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This paper is concerned with the study of the FitzHugh-Nagumo equations.
These equations arise in mathematical biology as a model of the transmission of
electrical impulses through a nerve axon; they are a simplified version of the
Hodgkin-Huxley equations, The FitzHugh-Nagumo equations consist of a
non-linear diffusion equation coupled to an ordinary differential eguation.
Uy = Uy + f(@) — 1, u; = ov — yu. We study these equations with either
Dirichlet or Neumann boundary conditions, proving local and global existence,
and uniqueness of the solutions. Furthermore, we obtain L, estimates for the
solutions in terms of the L, norm of the boundary data, when the boundary data
vanish after a finite time and the initial data are zero. These estimates allow us to
prove exponential decay of the solutions.

INTRODUCTION

We consider two initial boundary value problems for the system of partial
differential equations:

'vt:vm—l-f(v)—u, X >0
, t=0; y>0, o=0

Uy = 09 — Yy, x

(1.1)

A\

0, ¢
0

where, qualitatively, the graph of f is as pictured in Fig. 1.

The system (1.1) is an ordinary differential equation coupled to a non-linear
diffusion equation. The boundary conditions at x = 0 are only given on v.
These equations arise as models of the conduction of electrical impulses in a
nerve axon. The first such model appeared in 1952 in the work of Hodgkin and
Huxley [6]. The form we are using was proposed afterwards by FitzHugh-

- Nagumo. (For a discussion of this model see [5].)

This paper can be divided into three parts. In the first part we treat the
system (1.1) with Dirichlet boundary conditions at x = 0. We prove global
existence and uniqueness of the solution. To pass from locally to globally defined
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Fieure 1

solutions we use the invariant regions found by Conley and Smoller, and the
method of contracting rectangles developed by Rauch and Smoller in [7].

The main sections of part I are 5, 6, and 7; they deal with the threshold
problem for the Fitz Hugh-Nagumo equations (1.1). Numerical and biological
evidence seems to indicate that a strong stimulus of short duration, or a weak
stimulus of long duration, is sub-threshold. We show that the L, norm of the
stimulus is one of the critical parameters. We prove that if the initial data are zero
and the boundary data z(#, 0) = A(¢) have finite sup norm and vanish outside
of some interval [0, 7], then our solution is bounded, for all # > 0, by a constant
(depending on || % ||, and T') times the total stimulus, f: | A(t)| dt. Furthermore,
we show that if the total stimulus is sufficiently small, the solution has exponential
decay. This proves a conjecture of S. P. Hastings [5]. More precisely we estimate
each of the coordinates of U == (v, u). We consider the first coordinate v as the
solution to an inhomogencous heat equation with f(2) — # as the known in-
homogeneous term. We employ the integral representation for such solutions,
this gives rise to two terms, one due to the boundary data and the other due to
the inhomogeneous part f(v) — #. The main step is to analyze the contribution
from the inhomogeneous part. We do this by establishing a Gronwall type
inequality.

In order to analyze the second coordinate #, we solve the ordinary differential
equation explicitly and use methods similar to those used to analyze the first
coordinate.

Additional information is obtained by energy estimates. Under conditions
similar to those in the preceding paragraph, standard multiplier methods are
used to show that if o(2, x) is less than the first positive zero of f, for all z == T,
x > 0, then the solution U = (v, #) decays exponentially in L, N L, .

Experiments have not made clear what the correct boundary conditions for
(1.1) are. Rauch and Smoller studied the Dirichlet problem in [7], but no results
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were known for the Neumann problem. Part II is devoted to the study of the
Fitz Hugh-Nagumo equations (1.1) with Neumann boundary conditions at
x = 0. First we show the existence of a solution for small ¢. To construct global
solutions we obtain an a priori estimate by comparing the solution with the
solution @z, x) = ($(¢, x), o2, %)) of the “linear Fitz Hugh-Nagumo equations’
(f(v) = 0) with the same initial-boundary data. The difference of the two
solutions is a function which satisfies equations similar to (1.1), where f(z) is
replaced by g{v) = f(v + ¢). Now the initial and boundary conditions are zero,
which enables us to use an argument involving contracting rectangles to obtain
the desired estimate.

In the last sections of II, we discuss the threshold problem for the Fitz Hugh-
Nagumo equations with Neumann data. Under hypotheses analogous to those
for the Dirichlet problem (replacing #(z, 0) by z,(¢,0)) we get, (by similar
techniques), the same threshold results. In particular, [y |v,(¢ 0)| dt is the
critical parameter. Part ITI is a short note on the threshold results for the
Hodgkin and Huxley equations with zero initial data and compactly supported
Dirichlet boundary data. The methods we use are essentially the same as for
the Fitz Hugh-Nagumo equations.

The author would like to thank Jeff Rauch for many stimulating conversations.

I. Tug DIricHLET PROBLEM

§2. Global Theory and Local Solvability

§2a. Consider the following non linear systems of equations in two independent
variables (Z, x).
Ui = AU,, + F(U), x>0, t>=0, 2.1
where:
U = (uy .., u,) is a real n-vector;
F is a smooth R" valued function with F(0) = 0;
A is a non negative diagonal matrix.
A = diag{e, ,..., a,,},
a; >0, 1 <i<p,
a;, =0, p<i<ana
Let Ki(t, x) = diag{k,(¢, x),..., k(t, %)},
k(t, x) = (dagmt) 2 exp(—a2f4at) i | <7< p.
where

k{t, x) = &(x), for p<i<{m
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In what follows we will use the notation

BC for the space of bounded continuous functions on R, ..

C, for the space of continuous function on R, which tend to zero as x
tends to infinity.

B for any of the following Banach spaces (with the obvious norm, |[[|z)
BC* = {w: (d/dx)fw isin BCfor 0 <j <kt k>

BC*NL, p=>

Wi ={welL, (d/dx)jw el for 0 <j<<ARR =1

BCy* = {w € BC*, lim(d|djy'w = 0 as x — o0 for 0 <j < &}

(see [7] for a further discussion.)

For b = (hy ,..., hy) e BC and g = (g1 ,..., ) C B, let
Rtz x) = Kt, s — x) — K-(t —z—x), 1<<i<g<n

Ht, x) = —-2fhz(s) it —s,2,%) | ds, 1<i<p.

z=0

Hyt, %) =0, p<ignm
St = | T o) Ktz %) ds, 1 <i<p
0

Silt, x) = gilx),  p<i<
Sz(o’ x) = gz(x); 1 < d < n.

