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Abstract Multi-sensor image matching based on salient edges has broad prospect in applications,

but it is difficult to extract salient edges of real multi-sensor images with noises fast and accurately

by using common algorithms. According to the analysis of the features of salient edges, a novel

salient edges detection algorithm and its rapid calculation are proposed based on possibility fuzzy

C-means (PFCM) kernel clustering using two-dimensional vectors composed of the values of gray

and texture. PFCM clustering can overcome the shortcomings that fuzzy C-means (FCM) cluster-

ing is sensitive to noises and possibility C-means (PCM) clustering tends to find identical clusters.

On this basis, a method is proposed to improve real-time performance by compressing data sets

based on the idea of data reduction in the field of mathematical analysis. In addition, the idea that

kernel-space is linearly separable is used to enhance robustness further. Experimental results show

that this method extracts salient edges for real multi-sensor images with noises more accurately than

the algorithm based on force fields and the FCM algorithm; and the proposed method is on average

about 56 times faster than the PFCM algorithm in real time and has better robustness.
ª 2014 Production and hosting by Elsevier Ltd. on behalf of CSAA & BUAA.

Open access under CC BY-NC-ND license.
1. Introduction

Multi-sensor image matching has been one of the key technol-

ogies in such fields as remote sensing and navigation
guidance.1 However, a lot of difficulties still exist2 so it is hard
to get the common features of multi-sensor images in such
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aspects as gray, intensity, and color, due to the large
differences of imaging principles (such as optical images and
synthetic aperture radar (SAR) images) and the different

bands (such as optical images and infrared radiation (IR)
images). We find that the salient edge of an object is a common
feature between images, according to the analysis of typical

multi-sensor images and their imaging principles. A salient
edge can show the position and shape of a target and provide
the important feature for object recognition.

Common edge detection methods include gradient
methods,3 force field conversion,4 image segmentation, edge
extraction methods, etc. However, no method can extract sali-

ent edges accurately and quickly for real IR images and SAR
SAA & BUAA. Open access under CC BY-NC-ND license.
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images which are mixed with noises and have poor contrast be-
tween background and target.

Image segmentation methods include such methods as

threshold-based, region-based, edge-based, and clustering-
based.5 Among them, methods based on clustering algorithms,
especially fuzzy clustering algorithms,6 can overcome uncer-

tainty and ambiguity for IR images and SAR images to a cer-
tain extent. Image segmentation algorithms based on
clustering analysis consist of two parts: calculating a feature

space and clustering with the feature space. In aspect of select-
ing the feature space, the gray scale is one of the most basic
features of an image, but it cannot obtain satisfactory segmen-
tation accuracy by only using the gray feature. According to

imaging characteristics of multi-sensor images, the texture
information7 should be employed to make up for the deficiency
in order to improve segmentation accuracy. Common texture

descriptors include first-order texture features such as entropy,
standard deviation, maximum difference, etc.,8 and two-order
texture features based on gray level co-occurrence matrix

(GLCM) such as energy, contrast, autocorrelation, etc.9

In aspect of clustering algorithms, hard clustering methods
have been extended gradually to fuzzy clustering methods,

where the fuzzy C-means (FCM) method proposed by Dunn10

and popularized by Bezdek11 has been used most widely and
successfully. Many improved algorithms based on FCM have
been proposed: Pal and Bezdek put forward a fast algorithm

called ‘‘eFFCM’’ for ‘‘large image’’ segmentation12; a fast clus-
tering algorithm (geFFCM) fit for large data sets was proposed
by Bezdek and Hathaway.13 These methods cannot improve

clustering accuracy further, though they are able to reduce
clustering time, because FCM uses probabilistic constraints
that the memberships of a data point across classes sum to

