
Theoretical
Computer Science

Theoretical Computer Science 180 (1997) 139-l 54

On the power of alternation on reversal-bounded alternating
Turing machines with a restriction

Hiroaki Yamamoto *

Department of Information Engineering, Faculty of Engineering, Shinshu University.
500 Wakasato, Nagano-shi, 380 Japan

Received July 1995; revised March 1996

Communicated by R.V. Book

Abstract

Whether or not there is a difference of the power among alternating Turing machines with a
bounded number of alternations is one of the most important problems in the field of computer
science. This paper presents the following result: Let R(n) be a space and reversal constructible
function. Then, for any k > 1, we obtain that the class of languages accepted by off-line 1 -tape
t-ok machines running in reversal O(R(n)) is equal to the class of languages accepted by off-line
l-tape ~1 machines running in reversal O(R(n)). An off-line l-tape ok machine M is called an
off-line l-tape rcrk machine if M always limits the non-blank part of the work-tape to at most
O(R(n) logn) when making an alternation between universal and existential states during the
computation.

1. Introduction

Whether or not there is a difference of the power among alternating Turing machines

(ATM for short) with a bounded number of alternations is one of the most important

problems in the field of computer science. The number of alternations is defined as the

number of times an ATM makes alternation between existential states and universal

states. An ATM is called a ok machine (a nk machine, respectively) if it starts in an

existential state (a universal state, respectively) and makes k - 1 alternations between

existential and universal states during its computation. Using this notation, we can

state the above problem as follows: for Vk > 1, consider a (Tk machine with a bounded

computational resource such as a time-bounded machine, a space-bounded machine and

so on. Then, is a ok+1 machine more powerful than a Q machine?

Up to now, many researchers have been studying on this problem. As for time

complexity, the problem whether the polynomial time hierarchy by Stockmeyer [9]

* E-mail: yamamoto@cs.shinshu-u.ac.jp.

0304-3975/97/$17.00 @ 1997-Elsevier Science B.V. All rights reserved

PI1 SO304-3975(96)00143-O

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82247491?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

140 H. Yamamotoi Theoretical Computer Science 180 (1997) 139-154

and Wrathall [131 collapses or not is widely known as an open problem. That is,

we do not know whether or not (Tk+t machines running in polynomial time are more

powerful than (Tk machines running in polynomial time for any k 3 1. On the other

hand, by Immerman’s result [5] that nondeterministic space bounded classes are closed

under complement, the alternation hierarchy for space complexity collapses. That is,

the class of languages accepted by dk machines running in space O(S(n)) is equal

to the class of languages accepted by o1 machines running in space O(S(n)) for any

space constructible function S(n) > log n.

In this paper, we are concerned with reversal complexity, which is defined as the

number of times a machine changes the head direction on the work-tape during the

computation. This resource has also been intensively studied so far by many researchers.

We here consider two reversal-bounded l-tape models; one is an off-line l-tape machine

which has a read-only two-way input tape and one work-tape. The other is a l-tape

machine which has only one work-tape, and an input is initially given in the work-tape.

These work-tapes have a leftmost square but is infinite to the right. Liskiewicz and

Lorys [8] investigated the alternation hierarchy for reversal complexity, and showed

that such a hierarchy exists for l-tape machines. In fact, they showed that a l-tape

CQ+~ machine running in reversal 0(&n)) IS more powerful than a l-tape ok machine

running in reversal O(R(n)) for any reversal constructible function R(n) 2 logCk) IZ. On

the other hand, since Baker and Book [l] showed that an NTM with two work-tapes

can accept every recursively enumerable set in a constant reversal, it is obvious that the

alternation hierarchy collapses for machines with two work-tapes. Thus, depending on

the number of tapes of machines, the alternation hierarchy exists or not. Greibach [3]

showed that, for any function R(n), the class of languages accepted by O(R(n)log n)

reversal-bounded off-line l-tape CJ~ machines is equal to the class of languages accepted

by O(R(n)) space-bounded off-line ~1 machines. In addition, for l-tape machines, the

similar result is known. Hence, these results and Immerman’s result seem to give

us some possibility to make the alternation hierarchy on reversal complexity collapse

for off-line l-tape machines and l-tape machines. By the aforementioned result of

Liskiewicz and Lorys, however, there is the alternation hierarchy for conventional l-

tape ATMs. What is a condition to collapse the alternation hierarchy? Thus, it is very

interesting to study a condition under which the alternation hierarchy collapses.

