 1 ¼ 0 ð20Þ

h ¼ 0) Aq�t 2 þ Btq�t þ C�n� 1 ¼ 0 ð21Þ

In the previous equations, the upper asterisk denotes failure, the
subscripts ‘‘c’’ and ‘‘t’’ indicate compressive and tensile meridians
respectively.

In the deviatoric plane, the elliptic interpolation between the
compressive and tensile meridians by Willam and Warnke (1974)
is considered as

800
6 h 6 600 ) q� ¼ q�c

r
ð22Þ

The ellipticity factor r is defined as

r ¼ 4ð1� e2Þ cos2 hþ ð2e� 1Þ2

2ð1� e2Þ cos hþ ð2e� 1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ð1� e2Þ cos2 hþ 5e2 � 4e

p ð23Þ

where e is the eccentricity q�t =q�c .
Consequently the above expressions lead to the following single

equation representing the failure criterion of concretes of arbitrary
strength

Fmax ¼ Ar2q�2 þ Bcrq� þ C�n� 1 ¼ 0 ð24Þ

A distinguish characteristic of the criterion in Eq. (24) is that the
coefficients A, Bc, Bt, and C instead of being simple constants are
defined in terms of four relevant material features: the uniaxial
compression strength f 0c , the normalized uniaxial tensile strength
at ¼ f 0t =f 0c , the normalized biaxial compression strength ab ¼ f 0b=f 0c
(being f 0b the biaxial compressive strength), and the apparent fric-
tion m defined as the tangent to the compressive meridian on
the peak stress state corresponding to the uniaxial compression
test. Thus, the coefficients in Eq. (24) are defined in terms of real
material properties that allow accurate descriptions of maximum
strength surfaces of concrete of different qualities.

As the material properties at, ab and m are obtained from non-
standard and complex experimental tests, internal functions were
proposed and calibrated to determine them in terms of only two
fundamental concrete parameters: f 0c and bP (see Folino and Etse,
2011).

The equations defining coefficients A, Bc, Bt, and C in terms of the
material properties at, ab and m, and the equation corresponding to
the eccentricity e, are given in Appendix A.
5. Hardening for concretes of arbitrary strength

5.1. Loading surfaces in pre peak regime

In most of the available constitutive models for concrete, open
loading surfaces are considered to predict the variation of stiffness
in hardening, see e.a. Oller (1988), Grassl et al. (2002) and Papa-
nikolaou and Kappos (2007). In those models the elastic zone does
not have a limit on the negative side of the hydrostatic pressure
axis. This is not in agreement with experimental evidence as plas-
tic behavior is observed in pure hydrostatic loading, see Oller
(1988) and Sfer et al. (2002). Although some proposals do consider
close loading surfaces like the ones by Han and Chen (1987), and
Fossum and Fredrich (2000) they are Co continuum curves. So, their
numerical treatments are particularly complex. In other proposals
such as the one by Etse and Willam (1994) the yield surfaces in
hardening, although close and C1 continuum, are obtained by
means of very high order functions of the stress invariants that,
on top of this, do not intersect perpendicularly the hydrostatic axis
in the high compressive regime.

In the constitutive model here proposed, the loading surfaces in
hardening are of cap-cone type and have three relevant advanta-
ges: (i) they are of C1 continuity, (ii) they are of second order and
(iii) they perpendicularly intersect the hydrostatic axis in compres-
sion. As it can be observed in Fig. 9, the meridian view of the pro-
posed yield surfaces provides a continuum C1 transition from the
conic failure surface on the tensile and low confinement regimes
to the cap portion on the medium and high confinement regimes.
The cap is defined by elliptical meridians centered on the hydro-
static axis. Both portions of the yield surfaces, the cap and the cone,
intersect each other at a deviatoric plane indicated with the stress
point ‘‘P1’’ in the meridian view of Fig. 11. During monotonic load-
ing in hardening regime the location of the stress point ‘‘P1’’ on the
maximum strength criterion moves to the compressive regime, see
Fig. 10. As its typically the case of cap-cone loading surfaces,
loading paths approaching the maximum strength surface between
‘‘P1’’ and the stress point corresponding to the equitriaxial tensile
loading, do not activate hardening behavior, i.e. the maximum
strength point is reached without degradation of the elastic prop-
erties. Since point ‘‘P1’’ lies on the maximum strength surface, its
coordinates on the compressive meridian ð�n1; �qc1Þ follow from Eq.
(20)

�n1 ¼ 1� Ay2
1 � Bcy1

� �
=C with y1 ¼ �qc1 ð25Þ
The evolution of the loading surfaces in pre-peak regime are
controlled by the hardening parameter k defined in terms of the
�qc1 coordinate of point ‘‘P1’’ as



Fig. 9. 3-D view of the failure surface (cone) and of an intermediate loading surface
(cap-cone).
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k ¼
�qc1ffiffiffiffiffiffiffiffi
2=3

p ð26Þ

This parameter has a minimum initial value ko corresponding to the
first loading surface where the inelastic behavior starts (see Appen-
dix A). However, it has no upper limit, as the hardening ductility
may evolve indefinitely under increasing confining pressure.