1, i.e., the influence of each data point on the clustering is
the same, which makes a noise or an outlier be divided into
an error cluster due to its large membership. A possibility C-

means (PCM) clustering algorithm was proposed by Krish-
napuram and Keller14 by abandoning the constraint of
FCM, which makes a noise or an outlier have little influence
on the clustering due to its very small membership, but PCM

tends to find identical clusters and is sensitive to initialization.
The possibility fuzzy C-means (PFCM) clustering algo-

rithm15 proposed by Pal et al., which is a combination of

FCM and PCM, can overcome the shortcomings that FCM
is sensitive to noises and PCM tends to find identical clusters.
However, the segmentation accuracy of the PFCM algorithm

still needs to be improved for real multi-sensor images with
large noises. In addition, in order to reduce the computational
complexity, Wu and Zhou16 put forward an improved PFCM
clustering algorithm that the second iteration was not required

by optimizing the parameters of PFCM. Its real-time perfor-
mance is still poor for images which contain tens of thousands
of pixels although its computational complexity has been

decreased.
For the problems that real-time performance and segmen-

tation accuracy need to be improved for multi-sensor images

with noises, we propose a novel salient edges detection algo-
rithm and its rapid calculation based on PFCM kernel cluster-
ing by using two-dimensional vectors composed of gray and

texture. Firstly, the two-dimensional feature space is con-
structed by each pixel’s gray and texture features. Secondly,
a method is proposed to improve real-time performance by
compressing data sets based on the idea of data reduction in
the field of mathematical analysis. Thirdly, the Euclidean dis-

tance in the kernel space instead of the sample space is em-
ployed to enhance the robustness by mapping the sample
space of reduced data into the Gaussian kernel space. Lastly,

image segmentation is carried out using PFCM clustering algo-
rithm in kernel space and then salient edges are extracted by
the Canny operator.

2. The KPFCM clustering algorithm of salient edges detection

for multi-sensor images

The PFCM clustering algorithm can overcome the shortcom-
ings to a certain extent that FCM is sensitive to noises and
PCM tends to find identical clusters. However, in the case of

large noises, the segmentation accuracy of the PFCM algo-
rithm still needs to be improved. Therefore, in order to solve
this problem, in the field of pattern recognition, Han et al.17

proposed the idea of kernel clustering on the basis of the

PFCM algorithm, which was KPFCM. Let data set X= {x1,
x2, . . ., xn} be a sample space, and xk e X, k = 1, 2, . . ., n be
a sample vector in the sample space, that is, this sample space

is composed of n samples. Map the data of the sample space
into the Gaussian kernel space H by using nonlinear mapping
/. Get the data of the kernel space, that is /(x1), /(x2), . . ., /
(xn). The dot product of two vectors in the sample space can be
expressed by Gaussian kernel in the Gaussian kernel space.
Gaussian kernel:

Kðxi; xjÞ ¼ ð/ðxiÞ;/ðxjÞÞ ð1Þ

In the space of kernel, the objective function of the PFCM

algorithm can be formulated as:

JðT;U;VÞ ¼
Xc
i¼1

Xn
j¼1
ðaumij þ btpijÞD2

ij þ
d2

m2c

Xc
i¼1

Xn
j¼1
ð1� tijÞp ð2Þ

where T is the possibility membership matrix; U is the fuzzy

membership matrix; V is the cluster center matrix; tij is the pos-
sibility membership values of xj in class i; p is the weighting
exponent of tij; uij is the fuzzy membership values of xj in class

i; m is the weighting exponent of uij; c is the number of clusters;
n is the number of data points; a, b define the relative impor-
tance of the fuzzy membership and possibility values in the
objective function; Dij is the distance from the jth data xj to

the ith cluster center vi; d2 is the sample variance; Dðxj; xÞ is
the distance from the jth data xj to average value �x.

D2
ij ¼ D2ðxj; miÞ ¼ jj/ðxjÞ � /ðmiÞjj2 ¼ Kðxj; xjÞ þ Kðmi; miÞ

� 2Kðxj; miÞ ¼ 2ð1� Kðxj; miÞÞ ¼ 2ð1� expð�bjjxj � mijj2ÞÞ ð3Þ

d2 ¼

Xn
j¼1

D2ðxj; �xÞ

n

�x ¼

Xn
j¼1

xj

n

8>>>>>>><
>>>>>>>:

ð4Þ

For Eq. (2), min(t,u,v) J(T, U, V) is optimized and the following
updated equations are obtained:
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tij ¼ 1þ bm2c

d2
D2

ij

� � 1
p�1

" #�1
; 8i; j ð5Þ

uij ¼
Xc
k¼1

D2
ij

D2
kj

 ! 1
m�1

2
4

3
5
�1

; 8i; j ð6Þ

mi ¼

Xn
j¼1
ðaumij þ btpijÞe�bjjxj�mi jj2xj

Xn
j¼1
ðaumij þ btpijÞe�bjjxj�mi jj2

; 8i ð7Þ

In the process of iterations, set e > 0, r represents the iter-
ative times, and V(r) is the cluster center matrix after r times of

iterations. If |V(r) � V(r�1)|| < e, then the iterations will end.
Otherwise, iterations will continue until the maximum iterative
time is reached.