We recall that Hy{t, x), 1 << i < p, is the solution of the heat equation with
Dirichlet boundary condltlon h; and zero initial data; Sy, ), 1 << i < p, the
solution to the heat equation with initial data g; and boundary data zero. We
also note that S,(#, ¥) is the restriction to & > 0 of the solution to the Cauchy
problem for the heat equation on —o0 < & <C oo with initial data of the form

gi(x), for x > 0 and —g(—=x), for x << 0.
In the following we will also let

[ U@l == max || ()l = max sup | (2, )|

1 U6 = mas) el = max ([ Ve, 12 ds)

K =(k,,...,K,),
= (S -er So),
H = (Hy o, H,).
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§2b. One can show that a function U e C([0, T | B) satisfies the system (2.1},
in the sense of distributions, with initial and boundary data:

< =
(2.2)
w(t,0) = k), 1<i<p 130

if and only if

U(t, x) = R(t, x) -+ J: L "R —s, 5 ) FUG, 2) dzds,  (2.3)

R,— AR, —0
R0, x) = gyx), 1 <iim
R, 0) = hy(2), 1<igp

Observations: R(¢, x) is given by the explicit formula
R(t, x) = H(z, x) + S(t, x).

The proof of the only if part is a familiar application of Green’s identity with
K as one of the entries. A similar argument is given in [1, p. 104], and the proof
of the other implication is standard.

The Banach contraction theorem allows us to solve the integral equation (2.3)
for a short time interval, the length of which depends only on F, and on the sup
norms of the initial and boundary data. More precisely, the following theorem
is true.

Tueorem (2.1). For any heBC, g,€B, 1 <i<p, and g;cC>N B,
P41 < j < n, with g(0) = h(0), there exists a constant t, > 0, which depends
only on F, | gll.., and || b, , such that the Dirichlet problem for equation (2.1}
with initial data U(0, x) = g(x) and boundary data u,(t, 0) = hf), 1 <1< p,
has a unique solution U in C([0, %o} | Bo) and || U leto.tliny < 224 Bl + gl

Proof. We refer the reader to J. Rauch and J. Smoller [7], where a similar
proof is used to show local existence and uniqueness of weak solutions of the
pure initial value problem.

To show that the solutions are smooth, the following regularity theorem can
be used.

Tueorem (2.2).  Suppose U = (u; ,..., u,) € C([0, ty) | Cy) is a solution of (2.1},
with initial and boundary conditions (2.2)

IF(1)g;eC(R,), i=1,.,p, (2 g;€CHR), i =p+ l,..,n and (3) &, <
BC(R.,), i = 1,..., p are satisfied.

Then U e C<(8), where 2 = (0, «0) X R._.



124 MARIJA ELENA SCHONBEK

Proof. Follows by repeatedly differentiating the integral equation which
describes the solution. For details we refer the reader to. [4].

§3. Contracting Rectangles (a general reference for this section is [7})

Drrinttion (3.1). A bounded convex set RC R® is contracting for the
vector field F(U) if for every point U € R and every outward unit normal # at
UFU) - -n<0.

In the proofs of theorems of global existence, stability and asymptotic behavior
of solutions of (1.1), an essential part is played by rectangles which are con-
tracting for the vector field F = ( f (v) — #, ov — yu), where f is as described
in the introduction.

Below we state three technical lemmas which will be needed in the sequel.
The proofs can be found in [7].

Lemma (3.1). For the lnear wector field Fi(U) = (—fv — u, ov — yu),
v, B > 0, 0 = 0, there is contracting rectangle containing O if and only if 8 > oly.

Assume that —f'(0) > o/y and {v:f(v) = —(s/y)v, v 7 0} is non-void.
Let w, = min{| 2 |: f(v) = —(o/y)v, v 5= 0}. Let R, be the rectangle symmetric
in the # and v axes with upper right hand corner at the point (v, , (o/y)v,). Then
we have:

LemMa (3.2). Suppose that F(u) = (f (v) — u, ov — yu), —f'(0) > oy and
R, is the rectangle described above. For any compact set Q in the interior of R,
there is a rectangle R and a comstant k >0 such that QCRC R, and
F(U) - n < —«r for all €0, 1), U € &(rR) and outward unit normals n at U.

Let f satisfy the growth condition,
nminf|f_gif>§, as | ¢ | — oo. 3.1)

Let v° = max{| v |: f(v) = —(o/y)v}, and R¢ be the rectangle symmetric in
the # and v axes with upper right hand corner at (¢, (o/y)v°).

Lemva (3.3). Suppose f is a smooth function which satisfies (3.1), F(U) =
(f (@) — u; ov — yu). Then for any compact set Q in the exterior of R®, there is a
rectangle R such that R° C R, Q is in the exterior of R and TR is contracting for f,
for 1 <7 << 0.

DrrmniTioN (3.2). For U € R” and R a rectangle in R® with 0 £ R, the norm
| [z on R"is defined by

| Uly = inf{t > 0: UetR},
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Define the norm vz on BC as:

va(I7) = sup | W&z

Recall the definition of Dini derivatives.

Diy(t) = ﬁn)}_)soup ﬂf_fi}%_:_‘/i(t_)_ .

For the Dirichlet problem we bave the following result.

LevMa (3.4). Let F(U) be a vector field on R™ and let R be a rectangle with
0 e int(R). Suppose that Ue C(T — 8, T -+ 8) | Cy) is a smooth solution of (1.1)
for | T —t| < 8 and that ve(U(T)) = s. Let v, U(T, 0) < 1.

If there is an 4 > 0 such that, for any W e 9(sR), and »n(}) normal to d(sR)
at W, we have F{(W) - n{(W) < —n, then

Do U(TY) < 22 U(TY,

where L is the length of the shortest side of R,

Proof. We refer the reader to the Basic Lemma of {7} which has a similar
proof. Our additional condition, v,z(U(T, 0)) < 1, is needed to insure that
U(T,0)¢ asR. [

We conclude this section with several definitions and remarks which will be
needed in the sequel.