The yield surfaces in hardening regime of the proposed model
are defined as follows
fh ¼
f cone
h ¼ Fmax ¼ Ar2q�2 þ Bcrq� þ C�n� 1 ¼ 0 if �n P �n1ðkÞ

f cap
hðkÞ ¼

�n��ncenðkÞð Þ2
a2
ðkÞ

þ r2 �q2

b2
ðkÞ
� 1 ¼ 0 if �n < �n1ðkÞ

8><
>:

ð27Þ
being a and b the semi axes of the elliptical cap on the hydrostatic
and deviatoric axes, and �ncen the normalized first stress coordinate
of the elliptical cap center. The evolution laws of these coefficients
of the elliptical cap are controlled by the hardening parameter k.

Appendix A includes details about how the first ellipse and the
successive ellipses are obtained. The final functions of the param-
eters that define the shape of the caps surfaces are as follows
Fig. 10. Compressive and tensile meridian views of the lo
�ncenðkÞ ¼
1
C

1� A
2
3

k2 � Bc

ffiffiffi
2
3

r
k�

ffiffiffi
2
3

r
C2Rab

2Ak
ffiffiffiffiffiffiffiffi
2=3

p
þ Bc

k

" #
ð28Þ

a2
ðkÞ ¼

1
C

1� 2
3

Ak2 �
ffiffiffi
2
3

r
Bck

 !
� �ncenðkÞ

" #2

þ 2
3

Rabk2 ð29Þ

b2
ðkÞ ¼ a2

ðkÞ=Rab ð30Þ

After replacing Eqs. (28)–(30) in Eq. (27), the following polynomial
form of the caps in terms of the hardening parameter k is obtained

f cap
hðkÞ ¼

8
9

A3
� �

k5 þ 10
3

ffiffiffi
2
3

r
A2Bc

" #
k4 þ 8

3
A A C�n� 1

� �
þ B2

c

� �� �
k3

(

þ
ffiffiffi
2
3

r
Bc 6AðC�n� 1Þ þ B2

c þ C2Rab

� �" #
k2

þ 2 B2
c þ C2Rab

� �
ðC�n� 1Þ þ AðC�n C�n� 2

� �
þ 1C2Rabr2 �q2Þ

h ih i
k

þ
ffiffiffi
3
2

r
Bc C�n C�n� 2

� �
þ 1þ C2Rabr2 �q2

� �" #
¼ 0 ð31Þ
5.2. Hardening law

Following Etse and Willam (1994) the hardening parameter in
this model is defined by means of an elliptical function, which in
this case depends on a normalized work hardening measure jh as

k ¼ ko þ ðkmax � koÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jhð2� jhÞ

p
ð32Þ

being kmax the maximum possible hardening parameter associated
with the actual confinement level �n. It is obtained by replacing Eq.
(26) in (20), leading to

kmax ¼
1ffiffiffiffiffiffiffiffi
2=3

p �Bc þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2

c þ 4A 1� C�n
� �q

2A
ð33Þ

It should be noted that while the minimum hardening parame-
ter k = ko is defined, the maximum value of k = kmax is not. It could
be lower or greater than one. In Fig. 12 it can be observed that the
evolution of the ratio k/kmax reduces its intensity with increment of
the acting confinement. Comparing NSC and HSC, it may be seen
that in case of HSC the inelastic range in pre-peak regime is shorter
for every considered confinement level.

The evolution law of the normalized work hardening measure is
defined as the ratio between the actual developed work hardening
ading surfaces in hardening for (a) NSC and (b) HSC.



Fig. 11. Compressive meridian view of the first loading surface in hardening.

Fig. 13. Calibration adopted for the pre peak energy parameter WP
t .
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xP
a , and the total work hardening capacity WP

t for the actual con-
finement level �n

_jh ¼
_xP

a

WP
t

¼
r : m _k

WP
t

ð34Þ

The total plastic work capacity in hardening WP
t is approxi-

mated by means of the following function

WP
t

¼ Ewpt
ðbP ;f 0cÞ

�n� �nP1o
� �

f1 þ f2
�n� �nP1o
� �6

h i
if �n P �nlim

¼ f3
�n2 þ f4

�nþ f5 if �n < �nlim

8<
: ð35Þ

where fi; �nlim and Ewpto are defined in terms of the performance
parameter bP. Thus, it is considered that the total plastic work
capacity in hardening depends on both the involved material qual-
ity and the level of confinement. Fig. 13 shows the dependence of
WP

t on the acting confinement for different concrete qualities.

6. Softening for concretes of arbitrary strength

6.1. Unloading surfaces in post peak regime

Once the maximum strength surface was reached and under
continuous monotonic loading, the softening law of the model is
activated. In this formulation, an isotropic softening law is
adopted. The plastic yield surfaces in post-peak regime are
obtained by progressive contraction of the cone portion of the
maximum strength surface. This progressive degradation of
Fig. 12. Evolution of the hardening parameter in te
the concrete strength properties is controlled by a decohesion pro-
cess of the concrete matrix, that is defined in the model through
the softening of the cohesion c. It is considered that this parameter
represents the ratio between the actual and the maximum strength
property both under mode I and II type of softening processes. Con-
sequently, it varies between a maximum value c = 1 at peak
strength, before activating the degradation or softening process
in the material, and a minimum value c = rres/rmax, being rres the
residual strength and rmax, the maximum one. In case of mode I
type of failure process results rmax ¼ f 0t and the actual strength is
represented by rt.