We will show that the alternation hierarchy collapses for off-line l-tape machines

with a certain restriction. In fact, the following result is obtained: Let R(n) be a space

and reversal constructible function. Then, for any k 2 1, we obtain that the class of

languages accepted by off-line l-tape T@ machines running in reversal O(R(n)) is

equal to the class of languages accepted by off-line l-tape (~1 machines running in

reversal O(R(n)). The similar result also holds for a l-tape ATM. An off-line l-tape

ok machine M is called an off-line l-tape Yak machine if M always limits the non-blank

part of the work-tape to at most O(R(n)logn) when making an alternation between

universal and existential states. Here, without loss of generality, we assume that A4

can write a blank symbol. This is because A4 can simulate a behavior of the blank

symbol by using an additional symbol if it cannot write the blank symbol. Hence, by

H. Yamamotol Theoretical Computer Science 180 (1997) 139-154 141

the non-blank part, we mean the space from the leftmost square to the rightmost square

containing a non-blank symbol. Thus, note that M can use more than 0(&n) logn)

space during the computation from an alternation to the next alternation.

The paper is organized as follows: In Section 2, some definitions are given. In

Sections 3-5, off-line l-tape models are discussed, and in Sections 4 and 5, the main

results are given. In Section 6, the discussion about l-tape ATMs is given.

2. Preliminaries

In this section, we give some definitions. Throughout the paper, by a function, we

mean a non-decreasing function over natural numbers.

The states of an ATM are partitioned into existential and universal states. We can

view a computation of an ATM as a tree of IDS (Instantaneous Description, which

consists of the state of the finite control, tape-head positions and contents of tapes).

A tree is said to be a computation tree on an input w if its nodes are labelled by

IDS such that the sons of any non-leaf labelled by a universal ID (an existential ID,

respectively) consists of all (exactly one, respectively) of the successors of that ID. If

the sons of an existential ID also consists of all of the successors of that IDS, then the

tree is called a jnll computation tree. A computation tree is accepting if the root is

labelled by the initial ID and all the leaves are labelled by accepting IDS. See [2] for

the formal definition of ATMs.

Without loss of generality, we may assume that an ATM h4 can write a blank

symbol. This is because A4 can simulate a behavior of the blank symbol by using an

additional symbol if M cannot write the blank symbol.

Definition 1. Let R(n) be a function. It is said that an ATM M rnns in reversal R(n)

if, for any accepted input of length II, there is an accepting computation tree such that

along each computation path, A4 makes at most R(n) reversals over the work-tape.

Such an ATM is also called an R(n) reversal bounded ATM.

Definition 2. It is said that an ATM M is a ok machine (?tk machine, respectively)

if M starts in an existential state (a universal state, respectively) and makes at most

k - 1 alternations between existential and universal states for any input.

Definition 3. It is said that a function R(n) is reversal constructible (space constructible,

respectively) if there is a deterministic off-line l-tape Turing machine M such that,

given an input of length n, M can make a unary representation of the value of R(n)

in reversal O(R(n)) (space O(R(n)), respectively).

We introduce a restricted R(n) reversal-bounded off-line l-tape ATM A4 satisfying

the following: Let us define an ID of M to be a tuple (q, i,h, SL), where q is a state,

i is an input head position, h is a work-tape head position, and SI is a content of

the work-tape from the leftmost square to the rightmost square containing a non-blank

142 H. Yamamotol Theoretical Computer Science 180 (1997) 139-154

symbol. Then for VW E L(M), there is an accepting computation tree such that for

every computation path (40, io,hg, a~), . . . , (q a,ia, ha,tx,) from the root to a leaf, if qj

is existential (universal, respectively) and qi+l is universal (existential, respectively)

for any O< j<a, then lajl ’ is less than or equal to O(R(n)logn). That is, M always

limits the space to O(R(n) logn) when alternating the states. This time, if M is a

(Tk machine (a 71k machine, respectively), then it is called an r(Tk machine (an rzk

machine, respectively). We should note that A4 can use more than O(R(n) log n) space

during the computation from an alternation to the next alternation since it can write a

blank symbol. Similarly, we define a restricted R(n) reversal-bounded l-tape ATM M

as follows: Let us define an ID of A4 to be a string aq/?, where q denotes a state, c$

denotes a content of the work-tape from the leftmost square to the rightmost square

containing a non-blank symbol, and the head is on the leftmost symbol of /I. Then for

VW E L(M), there is an accepting computation tree such that for every computation path

aoqorRo>. . ., a,q& from the root to a leaf, if qj is existential (universal, respectively)

and qj+t is universal (existential, respectively) for any 06 j < a, then Ixjbjl is less

than or equal to R(n).