Derintrion (3.3). We say that a convex region R is an invariant region for
the Cauchy problem with initial value U(0, x) == Uyfx) if Uyx)e R for all
—oo < x < oo implies U(t,x)e R for all £ 2> 0 and —o0 << & <C 0.

DrrmvitioN (3.4). We say that a convex region R is an invariant region for
the Dirichlet problem with initial value U(0, x) = Uy(x) and boundary value
Ut,0) = 2@t) if Uyx)eR for all ® >0 and A)e R for all r > 0, imply
U{t, ye Rforallx > 0and ¢ > 0.

Observation 1. Lemmas (3.2) and (3.3) give us two families of contracting
rectangles for the solution to the Cauchy problem for the Fitz Hugh-Nagumo
equations, namely:

i. Small rectangles {7R}, with RC R, and + < (0, 1].

ii. Large rectangles {A0}, with R CQ and A e[1, ).
By the Basic Lemma of [7] these rectangles are invariant regions for the solution
to the Cauchy problem.
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Observation 2. By Lemma (3.4) the two families of rectangles {rR}, {A\(Q}, are
also invariant regions for the solution to the Dirichlet problem.

4. Global Existence

Counsider the following system of equations

Uy = Uy - f(¥) —u, x>
4.1)

=
Uy = €Uy, + 0T — VU, x =

Turorem (4.1). Let ge BN Cy and ke BC, with g(0) = k(0), and let f be
as in Lemma (3.3). Then the system of equations (4.1} has a unique solution in
C([0, ) | (B N Cy) with initial and boundary conditions as follows:

1. If e £ 0.
U0, x) = glx) = (&1(x), &),
U(t, 0) = h(t) = (In(), by(2)).
2. If € = 0 the second equation in (4.2) is replaced by

o(t, 0) = A(t) (here (1) is a real valued function,
and we impose no boundary condition on u).

@.2)

Proof. By Lemma (3.3) we can choose a sufficiently large rectangle R such
that R is contracting for the vector field

F(U) = (f(v) — 4, ov — yu) and
ve(g(x)) < 1 for all x > 0, and
ve(h(t)) < 1 forallz == 0.

By Theorem (2.1) we get a solution U e C([0, #,] | B) of (4.1) with initial and
boundary conditions (4.2).

Claim. vi[U®)] < 1for 0 <t <t,.
If this is not true, let # = inf{s € (0, ) | vxU(#) = 1}. Thus I > 0, by continuity
of vy U(?).
v U(E) > vp(U(F, 0)) since vy U(F, 0) < 1 by construction of R. Therefore, by
Lemma (3.4),
Dy U(i) < 0.

Thus for any ¢ € ( — e, £) we have v U(#) > 1, which contradicts the definition
of 2.
The estimate v, U(t) < 1 for z € [0, to] is the sup norm estimate we need to
extend U from a local solution to a global solution with v, U(#) < 1 forall # 2= 0.
Uniqueness follows from the uniqueness of the local solutions. ]
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TueoreM (4.2). (Sup Norm Estimate for the Dirichlet Problem with Compactly
Supported Boundary Data). If Uz, x) € C([0, ) | Cy) is a solution of the Fitz
Hugh-Nagumo equations with Dirichlet boundary data h(t)e BC, and h(t) =0
for t = T, we have

[ U)o < constll UM, forall t=T.

Proof. By observation 2, of Section 3, we know that there exists a family of
small invariant rectangles {+R}, and a family of large invariant rectangles {10},
for the solution of the Dirichlet problem, such that for all x = 6, U(T, x) lies
in one of these rectangles, which is sufficient to establish the estimate:

W U@l < const || U(TY, t3=T. —

§5. The Treshold Problem

We discuss a model of a semi-infinite nerve stimulated at x = 0. Numerical
and biological evidence supports the conjecture that a strong stimulus of short
duration, or a weak stimulus of long duration is subthreshold. In sections 5 and &
we show that the first part of the conjecture is correct. The second part was
proven in [7].

TreroreM (5.1). Let f be a smooth function which satisfies
f0) =0

2. —f'(0) > oy

3. liminf|f(@)fv| > ofy as |v|— co.
Suppose k€ BC satisfies

4. ) =h0) =0forallt =1, >0

5. Nhlle < M,
let U2, x) == (o(t, x), u(t, x)) € C([0, ) | Cy) be the unique solution of

'vt:vmm-_!—f(‘v)_u /Ot 0

(5.1}
%y = OV — YU x=0,t>0
9(0, x) = u(0, x) =0 x>0
(5.2)
o(t, 0) = k() t>=0.

Denote by F = (F, ,F,) the vector field (f(v) — u, ov — yu). Then for any
T >ty = 0 there exists a constant k = k(T, t,, M, F), growing at most like
max{1/(T — t,), exp T}, such that

LU e < kAl foral t>T.

505/30/1-9
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Proof. By Theorem (4.1) we know that (5.1) has a unique solution U = (v, ©)
which satisfies

| U@, %) <k forall x>0,t>0, where E=AF M). (53)

The coordinates of U satisfy
t poo
o(t, x) = H(t, x) + f [ R(t — 5, 2, %) Fy(U(s, 2)) dz ds, (5.4)
[i 1]
t At
ult, x) = f FyU(s, ) ds = o | o(s, %) et ds, (5.5)
0 0

where H(f, x) = —1/[m'? ﬂ; A(s)/((f — $)32)x exp — [x2/4(t — 5)] ds.
Since F is smooth and U verifies (5.3), there exists a constant k& = k(M, F)
such that

|FU(t, ) < k| Ut x), forall x> 0. (5.6)
Thus, by (5.4), (5.5) and (5.6), we have, for all x > 0, ¢ = 0,
| U(t, %)) < |2t %)] + [ ulz, x)l
< | H(t, %) +kf R(t — s, 2, x | U(s, 2)| dz ds

iy f | Us, x)| ds. (5.7)
0
We observe that by Theorem (4.2), we only need to show
| Ul < const(T, M, F, 1) | 1 (5.8)
or equivalently
a. || o(T)|. < const(T, M, F, t,)|| ly

<
5.9
b. || #(T)|e < const(T, M, F, 1)) &]; -

To prove (5.9).a, we estimate the first two terms on the right hand side of
(5.7) for t = T. Bound for the first term:

const

|H(T 9 < ey |,

| h(s)| ds < const(T, t,) || |l (5.10)

this follows from

2= exp(—2?) <C const exp(—=22/2) < const, for any 2,0 = 0. (5.11)