The unloading surfaces in post-peak regime are mathematically
described by (see Fig. 14)

fs ¼ Ar2 �q2 þ Bcr�qþ C�n� c ¼ 0 ð36Þ

In this formulation it is considered that the softening behavior
develops for all possible monotonic loading process after the peak
stress was reached. This softening behavior is activated indepen-
dently of the confinement level in the considered stress history.
However, the ductility of the post-peak response varies with the le-
vel of confinement as is explained in this section. The experimental
evidence demonstrates that in HSC the softening branch develops
for all possible level of confinement. However, in case of NSC a
transition point from brittle to ductile behavior can be recognized
that delimits the region of the stress space where softening
rms of the plastic strains (a) NSC and (b) HSC.



Fig. 14. Post peak unloading surfaces (a) NSC and (b) HSC.
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processes can be expected. This is capture very efficiently in the
models for NSC by Etse and Willam (1994) and Kang and Willam
(1999).

6.2. Fracture energy based softening law

It is well known that softening is a structural phenomenon
rather than a material property, see a.o. Bazănt and Oh (1983),
Fig. 15. Evolution of decohesion parameter c during softening process for different con
confinement and (d) high confinement.
Oliver (1989), van Mier (1997) and Bazănt (2000). If the strength
degradation during softening is described within the theoretical
framework of the smeared crack approach and using local stress–
strain relations, mesh dependent solutions will be obtained. Two
different approaches have been considered to avoid this problem:
enhanced local theories (Etse and Willam, 1994; Kang and Willam,
1999, etc.), and non-local theories (Etse and Carosio, 2002; Vrech
and Etse, 2009, etc.).
crete qualities (a) UT (uniaxial tensile); (b) UC (uniaxial compression); (c) medium
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In the constitutive formulation presented in this paper, the first
approach is adopted. The enrichment of the local constitutive the-
ory is based on fracture energy concepts. For this purpose, the frac-
ture energy GI

f dissipated during the crack opening process along
the surface of the crack At in a direct tensile test, is considered to
be equal to the energy W dissipated during plastic softening in
an equivalent elastoplastic continuum

dGI
f At ¼

R
At

rtduf dA

dWf ¼
R

Vt
rtd~ef dV

(
ð37Þ

Consequently, the rate of crack opening displacement _uf in the dis-
continuum of high lc and the rate of the tensile fracture strains ~_ef

uniformly distributed in the equivalent continuum are related as

_uf ¼ lc
_~ef ð38Þ

In this case (mode I), the characteristic length lc represents the crack
spacing in a direct tensile test ht. To extended this concept to a gen-
eral mode II type of failure, then the corresponding fracture energy
GII

f needs to be considered as well as the appropriate characteristic
length.

The structural response in terms of load–displacement behavior
that obtained with this theory will be mesh-independent. Never-
theless, as this regularization strategy does not suppress the loss
of strong ellipticity of the constitutive differential equations of
Fig. 17. Fracture energy in mode I vs. the performance pa

Fig. 16. Evolution of decohesion parameter c during softening p
the problem, the localization zone of plastic strains will remain
being mesh dependent.

In the constitutive formulation presented herein, the approach
above described is adopted, leading to a fracture-energy based
plastic softening law. The evolution of the softening parameter c
is defined as

c ¼ exp
�djs

ur

	 

ð39Þ

where js is the fracture energy based softening measure, ur the
maximum crack opening displacement, and d is a parameter defin-
ing the shape of the decay function (see Appendix A).

The evolution law of the fracture energy based softening mea-
sure js is defined as

_js ¼ _uf ¼ lc
_~ef ¼ lckhmik _k ð40Þ

where the McCauley operator extracts only the tensile components
of the gradient to the plastic potential m. The characteristic length lc
for mode II type of fracture is defined as

lc ¼ ht=x GII
f =GI

fð Þ ð41Þ

In the previous equation, x is a parameter that estimates the ratio
between the fracture energies in modes II and I (GII

f and GI
f ). It is
rameter (a) non normalized and (b) normalized by f 0c .

rocess for different loading scenarios (a) NSC and (b) HSC.



Fig. 18. Meridian view of yield surface and plastic potential in hardening regime.
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defined in terms of the acting confinement that is represented by
the normalized first Haigh Westergaard stress coordinate �n
x GII
f =GI

fð Þ ¼ 1þ as1ð�n� �ntÞ3 þ as2ð�n� �ntÞ2 þ as3ð�n� �ntÞ
h i

ð42Þ
thereby asi are calibration functions depending on the material
quality, and �nt is the normalized first Haigh Westergaard stress
coordinated corresponding to the peak strength of the uniaxial ten-
sile test.

Fig. 15 shows the adopted decohesion function for four different
stress histories: uniaxial tensile, uniaxial compression, medium
confinement and high confinement.

It may be observed in this figure the incidence of the concrete
quality. In all cases, a steeper slope (more brittle behavior) is con-
sidered the case of HSC. Note that with increasing confinement the
resulting behavior is more ductile.