The KPFCM algorithm maps the data of the sample space
into the Gaussian kernel space by using nonlinear mapping,
and then carries out PFCM clustering in the kernel space.
The kernel space is infinite-dimensional, so a limited sample

is linearly separable in the kernel space. In addition, the
KPFCM algorithm uses an Euclidean distance in the kernel
space instead of the sample space. In essence, it is a non-

Euclidean distance instead of a Euclidean distance. Wu and
Yang18 proposed a non-Euclidean distance and verified its
robustness on the basis of robust statistical viewpoint and

influence function.
Therefore, we will introduce the idea of the kernel space in

the field of pattern recognition into the algorithm of salient

edge detection in order to improve the robustness. However,
every iteration in this algorithm has to be calculated with the
whole data set, which is unacceptably time-consuming for an
image that contains tens of thousands of pixels. Therefore,

we will research the rapid calculation of salient edges detection
for multi-sensor images, on the basis of the KPFCM clustering
algorithm.
Fig. 1 An original image (SAR1) and its grayscale average

feature map.
3. The rapid algorithm of salient edges detection for multi-sensor

images

3.1. Construct feature space

Imaging principle of an optical image is active imaging
depending on the reflectivity of different materials. An optical
image can reflect texture details of object surface well because

of its high brightness and contrast. Imaging principle of an IR
image is different from that of an optical image. It forms
according to a gray value which is transformed by material
IR received by an infrared detector. The overall grayscale dis-

tribution of an IR image is more concentrated due to small dif-
ference of temperature distribution of an actual object. An
SAR image is microwave imaging by scattering from different

objects. The main factors of affecting scattering are dielectric
constant, surface roughness, etc., and different materials have
different surface roughness, namely different textures when re-

flected in the image. Therefore, we give the definition of ‘‘sali-
ent edge’’: a significant edge which forms between different
materials.

According to the above imaging principle of multi-sensor
images and the definition of salient edge, gray scale is one of
the most basic features to represent images. However, the issue
that different objects have similar gray would appear if only
using the gray feature, especially for IR images and SAR

images which have poor contrast between background and tar-
get. Therefore, it will give more satisfactory segmentation re-
sults if combining gray scale and texture.

3.1.1. Analysis of gray feature

The average gray level is employed to describe the gray
distribution of an image based on the characteristics of

multi-sensor images. Calculate all pixels’ average gray value
in the neighborhood of a central pixel. By comprehensive
consideration of time and quality, the size of neighborhood

is set to be 9 · 9.

m0 ¼
XL�1
i¼0

zipðziÞ ð8Þ

where L is the number of gray levels in the neighborhood; zi
represents the value of brightness, which belongs to the ith

gray level, zi e [0, 255]; p(zi) is the gray histogram of the neigh-
borhood, and p(zi) = ni/N, in which ni is the number of pixels
whose value of brightness is zi and N represents the number of

all pixels in the neighborhood; m0 is all pixels’ average gray va-
lue in the neighborhood. Taking an orginal SAR1 image for
example, we respectively calculate the average gray value for

each pixel in its neighborhood by Eq. (8), which is the corre-
sponding pixel’s new gray value. All the new gray values con-
stitute the grayscale average feature map, as shown in Fig. 1. It
can reflect the characteristics of the original image.

3.1.2. Analysis of texture feature

Textures can reflect the spatial distribution of image grayscale

and keep a better balance between the macroscopic and micro-
scopic information in an image, compared with other image
features. Common texture descriptors include first-order tex-
ture features and two-order texture features based on GLCM.