To estimate the second term we observe that

T poo ‘Ll'(s, Z)‘

T s
f J R(T — 5, 2,%) | Uls, ) dwds <const | [ <=2l dads. (5.12)
0 Yo o Jo (T — 9o
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Therefore we only need to show

T e | U(Sa 2’)] \
Jo fo T A < const(T, M, P, t) |kl - (5.13)

For this we require the preliminary result
T pc
j [ 1 UGs, )| dx ds < const(T, F, M)l ky (5.14)
o Yo

which is obtained by means of a Gronwall inequality.
Integral representations (5.4), (5.5), yield for 0 <+ <L T

J: f | U(s, %)| dx ds < 1 5 fof J:O J: (—s-i—_@%,,—,x exp ( — q)) dq ds ds

k[ {771 R = g, 2 0)(U(g, 2))| d= dgdxds
- HJJI (s = 4, & ¥)(Ulq, )| d= dg
t pos as
-k Ulq, x)| dg dx ds
T L fo JO I Ulg, )| dg
== I(¢) + 1I(t) - I1I(2). (5.15)
Changing the order of integration in H(T') and integrating over x first we get
t poc pg
)y 4+ I < constf ’ f | Ulg, x)) dg dx ds. (5.16)
0 0 0

‘We observe that

t ot o 9, 42
I(t) < const _L | B(q)] Jq G —1q)1/2 JO e ;vq) exp — (qu—\_—q—)) dx ds dg

< const(T2) || A, . (5.17)

Now in view of (5.16) and (5.17) we apply Gronwall’s inequality to (5.15},
establishing the estimate (5.14).

Let us return to (5.13).

By (5.4), (5.5) and the same argument used to obtain (5.6) we have

J(, [0 - m——(’TUf’S;?,'Z dx ds

<constj f Jl (Tlh_(qs))!m G x)39 p — (zzs—%)dgdxds

T p0 as U , X . .
+ constJ;) fo _[}—&%dgdxds:ﬂ/(T)—{—P(T). (5.18)
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By Fubini’s theorem,

IV(T)

= cons [ 110 [ 7 Iwz W e L

< const Jo h(q)] ( T= )1,,, - L P ds dq

T
< const JO | k(q)| . . (5.19)

Observe that by (5.14)

T
P(T) < const(T, ty, M, F) || B fo TT’ZI“E)T/E ds. (5.20)

Combining (5.18), (5.19) and (5.20) we get the desired estimate (5.13), which
together with (5.12) and (5.10) yields (5.9).a. [

To prove the inequality (5.9).b we observe that by (5.5) and the integral
representation of o we have

| (T, x)] < afoT [ o(s, x)] ds

T a8 [ h [ 2
< .(0 .) (s “(33/2 X €xp (4(s — q)) dg ds
+k fT ‘ f"‘ R(s — q, % %) | Us, 2)| dz dg ds

< const J;)T L A(9)] fT (s __xq)slz exp (4(s — q)) ds dq

+ k| f f és(ﬁqq;)ﬂz dz dg ds. (5.21)

Combining (5.13) and (5.21) we get inequality (5.9).b, completing the proof. []

§6. Stability by Contracting Rectangles

In this section we study the stability of the zero solution. We show that for
solutions with zero initial data, whose boundary value vanishes outside a finite
interval, [0, £], and for which _f(t,” | &(2) | dt is sufficiently small, we have exponen-
tial decay. This proves a conjecture of S. P. Hastings [5]. More precisely we
have the result below.
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TuroreM (6.1). If conditions | to 5 of Theorem (5.1) hold, there exist constanis
¢, k, and X, such that if

Al < A
then
l U(tr )”x <k eXP(—Ct)a t=0

where k and X depend on T, ty, M and F, and ¢ depends only on F.

Proof. 1t suffices to show that for ¢ > #,, x > 0, there exists an invariant
rectangle R C R, (see Lemma (3.2)) contracting for the vector field
(f (®) — u, ov — yu), with the additional property:

Do U(t) < —evgUQ2). (6.1)
To construct R, recall that by Theorem (5.1)
U@ < kAL, t>1

thus if || &1}, is sufficiently small, there is a compact set O Cint R, , such that
U(t, x) CO. Now by Lemma (3.2) there is a contracting rectangle R for the
vector field F(U) = (f (v) — u, ov — yu) and vx(U(1)) < 1 for t > 1,.

We divide the proof that R has property (6.1) into two cases. Suppose ¢ > 1, :

1. If #is such that v U(#) > v U(t, 0) we have by Lemma (3.4)

EVRU(t) < — '2—L7Z VRU(t) (6-2}
(L the shortest side in R).

2. Iftis such that v U(t) = v U(t, 0), let v U(t) = s and set
X = {x: U(t, x) € 0sR}.
Remark:
1. X is not empty, since x = O is in X.

2. X is compact. We know that lim, ., U(t, ) == 0 so X is bounded, and
it is obvious that X is closed.

Let 8 = 6, U {0} D X, where 8 is a bounded neighborhood of X, and 0 £ 6, .
Since for t > ¢,

U(t - k, 0) = e*U(, 0)

and

EVRU(t + h’ O) = —'yVRU(t) 0) < — %VR[](t, O) = — %S,

we have for small | &1, 2 =£ 0,

vrU(t -+ h, 0) gs(l ~ ). (6.3)
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By a result of [7] we know that if:

1. |k|issmalland 84, ,

vaU(t + b, 6) < s(1— %h) (6.4)
2. {h|issmall and x e R \f,
: 2
vRU(E + by ) < (1— fh). (6.5)

Now by (6.3), (6.4) and (6.5), if v, U() = vz U(%, 0) we have for > t,,x > 0,
veU(t + b, %) < s(1 — (HiL)p),

where p = min(2y, Ly/2). Thus

DvU(t) < “L”s , (6.6)

which together with (6.2) implies

DvpU(t) < — %VRU(t) for t>1 x>0,

Therefore there exist positive constants % and ¢ such that
vrU(t) < k exp(—ct), t =0,

and the proof is complete.