In Fig. 16 the plots for the four different stress histories consid-
ered in Fig. 15 are now organized by concrete quality. Contrarily to
HSC, NSC practically do not develop softening behavior under high
confinement.
Fig. 19. Gradients directions to the yield surface and plastic pote
As can be observed in Eq. (39) the controlling parameter in the
evolution of concrete strength capacity in softening is the fracture
energy in mode I, GI

f . In present proposal this is considered to be
defined in terms of both the maximum coarse aggregate size Umax

and the performance parameter bP as

GI
f ½N=mm� ¼ g1 Umax½mm�b0:20

P

� �g2 ð43Þ

where gi are internal model parameters (see Appendix A).
Fig. 17 (a) shows the dependence of GI

f on the concrete quality
parameter bP for two different maximum aggregate sizes. The frac-
ture energy increases with the involved concrete quality, similarly
to the increment experimentally signalized by f 0t with concrete
quality. In Fig. 17 (b) it is illustrated that the normalized parameter
GI

f =f 0c drastically decreases with the involved concrete quality. This
is supported by extensive experimental data (see e.g. van Mier,
1997).

7. Concrete volumetric behavior and non associated flow rule

Volumetric behavior of concrete in the low confinement regime
is characterized by relevant dilations at peak and, particularly, post
peak response, see a.o. Shah and Chandra (1968), Smith et al.
(1989), Pantazopoulou (1995), and Sfer et al. (2002).

As shown by Shah and Chandra (1968) concrete dilatancy in-
creases with the volume content of coarse aggregate. This conclu-
sion referred only to NSC. Although the experimental evidence on
HSC volumetric behavior is limited or inexistent, volumetric
expansion can be also expected in case of HSC, when it is subjected
to compression in the low confinement regime. However, and due
to its superior homogeneity, these expansions or dilatancies are
expected to be lower than in case of HSC.

In the framework of the flow theory of plasticity, plastic defor-
mations are controlled by the flow rule. As demonstrated by differ-
ent researchers, see a.o. Smith et al. (1989) and Etse and Willam
(1994), the normality condition leads to strong overestimations
of concrete dilatancy. On the other hand, for associated flow, once
the failure envelope is reached the stress path keeps increasing
until a point is reached where the total strain increment is equal
and coaxial with the plastic strain increment. This fictitious stabi-
lizing effect is in contrast with the destabilizing tendencies of the
non-associated flow rule. In fact, the non-associated flow brings
ntial for different concrete qualities and confinement levels.



Table 1
List of optional input data in the PDM.

Optional material parameter Identification Default value

Water/binder ratio w/b w/b corresponding to
the mean
bP from Eq. (2) and (3)

Maximum coarse aggregate size Umax 2 cm
Fracture energy in mode I GI

f
By Eq. (43)

Maximum crack opening
displacement in mode I

urt 0.02 cm

Displacement in mode I
Crack spacing in a direct tensile test ht 10 cm
Uniaxial strength ratio at ¼ f 0t =f 0c By Eq. (53)
Biaxial strength ratio ab ¼ f 0b=f 0c By Eq. (54)
Equivalent friction parameter m By Eq. (55)
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the stress path down the failure envelope along the low confine-
ment regime and into the tension region. This destabilization sig-
nalized by non-associated flow is supported by the experimental
evidence on NSC as indicated above.

In the context of the proposed model for concrete of arbitrary
strength properties a restricted non-associated flow rule is
adopted, whereby the volumetric flow is the only one that does
not follow the normality condition.

The plastic potential in hardening and softening, gh and gs,
respectively, are defined as follows

ghðkÞ

gcone
hðkÞ ¼ Ar2 �q2 þ Bcr�qþ goð�nÞC �n� �n1ðkÞ

� �
þ C�n1ðkÞ � 1 ¼ 0

if �n P �n1ðkÞ

gcap
hðkÞ ¼

½goð�nÞð�n��n1ðkÞÞþð�n1ðkÞ��ncenðkÞÞ�2

a2
ðkÞ

þ r2 �q2

b2
ðkÞ
� 1 ¼ 0

if �n < �n1ðkÞ

8>>>>>><
>>>>>>:

ð44Þ

gsðcÞ ¼ Ar2 �q2 þ Bcr�qþ goð�nÞC �n� �n1
� �

þ C�n1 � c ¼ 0 ð45Þ
Fig. 20. Uniaxial compression-curves proposed by Lee (2002) (HSC), Carreira and
Chu (1985) (NSC), and PDM results.
being go the volumetric non-associativity parameter defined in
terms of the normalized first stress coordinate as

go ¼ t1 exp t2xt3� �
þ t4 ð46Þ

with ti internal model parameters (see Appendix A) and

x ¼
�nvertex � �n if �n 6 �nt

�nvertex � �nt if �n > �nt

(
ð47Þ

In Fig. 18 can be observed the loading and plastic potential sur-
faces for a given hardening parameter. The gradient directions to
the meridian views of the yield and plastic potential surfaces in
hardening regime up to the maximum strength surface are illus-
trated in Fig. 19. Two different concrete qualities are considered.
As can be observed, the level of non-associativity considered in this
model increases with the concrete quality while reduces with the
confinement pressure.

The non-associated flow in the cone zone of the softening re-
gime as defined by Eq. (45), also depends on the volumetric non-
associativity parameter.

8. Numerical analysis

The numerical approach for the stress integration Dr = Dr(De)
of the Performance Dependent Model is based on the Backward Eu-
ler algorithm. A direct method was applied that leads to a single
iteration process, while full consistency condition was used for
the determination of the plastic multiplier. The consistent tangent
operator was obtained and used in the numerical approach.