We give some notations for classes of languages, which are used in the rest of the

paper. Let R(n) be a function. For any k 2 1,

ofS_zkrene(R(n)): The class of languages accepted by

line l-tape ok machines.

ofS-rzkreve(R(n)): The class of languages accepted

off-line l-tape ?“Uk machines.

ofS_nkreue(R(n)): The class of languages accepted by

line l-tape zk machines.

ofS_mkreae(R(n)): The class of languages accepted

off-line l-tape r?‘& machines.

O(R(n)) reversal-bounded off-

by O(R(n)) reversal-bounded

O(R(n)) reversal-bounded off-

by O(R(n)) reversal-bounded

The classes for space complexity are also defined similarly. In addition, by removing

the prefix “off-“, we denote the class of languages for l-tape machines.

Let % be a class of languages. Then, Co-%’ = {LIE E %‘}, where z means a com-

plement of L.

3. Modifications of basic results

In Sections 3, 4 and 5, we are concerned with off-line l-tape machines. Hence, we

will omit the word “off-line l-tape” if any confusion does not occur. To get the main

result, we need to deal with (~1 machines and ret machines having any string in the

work-tape at the starting point, and therefore extend well-known results for NTMs to

these machines. For such a machine M, it is said that M accepts (~,a) if M starts with

an input w and a work-tape string CI, and accepts w. It is also said that M terminates

’ laj 1 denotes the length of string aj,

H. Yamamoto I Theoretical Computer Science 180 (1997) 139-154 143

on (W,CI) if the full computation tree is finite, that is, every computation

root to a leaf is finite.

path from the

First we will define two modified versions of machines, machines with an end-

marker and segmented machines, as follows: A machine with an end-marker has an

end-marker in the work-tape and during the computation, the machine uses only the

space between the leftmost square and the end-marker. It never moves the head to the

right of the end-marker. A segmented machine M is a machine such that its work-tape

is initially separated into segments consisting of cn squares by a special symbol, that

is, M initially has the work-tape separated into segments. Each segment just corre-

sponds to one square of an ordinary TM, and during the computation, A4 uses only

the leftmost square of each segment. It follows that M is said to be an S(n) space-

bounded segmented machine if it uses at most O(S(n)) segments on the work-tape.

Furthermore, when al . a,,, is initially given in the work-tape, each Uj of the string is

given the leftmost square of the jth segment (see Fig. 1). From the above definition, it

is obvious that an S(n) space-bounded segmented ATM is straightforwardly simulated

by an S(n) space-bounded ATM and vice versa.

Now we extend Immerman’s theorem to segmented TMs having initially any tape

string. Since the proof is a straightforward extension of Immerman’s proof, it is omitted.

Proposition 1 (Immerman [5]). Let S(n)>, logn he a space constructible fiunction.

Then.

ofs_C, space (R(n)) = Co-ofs_C~ space (R(n)).

Proposition 2 (Modified version). Let S(n) 2 log n be a space constructible function.

Let M be an S(n) space-bounded segmented aI machine. Then there exists an O(S(n))

space-bounded segmented 51 machine N satisfying the following: for any input string

w and any work-tape string a with Ial <S(n), M accepts (w,z) tf and only if N

rejects (w, cr).

The following propositions, Proposition 4 and Proposition 5, are extensions of

Greibach’s theorem (Proposition 3). However, the proofs are not straightforward. This

aI a2 a3 l l 0
ordinal machine a,

cn squares cn squares

segmented machine d a 1 ..o B a2
. . . &

segment 1 segment 2

Fig. 1. Correspondence between an ordinal machine and a segmented machine.

144 H. Yamamotoi Theoretical Computer Science 180 (1997) 139-154

is because machines initially may have any string in the work-tape. A segmented ma-

chine is introduced to overcome the difficulty and to get a relationship between reversal

and space.