§7. The Energy Method

In this section we consider the solution of equations (5.1) with initial and
boundary conditions (5.2), where the boundary condition /(¢) satisfies properties
4 and 5 of Theorem (5.1), and for all ¢ > 0, x = 0, o, x) is smaller than «,
where « is the first positive zero of f(v). Under these conditions we prove in
Theorem (7.1) using energy estimates that U(#) decays exponentially inL, N L,, .

More precisely, we prove the following.

Tueorem (7.1). Let U = (v, u) € C([0, w0) | Ly, N C,) be the solution of the
Fitz Hugh-Nagumo equations (5.1) with initial and boundary conditions (5.2).
Suppose f is smooth and satisfies

1. lm|f(@)/|lv] > ofyas|v|— 0.
2. f(0) <0, f(0) = 0.
3. f(») >0,ifv <O,
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and o(t, 0) = h(t) satisfies,
1. h{r)e BC.
2. k(@) =Hh0) =0, fort = 1,.

Let o = inf{v > 0| f(v) = 0} If sup,.o(f %) <oy <o, then, for any
t == 0, there exist constants k and ¢ such that

WU, + 1| U@ < kexp(—ct)  for 2= 0.
Proof. First we show that there exist constants 4 and ¢ such that
N U@y < kexp(—ct) for t>=1,. (7.0

Hypotheses 2 and 3 on f and the fact that o(¢, x) < oy < & guarantee that there
exists a 8 > 0, such that

of (7) < —&¢? for t >0, x=0. (7.2)

Multiplying the first equation of (5.1) by ov and the second by #, and adding,
we get, for the slab(0, T'] x (0, N] (T > 0, N > 0),

12 gt— (12 + 0v?) = ovvy), — 09,2 L ovf (v) — yu?

< [(29,), — 0,7 — [680® 4+ yuf]. (1.3

Note that in the slab (0, T'] X (0, N1, (vv,), and v,? are well defined as a con-
sequence of the interior regularity theorem (2.2). Therefore to prove (7.1), we
shall integrate (7.3) over intervals of the form {1/n, N}, n 2> [ and then pass to
the limit as #, N tend to infinity. That this limiting process is justified is a
tedious, but straightforward exercise, which we will delete.

Let

N
P, () = f W1, %) + o0¥(t, ¥)ds > 1
i/n
P(t) = lim lim P, +() = | w21, %) + ov¥(t, %) dv.

We need to show
P(t) < kexp(—ct), for t221,. (7.4)

‘We break the proof into three steps.

oL d d .
L lim }\}EEP’“NU) = ZZ_tP(t)’ to <t < T, T arbitrarv.

2. % P(#) << —const P(3) for #, < t < T, (some positive const.)

3. P(t) < const(t,) exp(—kt).
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Step 1, which we will delete, is, as mentioned above, a long straightforward
calculation. Step 2, follows by integrating (7.3) over the slab [1/n, N] and
passing to the limit using Step 1. Note that when we integrate the right hand

side of (7.3) the boundary terms vanish as # and N tend to infinity.
Step 3, is immediate from Step 2.
This proves the L?-decay of the solution.

To complete the proof we show that the sup norm has exponential decay.

Observe that

o(T,0) = i(T) =0, for T >t,

to

w(T,0) = f oh(s) €79 ds.
0
Suppose T'— 1 = 1, . Then,
oT) = me(l,z, x)o(T — 1, z) dz
0

T w
+ [ f R(T — s, %) FU(s, 3) dz ds.
Jrg

L]

Since the solution U(t, x) is bounded (Theorem (4.1)), it follows that
I FLUGs)le < k) U(s)lz -
Using (7.6) and applying the Schwarz inequality to (7.5) we have

(Tl < i K(l)||L2(R) | (T — 1)”Lg(&r)

+ & I<HL.2({0,1]><R) I U[]Lz([T-—]_.T]XR+) .

This proves the decay of v in the sup norm since the L, norm of K is finite.

To estimate u recall (5.5)
t
ut,x) =o “ o(s, x) e~ ds.
o

If T = t,+ 1, by (7.7) we have

(Tl < kexp(—cT), &, ¢, >0,

(7.5)

(7.6)

(7.7)

(1.8)
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Therefore (7.7) yields

to-+1

(T < sup || 2(t)liw .[ oe—rT=5) ds
t<tg+1 o
T
-+ J oke—t5e—T—5) ds
to+1
£(ty+1) T
L aeT + koeT f 515 ds
te+l
< const exp(—Fkt). (7.9)

From (7.7) and (7.9), we get
| U@ < const exp(—kt)  for £, 1,
and the proof of Theorem (7.1) is complete. [
We next observe that according to Theorem (5.1) the hypothesis v < oy < «
for t = T is satisfied if || A ||, is small, hence we have:
CoroLLary (7.1). Suppose U = (v, u) satisfies the Fitz Hugh-Nagamo
eguations (5.1) with initial and boundary data
u(0, x) = 0 = 2(0, x)
o(t, 0) = A(t).
Let f be as in Theorem (7.1). Let

o = inf{z > 0: f(v) = 0}.
Let h(t) satisfy

1. heBC.
2. KBty =Hh0)=0,fort =1,.
3. VRl is sufficiently small, depending on || b |, .

Then there exist positive constant k and ¢ such that

O, + 1 URe < kexp(—ct),  for t=0.

I1. Tue NeuManN PrOBLEM

§8. Local Solvability

We now consider the non-linear system of equations (2.1) with Neumann
boundary conditions at x = 0.
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Notation:
Ki(t, 2, %) = K(t, 2 — %) + K1, —z — ), I <i<n

For
= (hy,..., hy) € BC and g =(g,..8,)EB

p— t p—
H(t, %) = — j hi(s) Ki(t —s, ) ds, 1<i<p.
0
Hit, x) =0, p<i<m
S = | ” ei5) K (1, 7, %) ds, l<i<n.
]

Recall that Hy(t,x), 1 <7 <p, is the solution of the heat equation with
Neumann boundary condition %,(2) and zero initial data. Si(¢, ) is the restriction
to x > 0 of the solution to the Cauchy problem for the heat equation with initial
data of the form g,(x), for x > 0, and g,(—x) for x < 0.

We will write,

Let R(¢, x) be the unique element of C([0, o) | B) such that
R, =R,,, t>0, x>0,
RO, ) — g(), x>0,

d
g (Ry -y RL)(2, 0) = A(2), t > 0.