The following special provisions were considered for the imple-
mentation of the Backward Euler algorithm in the transition be-
tween cone and cap surfaces:

(i) If the cone portion of the maximum surface is activated, then
only softening process may occur during monotonic loading
or elastic discharge. Thus, the cap surfaces are not activated.

(ii) Following the proposal by Dolarevic and Ibrahimbegovic
(2007), it is considered that trial stresses characterized by
first invariants that are equal or larger than the first invari-
ant of the transition point (P1 stress point) are considered
to activate the cone portion of the maximum surface. Then,
the process described in (i) takes place.

(iii) In case condition (ii) is not fulfilled, then it is considered that
the trial stress activates hardening behavior and the Back-
ward Euler projection process to a cap surface related to a
larger hardening parameter k is initiated.
Table 2
Some calibration values for a medium bP.

Wt
p (MPa)

f 0c �nP1
�nf 0c

�n ¼ �1:00 �n ¼ �4:00

30 0.000 0.041 0.470 12.026
70 0.000 0.054 0.229 5.052
120 0.000 0.053 0.188 1.898

lc (cm)

f 0c �n P �nf 0t
�n ¼ 0:00 �nf 0c

�n ¼ �1:00 �n ¼ �4:00

30 10.000 6.910 1.548 0.947 0.823
70 10.000 8.286 2.013 1.240 1.028
120 10.000 8.762 2.336 1.455 1.193

go (–)

f 0c �nVertex
�nf 0c

�n ¼ �1:00 �n ¼ �4:00

30 0.483 0.616 0.648 0.743
70 0.456 0.560 0.582 0.643
120 0.314 0.403 0.421 0.470



Fig. 21. Uniaxial compression PDM results for different concretes and different maximum aggregate sizes Umax: (a) Umax = 0.95 cm; (b) Umax = 2.00 cm.

Fig. 22. Uniaxial compression PDM results for Umax = 0.95 cm and three different bP.
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(iv) If during the hardening process it is obtained a hardening
parameter k > kmax, then the cone is also activated during
this loading step and the softening process is initiated.

The particular features, robustness and efficiency of the numer-
ical approach for the Performance Dependent Model will be ad-
dressed in a separated paper.

8.1. Input data

Input data of the PDM include both mandatory and optional
material parameters. In case one of the optional material parame-
ter is not defined, it is evaluated by specific internal functions.

The mandatory data are: the uniaxial compressive strength f 0c ,
the Young’s Modulus E in compression and the Poisson’s ratio m.
Table 3
Input data considered for the uniaxial and triaxial compression verification tests.

Data set Compr. strength f 0c (MPa) Young’s modulus E (MPa) Poisso

Lu (2005)
f 0c ¼ 70 MPa 68.6 36,000 0.20
Xie et al. (1995)
f 0c ¼ 120 MPa 119.0 28,000 0.20
The optional material parameters are indicated in Table 1.
Note that the total work hardening parameter WP

t , the internal
characteristic length lc, and the degree of non-associativity go are
not considered input variables: they are determined by Eqs. (35),
(41) and (46).

The material parameters at, ab, and m, define the cap shape by
means of Eqs. (48)–(51). The failure criterion eccentricity imposes
a coupling constrain to parameters at, ab, and m, as they should
lead to coefficients Bc and Bt satisfying 0.50 6 Bc/Bt 6 1.00. Internal
functions were defined by the authors for these parameters (see
Folino et al., 2009; Folino and Etse, 2011), based on a large spec-
trum of experimental data in the literature. They are useful as in
most of the cases the available data are not enough for their appro-
priate evaluation. The internal functions for these parameters in
the PDM are given in Appendix A (see Eqs. (53)–(55)).
n’s ratio m Water/binder
ratio w/b

Maximum agg. size
Umax (cm)

Equivalent friction m

0.327 0.95 0.91

0.194 1.40 1.00
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8.2. Model calibration

The calibration procedure of the PDM required the consider-
ation of experimental results corresponding to concretes of differ-
ent qualities. Model setup was done by defining appropriate
functions for the total work hardening parameter WP

t , the internal
characteristic length lc, and the degree of volumetric non-associa-
Fig. 23. Maximum strength data and PDFC compressive m

Fig. 24. Triaxial compression PDM results vs. Lu (2005) data (a

Fig. 25. Triaxial compression PDM results vs. Xie et al. (1995) data
tivity go, in terms of the concrete quality and of the actual first
stresses invariant. This was done as explained on what follows.

To calibrate hardening initiation and axial strain levels at peak
and residual stresses of uniaxial compression tests, the experimen-
tal results by Carreira and Chu (1985) for NSC, and by Lee (2002)
for HSC (with silica fume and a maximum coarse aggregate size
of 0.95 cm) were considered.
eridian (a) Lu (2005) data; (b) Xie et al. (1995) data.

) axial and lateral results; (b) volumetric strains evolution.

(a) axial and lateral results; (b) volumetric strains evolution.
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In Fig. 20 it may be observed the comparison between PDM pre-
dictions and the characteristic mechanical behaviors proposed by
Carreira and Chu (1985) and by Lee (2002) for concretes of differ-
ent strength properties. To calibrate pre a post-peak behaviors of
NSC and HSC, a large set of experimental tests were considered.
This includes: Ansari and Li (1998), Candappa et al. (2001), Chern
et al. (1992), Hampel (2006), Hurlbut (1985), Hussein and Marzouk
(2000), Kupfer et al. (1969), Imran and Pantazopoulou (1996), Lim
and Nawy (2005), Lu (2005), Ren et al. (2008), Sfer et al. (2002), van
Geel (1998) and Xie et al. (1995). The available experimental data,
particularly regarding HSC, is scarce and based on very different
experimental setups. Nevertheless, they allowed to define internal
functions for WP

t ; lc , and go, in terms of the concrete quality and of
the acting confining pressure, as indicated in Eqs. (35), (41) and (46).