Proposition 3 (Greibach [3]). Let S(n) be a function. Then,

off-C, reve(S(n)) = off-Z1 space(S(n) log n).

The next two propositions are modified versions of Proposition 3.

Proposition 4 (Modified version). Let S(n) be a function. Let M be an S(n)logn

space-bounded segmented CJ~ machine. Then there exists an O(S(n)) reversal-bounded
~1 machine N with an end-marker satisfying the following: for any input string w

and any work-tape string CI with]a(<S(n)logn, (1) M accepts (~,a) if and only tf
N accepts (~,a), (2) N terminates on (w,cI).

Proof. The basic part of the proof is based on Greibach’s. However, we cannot straight-

forwardly extend Greibach’s proof to this proposition. The difficulty is that M may

initially have any string a on the work-tape. A segmented machine can overcome the

difficulty. Without loss of generality, we may assume that the set of the tape symbols

of M is {O,l}.

Now let us describe the detail of N. We regard the work-tape of M as a collection of

S(n) blocks, each of which consists of logn segments. By the property of a segmented

machine, logn segments are simulated by log n squares. Moreover, as described in

[4], logn squares can be simulated by four O(n) space-bounded counters. Hence, as

in [3], a counter machine Ml with 4S(n) counters can simulate M if counters of MI
are initially set with appropriate values according to string ~1. Hence, N simulates Ml
instead of M. An ID of this counter machine is defined as

. . . ##ACTs(,)#counts(,),~#counts(,~~#counts(,),~#count~(,),~,

where q, i, a and 6 are a state, a unary representation of the input head position, the

input symbol on the head, and the next transition defined by q, a and the content of

the active counters, respectively. ACC takes E or A as its value and displays the status

of the four counters, counti,l, counti,z, count,,3 and counti,d, where E and A mean the

inactive status and the active status, respectively. All works that N does is to guess

an accepting sequences of IDS, and to check the correctness of the guessed sequence

in reversal O(S(n)). N has three tracks in the work-tape. The first track, track 1, is

used in the same manner as the tape of M, the second track, track 2, is used to store

IDS of n/i,, and the third track, track 3, is used as an auxiliary counter to make the

initial ID. In the proof of Greibach, since the tape of M was initially all empty, N

can easily compute the initial ID of Ml. However, our models may have initially any

H. Yamamotol Theoretical Computer Science 180 (1997) 139-154 145

string in the work-tape. Therefore, N is required to compute the initial ID efficiently.

The following procedure does this.

Procedure INITIAL

{Comment: for each block pi (1 <i<S(n)) of M, N processes every /?~i in parallel.

This procedure changes the content of each block into a unary representation.}

Let Pi = 4142 . . . bi,bgn, where bi,j is the symbol of the leftmost square of the jth

segment of the ith block.

For j = 1 to logn, do the following:

Step 1: N sweeps ,8i to B,sc,,, once, and inspects whether bi,,i = 0 or 1. If b;,j = 0,

then it stores a 0 in the leading square of the block, and if bi,j = 1 then it stores a 1.

And then N marks bi,j.

Step 2: {Comment: N computes a unary representation of 2jPi. In this step, suppose

that there already exists a unary representation of 2jP2 in track 3.)

(2-l) N sweeps bi to /?scn) once, and does the following: N moves the input

head two squares right each time it sees a 1 on track 3. After seeing

2je2 l’s, the input head is just on position 2j-‘. N moves the head to

the (i + 1)th block, and writes the unary representation of 21-l using

the input tape. Thus in one sweep over the work tape, N can replace

2jP2 in track 3 with 2j-i for blocks with even numbers.

(2-2) To replace for odd number blocks, N sweeps over the tape once more.

This time, N copies the content of the 2jth block to the (2j + 1)th

block using the input tape. At this point, the counter of every block

has become 2j-‘ .

(2-3) Finally, N makes another sweep from the left to the right, and if the

leading square of blocks has 1 then N adds the value of track 3 to

track 2. As N can store the value of track 3 in the input tape, this

work is done in 0(1) reversals.

Thus, N can change a binary representation of logn bits to a unary representation in

O(log n) reversals, because it requires only 0(1) reversals per one bit.