It is easy to show that U7 € C([0, co) | B) satisfies (2.1) (in the sense of distribu-
tions) with initial and boundary data.

U(0, x) = g(*)

8.1
(u;),(2, 0) = h;(¢t) where (u;), is continuous in x > 0, # > ®.1)
if and only if
t opo0
UG, 5) = R(t, ) + j f R(t — s, %, x) F(u(s, 2)) dz ds. (8.2)
o Yo

We mention without proof several results on existence and regularity for
solutions of (2.1) with data (8.1). (The proofs are standard).
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Turorem (8.1). For any b = (hy,.,h,)eBC and g = (g, ,..,2,)€Cy
theve is a constant 1y, 0 <ty < 1, depending only on F, || g |, , such that the
Neumann problem (2.1) with initial and boundary data (8.1) has a unigue solution
Ue ([0, t,} | B) and

i T h oo
|V letogiey < 2 (ke 1 g1.)

where ¢ = min(ay ,..., a,).

Turorem (8.2) (Interior regularity). Suppose U = (uy ..., u,) € C{[0, t5] |
CYR.)) is a solution of (2.1) with initial and boundary conditions (8.1).
If:

1. g€ CY(R), i = l,..,n
2. g€ C*(R), i=1,..,n
3. IIZ' € BC(R_‘_)’ l == 1’___, P_

Then:
UeC=(Q) where £ = (0, ©) X R, ,

Taeorem (8.3). If the system (8.1) is linear, i.e., F(U) = FU for a constant
matrix F, then for any g = (g4 ,-..,8,) € Cy, and b = (hy ..., h,} € BC there is a
unique solution U e C([0, o) | B) of (2.1) with initial and boundary data (8.1).
Furthermore, there ave constants k and c, independent of g and h, such that

| U@ < ket gl + 52,

Exampre (8.1). If we apply Theorem (8.3) to the system:

b5 =gz —

o = ap — ya,
$(0, x) = g1(x),
o0, %) = g(x), £ =1(g1,8)€Co,
$a(t, 0) = h(2).

We get || aft)llc, + | $(£)llc, << const exp(ct), where

const = COIlSt(! h | g ”m)
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§9. Global Existence for the Neumann Problem

1. General Theory

Assume f has the qualitative behavior pictured in Figure 1 of the introduction;
we have in mind the cubic

f(o) =ov(lv—a)b—v) with a,b>0.

More precisely, we assume that f has the following properties:

fl@) >0, if »v<O0. (9.1)

[Ligxmﬂ;—,l = —o0. (9.2)
m @ e

lojsw | @ = v ) (93)

To show global existence of solutions of (1.1) with initial and boundary condi-
tions

7"(0’ x') - gl(x): x 2= 0;
#(0, x) = go(»), x = 0; 9.4
U2, 0) = h(2) t>0

We need the following Lemma

Lemma (9.1). 1. Let f satisfy (9.1), (9.2), and (9.3).

For any 8 such that

1im_[!i(f’)_| >8> g
KA Y

vg = max{| v || |f()] <B|o][}

Let ¢: R® — R be such that sup, s | $(x, 1)) < M. Let B’ satisfy
liminf,f—(g)—[ >B >8> ay.

If | v| > max{y; + M, MB'[(8" — B)}, then there exists € > 0, such that the
symmetric rectangle R with vertex at (| v |, (ofy) | v |-+ €) is contracting for the
vector field.

Fy(Uy = (f(©) +¢) — #, 00 — yu).

Proof. Lemma (3.1) states that there is a contracting rectangle R for the
linear vector field Fy(U) = (—Bv — u, ov — yu), y, 5,0 >0 if and only if
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B > c/y. Moreover R can be constructed symmetric with respect to the origin,
with right upper vertex

(oby= (1oL 1o+¢)

It is easy to check that R is also contracting for F,(U). [

Lemma (9.1) leads to the following existence theorem.

Tueorem (9.1). Let f be a smooth function which verifies (9.1), (9.2) and (9.3).
Letg, , g, € Cy . If h € BC, then there exists a unique solution U = (v, u) € C([-, 00),
C,) to the Neumann problem (1.1} with initial and boundary condition (9.4).
Furthermore, for any T = 0,

FU@e < OT Al 181 llo s 182l), 0 <2<,
where 8 grows at most exponentially in T.

Proof. The uniqueness follows from the local uniqueness theorem.

We have already proven the local existence of solutions; to obtain global
existence we need only establish an apriori bound for the solution. It suffices
to show that there is an apriori bound on the interval [0, 7], T > O arbitrary.

To do this we construct a comparison function @(¢, x) = ($(£, x), ofZ, x)),
bounded on [0, 7], which has the same initial and boundary values as the
solution U(t, x) of (1.1) and (9.4).

The difference, U = U — ®, satisfies a system of equations similar to the
Fitz Hugh-Nagumo equations and has zero Neumann boundarv conditions.
This last fact aloows us to construct a family of rectangles, R(z), depending on
time, such that U(t, ¥) e R(T) for 0 < t << T, x > 0. Furthermore, the size
of R(t) grows exponentially with #. These facts give us the required apriori
bound for the solution U(#, x).

The details of the proof are as follows. Let @(¢, x) = (¢(¢, x), «(¢, x)) be the
solution of:

(]St = ‘ﬁum — X
% = op — ya,

with initial and boundary conditions

0, x) = gi(%), a0, x) = gy(x),
406, 0) = h(t).

By example (8.1) we know that @ has at most exponential growth. Thus there
exist N > 0 such that || @(2)] < N for 0 <7 < T. Now we are going to
estimate & = U — &.

503/30/1-10
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Let
5=v—d,
H=u— o
Then:
(9.5)
U, = 00 — i, x=0, t=0
and
%0, ») = 0 = (0, x), x = 0;
(9.6)
7,(t,0) = 0, t>=0.

By Lemma (9.1) we can construct a rectangle, R(T), 0 € int R(T"), which for
0 <t < T, is contracting for the vector field Fy(U) = (f (8 + ¢) — 4, 0¥ — yil).

We want to show that (9, #) stays bounded for 0 < ¢ < T'. Furthermore,
since (&0, x), #(0, x)) is in R(T), we will show that, for 0 <<t < T, (9(, =),
#(t, x)) € R(T). We prove by contradiction that it is impossible for (3, #) to
reach the boundary of R(T).