(1) First-order texture statistical features
(A) Entropy is a statistical measurement of image grayscale

randomness and represents the texture information of an

image. It is expressed as:



A salient edges detection algorithm of multi-sensor images and its rapid calculation based on PFCM kernel clustering 105
E ¼ �
XL�1
i¼0

pðziÞlog2pðziÞ ð9Þ

If an image does not contain any texture, the value of entropy
will be close to 0; if an image is filled with textures, the value of

entropy will be larger.
(B) Standard deviation is the standard to measure the dis-

persion degree of the data distribution. It is expressed as:

r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXL�1
i¼0
ðzi �mÞ2pðziÞ

vuut ð10Þ

The above two descriptors are used to calculate texture feature
maps. Similarly, the values of E and r are calculated in each

pixel’s neighborhood, respectively. All the obtained values
form the entropy image and the standard deviation image,
which are shown in Fig. 2 and reveal the characteristics of

the original image.
(2) Two-order texture statistical features

GLCM is defined as the joint probability distribution of
simultaneous occurrence of any two pixels in an image. f(x,

y) is a two-dimensional digital image. Its size is M · N and
the number of gray levels is Ng. GLCM is expressed as

pði; jÞ ¼ gfðx1; y1Þ; ðx2; y2Þ 2M�Njfðx1; y1Þ
¼ i; fðx2; y2Þ ¼ jg ð11Þ

which is normalized as follows:

Pði; jÞ ¼ pði; jÞ=S ð12Þ

where g(X) represents the number of elements in the set X, and

S is the total number of pixel pairs. Three common texture fea-
tures based on GLCM are as follows:

(A) Entropy is a measurement of content randomness and
the amount of information.

W1 ¼ �
X
i

X
j

Pði; jÞlog2½Pði; jÞ� ð13Þ

(B) Angle second moment reflects the uniformity and
smoothness of an image.

W2 ¼
X
i

X
j

fPði; jÞg2 ð14Þ

(C) Contrast refers to the clarity of texture.
Fig. 2 An original image (SAR1) and
W3 ¼
X
i

X
j

ði� jÞ2Pði; jÞ ð15Þ

Texture feature maps based on GLCM are shown in Fig. 3.

It can also reflect the characteristics of the original image.
(3) Analysis and research of two kinds of texture features

According to the descriptions of texture features in the
above two subsections, we analyze from three aspects. Firstly,

calculation principle aspect: first-order texture features are
based on statistical properties of regional luminance histo-
gram. Two-order texture features are on the basis of joint

probability distribution of simultaneous occurrence of any
two pixels in an image. It incurs large amount of calculation.
Second, feature images aspect: we can see from Fig. 2 that tar-

get and background can be separated clearly, but some detail
textures exist in target and background of two-order texture
feature maps (see Fig. 3). The entire external contour of fore-

ground, instead of details, is what we want to get, according to
the definition of salient edge, so first-order texture feature
images are relatively in line with the expected results. Thirdly,
real-time performance aspect: taking entropy features for

example, their edge detection times are shown in Table 1.
Based on the above three points, first-order texture features
will be used in this paper. In addition, we can see from

Fig. 2(b) and (c) that the entropy image can retain the entire
area of foreground but the standard deviation image can only
retain edges and some details. Therefore, we will ultimately se-

lect first-order entropy as the texture feature.

3.2. Research on the fast algorithm of salient edges detection for
multi-sensor images based on KPFCM (FKPFCM)

We will carry out clustering with the two-dimensional feature
space constructed above. On the basis of PFCM clustering in
the kernel space, a method is proposed to improve real-time

performance by compressing data sets based on the idea of
data reduction19 in the field of mathematical analysis. Here,
in the process of image segmentation, we try to compress the

two-dimensional feature space by reducing the number of data
points for iterations from n to s (s is far less than n) and keep
the clustering well, so as to decrease time of every iteration.The

same feature vectors should belong to the same category in the
data set X. Therefore, the algorithm of data reduction can be
described as: there are s kinds of feature vectors in the data
set X, that is, the new data set X0 ¼ fx01; x02; . . . ; x0sg. The
its first-order texture feature maps.



Fig. 3 An original image (SAR1) and its two-order texture feature maps.

Table 1 Detection time comparison of two kinds of texture features.

Image Detection time(s)

First-order texture feature (entropy) Two-order texture feature (entropy)

SAR1 0.154414 25.353053
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number of data points corresponding to every kind of feature
vector is H= {h1, h2, . . ., hs}. Taking an SAR1 image for

example, it contains 237 · 306 pixels. Each pixel corresponds
to a two-dimensional vector which is composed of the values
of gray average and first-order entropy, so the data set X con-

tains 72522 two-dimensional vectors. Now the values of gray
average and first-order entropy are both normalized to 0–255
and every 10 is for a group, i.e., we substitute 5 for the num-

bers values of which are in 0–9, substitute 15 for the numbers
values of which are in 10–19, and so on. Then the data set X0

will at most contain 26 · 26 kinds of feature vectors, as shown
in Fig. 4 (The first number of each two-dimensional vectors is

the value of gray average and the second number is the value
of first-order entropy in Fig. 4). Next, count the number of pix-
els corresponding to every kind of feature vector. Then 343

kinds of feature vectors are left except for those vectors to
which the number of pixels corresponding is 0. Therefore,
the number of data participating in iterations can be reduced

from 72522 to 343 in every iteration process, which improves
the speed of clustering greatly.