Table 2 shows WP
t ; lc , and go as predicted by the corresponding

internal functions in the PDM for different concrete qualities and
confinement levels. They are evaluated considering the mean value
of bP, ht = 10 cm, and a maximum coarse aggregate size of 2 cm. As
Fig. 27. Uniaxial tensile PDM results vs. Li and Ansari (2000)

Fig. 26. Uniaxial tensile PDM results vs. Navalurkar (1996)

Table 4
Input data considered for the uniaxial tensile verification tests.

Data set Compr. strength f 0c
(MPa)

Tensile strength f 0t
(MPa)

Young’s modulus
(MPa)

Navalurkar (1996)
f 0c ¼ 45 MPa 45.3 3.03 18,230
f 0c ¼ 63 MPa 62.8 3.59 21,787
f 0c ¼ 80 MPa 80.0 4.47 35,625

Li and Ansari (2000)
f 0c ¼ 47 MPa 47.2 3.10 40,679
f 0c ¼ 86 MPa 85.8 4.70 63,087
f 0c ¼ 107 MPa 107.3 5.63 64,401
can be observed the characteristic length lc equals ht when �n > �nf 0t
,

while it approximates the maximum aggregate size in the confine-
ment level corresponding to the uniaxial compression test (�n ¼ �nf 0t

).
Fig. 21 shows PDM predictions of uniaxial compression tests for

different concrete qualities and two different maximum aggregate
sizes. The plot includes axial, lateral and volumetric strain evolu-
tions. These results clearly demonstrate the capabilities of the pro-
posed model to capture the relevant improvement of the material
strength in uniaxial compression conditions, with the involved
quality, as well as the improvement of the ductility in pre and
post-peak regimes. The results also show that the constitutive the-
ory is able to reproduce the sensitivity of concrete volumetric
behavior to the maximum aggregate size, both in NSC and HSC.

Fig. 22 shows the influence of bP on the axial and lateral strains
when the same concrete strength is considered in all different
cases. These results demonstrate that concrete quality, as it is con-
sidered in the PDM, exceeds f 0c and involve other material features
that are taken into account by means of performance parameter bP.
data (a) f 0c ¼ 47 MPa; (b) f 0c ¼ 86 MPa; (c) f 0c ¼ 107 MPa.

data (a) f 0c ¼ 45 MPa; (b) f 0c ¼ 63 MPa; (c) f 0c ¼ 80 MPa.

E Poisson’s ratio
m

Water/binder ratio w/
b

Maximum agg. size Umax

(cm)

0.20 0.450 0.95
0.20 0.297 0.95
0.20 0.234 0.95

0.20 0.460 0.95
0.20 0.300 0.95
0.20 0.210 0.95



Fig. 28. Uniaxial compression, f 0c ¼ 120 MPa – Extended Leon Model predictions vs. Lee (2002) and PDM predictions; (a) ko = 0.10; ko = 0.75.
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8.3. Verification tests

8.3.1. Uniaxial and triaxial compression
For the verification purpose of the PDM predictive capabilities in

case of uniaxial and triaxial compression tests, two sets of experi-
mental data were considered. On the one hand, the experiments
by Lu (2005), corresponding to a medium strength concrete with
f 0c ¼ 70 MPa. On the other hand the tests by Xie et al. (1995), that cor-
respond to high strength concrete of f 0c ¼ 120 MPa. Unfortunately,
the last ones do not include lateral strains. The input data considered
in these numerical analyses are summarized in Table 3. They were
obtained from the corresponding literature, with exception of m that
was determined in terms of the peak strengths for different confine-
ments, as it may seen in Fig. 23.

In Figs. 24 and 25 the plots present the PDM predictions (in con-
tinuous lines without markers) vs. the experimental data for differ-
ent confinement levels. In both cases, the figure on the left hand
side shows the axial stress vs. axial and lateral strains, and the
one on the right hand side, the axial stress vs. volumetric strains.
It may be observed that the model is able to capture the different
behaviors of concretes of different qualities. The best accuracy is
obtained in uniaxial compression and triaxial compression under
medium confinement. In these figures, it may be also observed
the relevant importance of the adopted failure surface on the
numerical predictions.