Suppose, on the contrary, that (3, %) reaches the boundary of R(T). Since the
initial condition is in C, there is a first time #, such that, there exists a finite %, ,
for which U(,, %) € dR. Observe that x, is not zero, since 0 € int R(T"). Suppose
we are on the right hand side of R(T), then we have (%, , x,) € JR. Since , is
the first time, we have

ity , %) = 0. 6.7
By construction of R(T") we know that

(f(B+ ) — D) |¢.00=t09 < O-

Since ¥(t, x) << ¥t , %) for all ¥ == 0, ¢ < ¢, , we see that 9(Z,, -) has a local
maximum at X; , s0 J,,(t;, %) < 0.

Thus at (7, , %)
‘Z’)’tzﬁ,_,—f(ﬁ—}—gﬁ)— 4 <0,

which contradicts (9.7).

On the left side of dR(T) all the inequalities are reversed. For the top we note
that if #, is the first time such that for some x,, #(f, , %) € JR(T'), we have
#%; > 0. But by the construction of R we know that at (¢, , xy), o8 — y& << 0
and hence 4; = o0 — y# < 0.

At the bottom the inequalities are reversed. Hence the solution U = (%, 4)
remains in R(T) for 0 <t << T. Now we have,

1 U@#) — @(t)fl. < const O<t <D
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Since the growth of @ is at most exponential we get

U@ << constexp(kT), 0<t<7T. O
In the next three sections we study the threshold problem and exponential
decay for solutions of the FitzHugh-Nagumo equations with Neumann boundary
conditions w,{t, 0) = h(t), where h(f) vanishes outside a finite interval [0, #,].

§10. The Threshold Problem for the Neumann Problem

Taeorem (10.1). Let f be a smooth function which satisfies (9.1), (9.2), (9.3),
F(©) = 0, —f(0) = c]y. Suppose ke BC, satisfies
I By =0, t=1,;
2. ke <M
let U C([0, )| Cy) be the unique solution of the Fitz Hugh-Nagumo equations
(1.1} with zero initial daia and Newmann boundary condition v,{t,0) = Kt).
Denote by F = (F, , F,) the vector field (f(v) — 4, ov — yu). Then for any
T > ty = O there exists a constant K = k(T, ty, M, F), such that || Ut} <

kil kil for all t = T. Note: k grows at most like max{1[(T — t,), exp T}.

Proof. We know that for # <{ 7, the solution U(Z, x} is bounded. Therefore

there exists a constant # = 7{7, M, F) such that
FU, x| <7viUl ), 0<t<T, 0<x (16.1)
Recall U == (v, #), and
Pt B SO O I
RS e A (s e A P T —s)/‘“
pt 00
+ ’ J‘ K(t — s, 2z, x) F,U(s, 2) dz ds = I(t) + II(z) (10.2)
Jo Jo
t ¢
w(t, x) = | FyUGs, %) ds = o [ ofs, %) et ds, (10.3)

v g

Thus by (10.1) (10.2) and (10.3), we have

; Lt k() =
LU, x)] < 12 L (t —s)ie exp( F— ¢ ) ds

+ 7 “ ‘Jw | K(t — s, 2, %) Uls, 2)| dz ds
Yo Yo

+r J‘f | Uls, x)] ds. (10.4)
3
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As in the proof of Theorem (5.1) we first establish the weaker estimate
I U(T)ler < const(T, &, M, F)|[ 2] . (10.5)

Unlike the Dirichlet problem in this case, we do not have an immediate version
of Theorem (4.2): instead we use the following approach. Observe that since
v,(t, 0) = 0 for £ >> T, U(t, x) has an even extension in x, U(#, x), which is a
solution of the Cauchy problem (1.1) with initial data at (7, x),

U(T, &) x>0

UL5 =l Zy  x<o,

which allows to replace Theorem (4.2) by the following sup norm estimate for
the Cauchy problem

Let U e C([0, o) | Cy) be a solution to the Cauchy problem for the Fitz Hugh-
Nagumo equations, with initial data U(0, x) = Uy(x). Then

| U)o < const(l] Uy ||0)-
This estimate follows from observation [ of Section 3.
Thus it is sufficient to show (10.5) or equivalently
a. [ (Tl < const(T, £y, M,F)| A ||,

_ (10.6)
b. | #T)lle < cons(T, ¢y, M,F)| k|

To establish (10.6).a we use the integral representation (10.2).

Since
const

H(T)] < WH ki,

alld
l_l 1 const 1 xu F e L/ L4 dz dS.
I ( )I < ( bl H ) f (T 5‘)] /2 f | ( ? )l

We need to bound

N

fw]U(s,z)ldz for 0<s<T.
1]

We get this bound by applying Gronwall’s inequality to the following.

J:O | U, x) dxe < 1/2 f f (tlf(gll/o €x (t(4—L_vzs) ) ds dx

+ const(T, M, F) | j | U(s, )| ds dx
Yo 0

t poo
< const || ||, + const(T, M, F)f f | U(s, 2)| dz ds
0 Yo

and we are done with (10.6).a.
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To show (10.6).b we use (10.3) and the integral representation of v (10.4)

u(T,x)gafw(s,x)lds j f (sif(glm (4(:’”' ))dqda

T ps poo
+ const(T, M, F) f f f | (s — 0, 2, %) Ug, 2)| dz dg ds
0 0 Yo

fmwﬁ( e (gﬁwﬁ@
+0LTLSG_—1q)1~/2LmIU(g,z)ldquds

T ps
< o(TV2} k| + const(T, M, F) fo j ( dg ds|\ k)

b
o (s—aqi'”
and (10.6).b follows completing the proof of the theorem. []

§11. Stability by Contracting Rectangles for the Neumann Problem

Taeorem (11.1). Suppose U = (v, u) satisfies the Fitz Hugh-Nagumo
equations (1.1), with zero, initial data and Newmann boundary data v,(t, 0) = h(z).
Let f and h be as in Theorem (10.1). There exist constants, c, k and A, suck that if

Al <A

then
UG, Yo < kexp(—ct) 120

where k and A depend on T, t,, M and F, ¢ depend only on F.

Proof. Let U(), x) be the even extension of U.