Formula is as follows:

mi ¼

Xs
j¼1

hjðaumij þ btpijÞe
�bjjx0

j
�mi jj2x0j

Xs
j¼1

hjðaumij þ btpijÞe
�bjjx0

j
�mi jj2

; 8i ð16Þ

The iterative formulas of tij and uij are the same as in Eqs.
(5) and (6), respectively, but they should be computed using
the new data set.
Fig. 4 The largest new data set after data reduction.
Then the algorithm described below is called the FKPFCM
algorithm:

(1) Initialization: fix c, m, p, b, a, b, and set e > 0, the initial
iterative times r = 1, and the maximum iterative times

rmax.
(2) Compute d2 using Eq. (4).
(3) Employ the FCM algorithm and get the cluster centers

as the initial cluster centers V(0).
(4) Get the new data set using the algorithm of data

reduction.
(5) Repeat the calculation below with the new data set:

update TðrÞ, UðrÞ, and VðrÞ using Eqs. (5), (6) and (16),
respectively. Until jVðrÞ � Vðr�1Þk< e or r>= rmax.

The Canny operator is used to detect the edge, on the basis
of image segmentation.
4. Experimental results and analysis

In order to verify the validity of the algorithm, we designed
experiments from two aspects: the robustness and the real-time

performance.

4.1. The validation of robustness

We carried out image segmentation and edge detection using
the algorithm based on force field transformation (see Ref. 4),
the FCM algorithm, the PFCM algorithm, and the FKPFCM
algorithm proposed in this paper for optical images, IR images,

SAR images, and their corresponding actual images with
noises, respectively. The experimental results are shown in
Figs. 5–7. The first row of each figure is the experimental results

for noise-free images and the second row of each figure is the
experimental results for the simulated actual images with
noises.
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We can see from the figures that, the algorithm of Ref. 4 can
extract salient edges of optical images and IR images, but there
exist some breakpoints in the detection results (see Figs. 5(b)

and 6(b)). In addition, the experimental results are poor for
SAR images which have ample textures (see Fig. 7(b)). Because
the composition and separation of mechanics in the model just

uses grey information, the FCM algorithm has poor segmenta-
tion accuracy when the species of background or target is not
single (see Fig. 5(c)) and is sensitive to noises (see Fig. 7(c)).

Because FCM uses probabilistic constraints that the member-
ships of a data point across classes sum to 1, which makes a
noise or an outlier be divided into an error cluster due to its
large membership, the PFCM algorithm can retain relatively

complete target area and extract the salient edge, but some er-
ror clustering may exist for images with large noises, because
the Euclidean distance in the sample space cannot distinguish

data points well, so the obtained target areas are deformed or
inaccurate. For example, at the places of labels 1, 2, 3, 4 in
Fig. 5(d), the segmentation of the horse’s leg is incomplete.

At the places of labels 1, 2 in Fig. 6(d), the rockery in the mid-
dle of the image and the water in the pond are not separated
well. The deformation exists at the places of labels 1, 2 in

Fig. 7(d). The proposed method can realize image segmenta-
tion and edge detection effectively for optical images, IR
images, SAR images, and their corresponding actual images
Fig. 5 Experimental results of differe

Fig. 6 Experimental results of diffe

Fig. 7 Experimental results of differ
with noises, because it employs the Euclidean distance in the
kernel space instead of the sample space on the basis of the
PFCM algorithm. As shown at the places of labels in Figs. 5–

7, this algorithm has better segmentation accuracy compared
with PFCM; it is basically not affected by noises and has better
robustness, by comparing the experimental results of noise-free

images with the results of their noisy images.
The experimental results of three other images are pre-

sented in Figs. 8–10, respectively, to further verify the

effectiveness of the proposed method and the conclusions
above.