8.3.2. Uniaxial tensile
For the verification of the PDM prediction capabilities in the uni-

axial tensile test, the experimental data by Navalurkar (1996) corre-
sponding to f 0c = 45, 63 and 80 MPa, and the ones by Li and Ansari
(2000) corresponding to f 0c = 47, 86 and 107 MPa are considered.
The input parameters used in these numerical tests are summa-
rized in Table 4. The characteristic length ht = 10 cm was consid-
ered. Figs. 26 and 27 compare the numerical predictions with the
experimental data. They show very good agreement, with higher
accuracy in case of the HSC. As the Young modulus considered in
these numerical analysis were the ones given by the authors of
the experimental tests for the uniaxial compression tests, the cor-
responding model predictions do not correctly capture the elastic
stiffness in tensile tests and, moreover, the peak stress. This is
due to the well-known discrepancy between the elastic stiffness
in compression and tension tests. In Fig. 26(c) are depicted (gray
line) the model predictions of uniaxial tensile tests when the
Young’s modulus extracted from the experimental data for these
particular tensile tests are considered instead of those correspond-
ing to uniaxial compression. The results show better agreement
with the experimental ones. Although so far, there is no final agree-
ment regarding the causes for the differences between the Young
modulus in compression and tension, see Gopalaratnam and Shah
(1985) and Li and Ansari (2000), they could be supported by the
different failure mechanisms of concrete in compression and trac-
tion. In compression, concrete failure is initiated by microcracks
parallel to the main loading direction, due to secondary tensile
stresses in this direction, that follow from the redistribution of
the main compressive stresses. Contrarily, concrete failure in uni-
axial tensile condition is a direct mechanics with microcracks per-
pendicular to the main tensile stress. No stress redistribution is
required.

The numerical results with the PDM included in Figs. 26 and 27
demonstrate that the gap between Young modula in compression
and tension seems to be more significant in case of NSC. This is
due to the larger heterogeneity of NSC as compared to HSC.
8.3.3. Extended Leon Model
Finally, the PDM predictions are contrasted against the ones ob-

tained with the Extended Leon Model (ELM) by Etse (1992). The
objective is to compare failure predictions of concretes with differ-
ent strength properties obtained with a sensitive constitutive the-
ory of material quality, such as the PDM, with those obtained with
a well-know but quality insensitive material model, such as the
ELM. Fig. 28(a) and (b) compare PDM and ELM predictions with
experimental results of uniaxial compression tests on f 0c ¼ 40MPa
and f 0c ¼ 120 MPa concretes. As can be observed, both numerical
results for NSC concur very well with the experimental ones. How-
ever, PDM predictions are more accurate than those of the ELM for
the case of the HSC (120 MPa), independently of the initial harden-
ing parameter considered in this last model (ko = 0.10 or ko = 0.75).
These results demonstrate the important role of concrete quality in
the formulation of the constitutive theory.
9. Conclusions

In this paper, a new constitutive formulation for concretes of
arbitrary strength properties is proposed. The so-called Perfor-
mance Dependent Model (PDM) covers the entire spectrum from
normal to high strength concretes, with uniaxial compressive
strengths f 0c

� �
in the range 20 to 120 MPa.

The PDM is based on the flow theory of plasticity. Its maximum
strength criterion is formulated in terms of the performance param-
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eter to accurately reproduce the dramatic and non uniform varia-
tions of the strength properties in both tensile and compressive
meridians, with the involved concrete quality. The performance
parameter, previously proposed by the authors, see Folino et al.
(2009) and Folino and Etse (2011), takes into account in a realistic
and accurate form the influence of the concrete mixture on the con-
crete strength properties.

The proposed model considers a non uniform hardening law and
an isotropic softening rule. They are also defined in terms of the per-
formance parameter to account for the relevant ductility variation in
pre and post-peak regimes with the involved material quality. The
formulations in hardening and softening also depend on the confin-
ing pressure to more accurately predict the transition from brittle to
ductile failure behavior of concrete with the acting confinement. The
softening formulation is embedded in fracture mechanics concepts
to regularize the energy release predicted by the model during
post-peak failure processes. In this sense, the energy release proper-
ties under mode I and mode II type of fracture were also formulated
in terms of the performance parameter to take into account the
influence of concrete quality in these relevant fracture features.

The influence of the concrete quality by means of the perfor-
mance parameter was also considered in the formulation of the
non-associated flow rule that controls the volumetric dilatancy of
concrete in the low confinement regime.

The predictive capability of the proposed model was demon-
strated in this paper by comparing the model predictions with
experimental results corresponding to concretes of different qual-
ities. The models allows realistic predictions of concrete failure
processes of quite a different strength properties and qualities.

It should be also noted that the proposed constitutive theory can
easily be extended to a multiscale-type formulation based on micro-
scopic calibrations of the performance parameter, which controls
the failure criterion, the hardening/ softening rules and the non-
associativity.
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Appendix A

A.1. Parameters A, Bc, Bt, and C

Coefficients A, Bc, Bt, and C that appear in the mathematical
expressions of the different surfaces involved in the proposed con-
stitutive model (i.e. maximum strength surface (Eq. (24)), loading
surfaces (27), softening surfaces (36), and plastic potential (44)
and (45)), are defined by the following equations

A ¼ �3
2

1þ ðm�
ffiffiffi
2
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The eccentricity e is defined by the following equation

e ¼
�Bt þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2
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A.2. Internal functions in the PDFC

atðbP ;f 0cÞ ¼
6:70b0:27

P

f 0c ½MPa� ð53Þ

abðbP ;f 0c Þ ¼ kb:at

kb ¼ 2:70 f 0c ½MPa�
� �0:45

6 20
ð54Þ

m bP ;f 0cð Þ ¼ kmb0:05
P
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1:04þ 0:05:f 0c ½MPa�=90 f 0c < 90 MPa
1:09 f 0c P 90 MPa
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A.3. First loading surface in hardening regime

The first loading surface (see Fig. 11), characterized by the ini-
tial hardening parameter ko, defines when the inelastic behavior
begins. It is defined by the general equation

x2

a2
o
þ y2

b2
o

¼ 1 with x ¼ �n� �nceno; y ¼ �qc ð56Þ

The unknowns ao, bo and xceno are obtained from the following con-
ditions: (a) the ellipse must pass through the point ‘‘P1’’ on the
compressive meridian of the failure surface; (b) it is tangent to
the failure surface at ‘‘P1’’; and (c) it must pass through point

‘‘P2’’ of stress coordinates ð�n2; y2 ¼ �qc2Þ ¼ �ael=
ffiffiffi
3
p

; ael

ffiffi
2
3

q� �
.