Uz, x), x =0

Ut %) = Ui, =), x<0.

For t > t, we have v,(f,0) = 0, and as we have remarked in Theorem (10.1),
U is a solution to the Fitz Hugh-Nagumo equations for — o < & < 0.
For the Cauchy problem we know that the following theorem is true. (See [7].)

Taeorem (11.2). For the Fitz Hugh-Nagumo equations, suppose —f'(0) > oy,
and let R, be the critical rectangle described in Lemma (3.5). If U e C(R) and
USx) e int(R,) for all x € R, then there are non-negative constants c, k, such thai

U@ < ke,  forall t>T, T =t,-+88>0.
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In our case let
Ux) = (2(T, x), (T, x)).
By Theorem (10.1), we know that
HU° Y, < const(T, M, 5o, F) || hlly = cll k.
If we choose v so small that || U, << cv implies
U'(x) € int(R,),
by Theorem (11.2) we get
| Ul < kexp(—ct), ¢ 30,

§12. The Energy Method

In §11 we obtain exponential decay in norm L, for the solution U{t, x) of the
Neumann problem with zero initial data, with compactly supported boundary
data A(t), whose L, norm {[ 2}, is so small that U(¢, x) C R, for ¢ large. (R, is
described in Lemma (3.2).)

In this section we show that under the weaker hypothesis, v less than the
smallest positive zero of f(v) for all £ > 0, the solution U(%, x) decays exponen-
tially in L, N L, . More precisely we have the following theorem.

Treoren (12.1). Let o =inf{o > 0] f(v) =0}. Suppose U = (v,u)e
C([0, ) | Cy) satisfies the Fitz Hugh-Nagumo equations (1.1) with zero initial
data and Neumann boundary condition v,(t, 0) = h(t) where f is a smooth function
which satisfies

1. f(w) >0, for v <0, f(0) <0, f(0) = 0.

e
3 lilﬂjnf%l > oy,

and h satisfies
a. heBC;
" b. Bt)=0fort >=>1t,.

If o(t, x) < oy << o for all £, x = 0, then there exist positive constants k and ¢
such that

| U@ - 1| U@l < kexp(—et), ¢ =0.

We omit the proof since it is virtually the same as for the Dirichlet problem. []
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Lastly we observe that by Theorem (10.1) the hypothesis ¢ < oy < a for
t = T is satisfied if || | is small. Thus we have the following corollary.

Cororrary (12.1).  Suppose U e C([0, o) | C(R.)) satisfies the Fitz Hugh-
Nagumo eguations (1.1), with zero initial data and Neumann boundary data
v,(t, 0) = h(2).

Let f, o and h be as in Theorem (12.1), and furthermore || It |1 is sufficiently small
depending on '\ h ||, then there exist positive constant k and ¢ such that

U@+ | Ul < ke for ¢ >0,

III. A Suort Norte ox tHE Hopcrin Huxrey Eguation

§13. Threshold Results for the Dirichiet Problem

We shall apply the ideas of the previous section to the Hodgkin and Huxley
equations. We write them in the form found in Chueh, Conley and Smoller 2.

cuy = Ru,, + g(u, v, v, 2)
vy = gi()(fy(u) — )

wy == go(u)(how) — w)

2¢ == g(u)(hs(v) — %)

(13.1)

where
jlu, v, w, 2) = kytdw(c, — u) + kozt{c, — u) + ky(cg — w). (13.2)

Here ¢, R, k{t = 1, 2, 3} are positive constants, the ¢, are constants satisfying
€, > ¢35 > 0 > ¢, . Furthermore the functions g; and &, are ¢* functions satisfving
g:>0and 1 > h; > 0. Set U = (4, v, w, 2). For further details (including
explicit values of the constants and descriptions of the g; and k; we refer the
reader to Hodgkin and Huxley [6]. The existence and uniqueness of sclutions
U e Cl0, )| Cy © B) for the Dirichlet problem, with initial data in B N
and boundary data in BC follows by showing

1. Existence and uniqueness of local solutions (standard).

2. Apriori sup norm estimates which are obtained from the existence of
large invariant rectangles (for a proof see [2]).

To conclude we get threshold results, analogous to those in Sections 5 and 6
for the FitzHugh-Nagumo equations. Following [6], we shall assume that
{13.1) has a unique critical point, U°.
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Taeorem (13.1). Suppose ke BC' satisfies
1. A@)=h0)=0forallt >, >0
2. [hlo <M

Let U = (u, v, w, ) € C([0, ) | Cy) be the unique solution of (13.1) with zero
tnitial data and Dirichlet boundary data

u(t, 0) = h(1t) t =0
Then for any T > ty = 0 there exisis a constant k = k(T, t,, M, g), such that
UG ) — Ul <klkl,  forall £>T.
Recall that g was defined in (13.2).
Proof. As in Theorem (5.1) it suffices to show that
WO@) — Ul < const(T, 2y, M, g} || 2|}, t>=T. (13.4)
With the same arguments as before one establishes
NU(T)— U, < const(T, by, M, g) || 2|, . (13.5)

To pass from (13.5) to (13.4) one needs the following estimate for solutions
within compactly supported boundary data in [0, T,

1 U(t) — U] < const ]| U(T) — UO|l, . (13.6)

For the specific model considered in Hodgkin and Huxley [6], John Evans has
given numerical evidence in [3] which indicates that if we linearize the equa-
tion (13.1) about its critical point, U°, the resulting linear system is asymptotically
stable. This together with Theorem (2.4) of [2] (which tells us that a critical
point of systems of the form (2.1) is stable if it js stable for the linearized system)
implies U is stable, which with the existence of large invariant rectangles [3] is
sufficient to establish (13.6), from which the theorem follows. []

Observation. One can show that zero is an attractor for the Fitz Hugh-
Nagumo equations (see [7]) thus to prove Theorems (5.1) and (6.1) we do not
need the existence of small invariant rectangles.

Tarorem (13.2).  Under the hypothesis of Theorem (13.1), there exist constants
¢, k, and X such that if
Al <A

then | U(t, ©) — U®|l, << kexp(—ct) t 2= O where k = k(T 1y, M, g), ¢ = ¢(g),
A= Xe).

Proof. Follows from Theorem (13.1) and the stability of the critical point U°.
0J
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