At the places of labels 1, 2, 3, 4 in Fig. 8(d), there exists
some error clustering on the path; at the places of labels 1,

2, 3, 4 in Fig. 9(d), the more transitional part between path
and lawn is detected; at the places of labels 1, 2, 3 in
Fig. 10(d), there exists more inaccurate clustering. According

to the comparison of the experimental results above, appar-
ently the proposed method can realize image segmentation
and edge detection effectively for optical images, IR images,

and SAR images, and basically it is not affected by noises.
In order to show the effectiveness of the proposed method

more intuitively, we adopted the evaluation system of edge

detection proposed by Grigorescu et al.20 to make quantitative
evaluation for the above experimental results. The precision of
edge detection is defined as below:
nt algorithms for optical image 1.

rent algorithms for IR image 2.

ent algorithms for SAR image 3.



Fig. 8 Experimental results of different algorithms for optical image 4.

Fig. 9 Experimental results of different algorithms for IR image 5.

Fig. 10 Experimental results of different algorithms for SAR image 6.

Table 2 The edge detection precisions of different algorithms for images and their corresponding noisy images.

No. of multi-sensor images The precision for noise-free image/the precision for its corresponding image with noises

Algorithm of Ref. 4 FCM algorithm PFCM algorithm Proposed method

Optical image 1 0.7659/0.6825 0.4800/0.6859 0.8394/0.8128 0.8628/0.8469

IR image 2 0.4026/0.3912 0.6053/0.5655 0.5435/0.5612 0.6667/0.6188

SAR image 3 0.2084/0.2023 0.8166/0.3192 0.8252/0.6792 0.8821/0.7897

Optical image 4 0.6099/0.5929 0.3853/0.3999 0.8152/0.8089 0.8580/0.8453

IR image 5 0.6484/0.6019 0.7758/0.5865 0.8478/0.8425 0.8482/0.8135

SAR image 6 0.3843/0.2106 0.5141/0.4465 0.7030/0.5597 0.8672/0.5719
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P ¼ cardðAÞ=ðcardðAÞ þ cardðAlÞ þ cardðAfÞÞ ð17Þ

where A represents the collection of pixels detected correctly,
Al is the collection of pixels which are the correct target pixels
but undetected, Af represents the collection of pixels detected

falsely, and card(X) indicates the number of pixels in the set
X. The precision P of different algorithms are shown in
Table 2.

Table 2 quantitatively shows that the proposed method has
better robustness than other algorithms for optical images, IR
images, SAR images, and their corresponding actual images
with noises.
4.2. The validation of real-time performance

The edge detection times of different algorithms are shown in
Table 3.

Table 3 shows that the algorithm of Ref. 4, FCM, and the

proposed algorithm all have good real-time performance, but
the edge detection results of the proposed algorithm are
better than those of others. In addition, the proposed method

is on average about 56 times faster than the PFCM algorithm
in real time and even more if the original image gets larger.
Therefore, the proposed method can extract salient edges of



Table 3 The comparison of the edge detection times of different algorithms.

No. of multi-sensor images Detection time(s)

Algorithm of Ref. 4 FCM algorithm PFCM algorithm Proposed method

Optical image 1 3.37 0.72 86.12 1.79

IR image 2 3.17 0.55 89.32 1.66

SAR image 3 1.66 0.69 92.66 1.17

Optical image 4 4.17 0.50 66.79 1.44

IR image 5 1.09 0.61 98.41 1.49

SAR image 6 4.18 0.40 74.33 1.65
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real multi-sensor images mixed with noises fast and accurately
according to the validation of the robustness and real-time.

5. Conclusions

(1) According to the research of the salient edge formation,
PFCM clustering, and the idea of data reduction in the
field of mathematical analysis, a novel salient edge detec-

tion algorithm for multi-sensor images and its rapid cal-
culation is proposed.

(2) The values of gray average and first-order entropy are
selected to construct a two-dimensional feature space,

based on the analysis of imaging principle of multi-sen-
sor images and the contrast between first-order and two-
order texture features.

(3) On the basis of PFCM, the idea of kernel clustering is
used to enhance robustness further; in addition, a novel
method is proposed to improve real-time performance

based on the idea of data reduction.
(4) Experimental results show that the proposed algorithm

of salient edge detection is more accurate than the algo-
rithm based on force field and the FCM algorithm; it is

on average about 56 times faster than the PFCM algo-
rithm in real time and has better robustness.
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