Coefficient ael is defined such that in a uniaxial compression test
plastic strains begin when the compressive stress is equal to
ael � f 0c
� �

. As it was previously mentioned in the Section 2, in a uni-
axial compression test the elastic range in the case of HSC is con-
siderably more extended than the corresponding to NSC. While
for NSC the proportional zone is about 30% of f 0c , it can reach and
overpass 80% of f 0c in the case of HSC. Regarding this, the following
expression was adopted for ael

0:10 6 ael ¼ b0:11
P � 0:50þ f 0c ½MPa�

300
6 0:95 ð57Þ

The first ellipse parameters end defined as follows
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1o � �n2
2o

� �
n1y1 � �n1o y2

1 � y2
2

� �
2y1n1ð�n1o � �n2oÞ � y2

1 � y2
2

� � ð58Þ

a2
o ¼ x2

1 �
x1y1

n1
; and b2

o ¼
a2

oy2
1

a2
o � x2

1

� � ð59Þ

with n1 ¼
�C

2Ay1 þ Bc
ð60Þ

Finally, to obtain the stress coordinate y1 ¼ �qc1 of ‘‘P1’’, the
ellipticity conditions: a2

o > 0; b2
o > 0 and a2

o=b2
o > 0 are considered

together with the condition �n1 > �n2, leading to

y2
1 þ

2
Bc

Ay2
2 � 1þ C�n2

h i
y1 þ y2

2 > 0 ð61Þ

The roots of Eq. (61) define maximum and minimum values
y1max, y1min of the domain of possible stress coordinates y1. Among
all possible values in the y1max, y1min domain, the following is
adopted in present model formulation

y1 ¼ y1min þ 0:17ðy1max � y1minÞ ð62Þ
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From Eq. (26), the hardening parameter corresponding to the
first yield surface in pre peak regime is

ko ¼ y1=
ffiffiffiffiffiffiffiffi
2=3

p
ð63Þ
A.4. The successive hardening elliptical caps on the compressive
meridian

As previously mentioned, during the hardening process the con-
tact point ‘‘P1’’ between cap and cone moves along the compres-
sive meridian of the failure criterion towards the increasing
confining zone. Thus, new hardening level parameters ki ¼
�qcP1i

=
ffiffiffiffiffiffiffiffi
2=3

p
are generated. The successive elliptical caps on the

compressive meridian are tangent to the failure cone at actual con-
tact point ‘‘P1i’’, while the ratio between the two ellipse semi axes
are considered to remain constant a2=b2 ¼ a2

o=b2
o ¼ Rab

� �
. Then
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After replacing in (65) the coordinates of ‘‘P1’’ expressed in terms of
the hardening parameter k, the ellipses parameters in Eq. (27) take
the form
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The final formulation of the actual cap expressed in terms of the
three Haigh Westergaard stress coordinates (Eq. (27)) is obtained
by extending the equation corresponding to the cap on the com-
pressive meridian (Eq. (64)) to all possible meridians. This can be
done by introducing the ellipticity factor r of Eq. (23) in Eq. (64)
while extending the fulfillment of condition in Eq. (22) to the cap
as

800
6 h 6 600 ) �qc ¼ r�q ð69Þ
A.5. Internal parameters involved in softening law

When fracture energy in mode I GI
f is not an input datum, it is

evaluated by Eq. (43), with parameters g1 = 0.03, and g2 = 0.56,
leading to the following expression

GI
f ½N=mm� ¼ 0:03U0:56

max b0:112
P with Umax in ½mm� ð70Þ

From Eq. (37) and from the negative exponential function adopted
for the tension decay (Eq. (39)), it follows

GI
f ¼ f 0t

Z urt

0
e
�du
urt du ¼ �f 0t urt

d
ðe�d � 1Þ )

GI
f

f 0t urt
dþ e�d � 1 ¼ 0 ð71Þ

where parameter urt is the maximum crack opening in a uniaxial
tensile test, considered as an optional input datum with a default
value of 0.20 mm, and d is a coefficient defining the shape of the de-
cay function. The latter is obtained by an approximated solution of
Eq. (71) as follows

d ¼ 0:99495
GI

f

f 0t urt

 !�1:002098

ð72Þ
In the expression above, it may be observed that d depends on GI
f

and consequently, takes different values for different coarse
aggregates.
A.6. Non associative factor go

The actual calibration of the internal parameters t1, t2, t3, and t4

in Eq. (46) leads to the following expression of the non associative
factor go

go ¼ 7:38atC expð�2:46atCx�0:48at Þ � 0:30bP � 0:37

with x ¼
�nvertex � �n if �n 6 �nt

�nvertex � �nt if �n > �nt

(
ð73Þ
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