End of INITIAL

The above procedure sets the initial ID of Mi. The main part of N is as follows:

Step 1: N computes the initial ID ~1 by using INITIAL, and then guesses an accept-

ing sequence of IDS, tli, ~2,. . , cc,, and stores c11 $a, $$. . . $$a,$~(,,, in the work-tape.

ARer that, N checks whether or not the first OIj equals the second Uj for 1 <j dm.

Since most of this work is to check counters, this can be done in reversal O(S(n))

using the input tape.

Step 2: N checks the following two:

(2-l) For each ID aj, checking whether or not the input symbol at the

position i equals symbol a written in aj,

Since the number i is represented in unary notation, this is done in

0(1) reversals.

146 H. Yamamotol Theoretical Computer Science 180 (1997) 135154

(2-2) Checking the correctness of the transition 6.

To check the transition 6 in aj, N knows the next transition by seeing

the first aj. After that, it compares the transition with 6 in the second

Uj. If not equal, then N enters the rejecting state. This work is also

done in 0(1) reversals.

Step 3: For aj$Olj (1 <i Qm), N changes the second Uj to the next ID according to

the transition 6. After that, N checks whether the updated 011 equals Ej+r or not. If

equals for every j, then N accepts the input; otherwise rejects. This work is done in

0(5’(n)) reversals, because N needs to check the equality of 4S(n) counters.

As seen from the simulation, N runs in O(S(n)) reversals. 0

Proposition 5 (Modified version). Let S(n) be a function. Let M be an S(n) reversal-
bounded 01 machine. Then there exists an O(S(n) logn) space-bounded segmented (~1
machine N satisfying the following: for any input string w and any work-tape string
01 with Ial <0(5’(n) log n), M accepts (w, a) if and only if N accepts (w, cc).

Proof. By the same technique as Lemma 7 in [l l] using crossing sequences, it is easy

to show this proposition. Thus, the proof is easy, and it is omitted. 0

Remark. We do not know whether the restriction Ial <O(S(n)logn) in the above

proposition can be removed or not. Since a is any string, the crossing sequence argu-

ment requires at least space 1~11. This is why we introduced a restricted machine for an

off-line 1 -tape machine.

4. off -rCkreve(R(n)) collapses

First, to get the main result, we provide some lemmas.

Lemma 1. Let R(n) be a reversal constructible function, and let M be an R(n)
reversal-bounded segmented n1 machine with an end-marker. Then there exists an
O(R(n)) reversal-bounded ~1 machine N with an end-marker satisfying the following:
for any input string w and any work-tape string a, (1) M accepts (w, a) if and only
if N accepts (w, a), (2) N terminates on (w, cr).

Proof. There are two difficulties to obtain N. One is that M may continue to move

right making no reversal, and the other is that M may continue to move on the same

square making no head-movement, that is, it only moves the input head and changes

the internal state. Since M has an end-marker, the former is easily overcome; namely

M reverses the head if reaching the end-marker. The latter is overcome as follows.

The number of stationary moves M makes successively is at most kn, where k is

the number of states. Since M is a segmented machine, N can count the number of

stationary moves using each segment. Indeed, N is constructed as follows: N has three

tracks; track 1, track 2 and track 3.

H. Yamamotol Theoretical Computer Science 180 (1997) 139-154 147

Step 1: N makes a block of R(n) squares on track 3. This is done in O(R(n))

reversals, because R(n) is reversal constructible.

Step 2: By a right sweep and a left sweep, we mean the movement of the head of

M from the left to the right and from the right to the left, respectively. N simulates

M using track 1 for the work-tape of M. Therefore, track 1 is also partitioned into

segments as the tape of M. N behaves until M makes a reversal as follows: During

the simulation, N has an end-marker at the same position as M, and never moves the

head right than the end-marker. Moreover, N counts the number of reversals made

by M using track 3, and if the count is over R(n) then N rejects the input and

halts.

(2-l) For moves other than a stationary move,

(2-l-l) If it is in a right sweep, then N moves in the same manner

as M.

(2-l-2) If it is in a left sweep, then N moves in the same manner as

A4 except for using the rightmost square in each segment.

(2-2) If M enters a stationary move, then N counts the number of successive

stationary moves using track 2. In other words, N writes the same

symbol as A4 writes, and moves the head right (if in a right sweep)

or left (if in a left sweep). Since A4 is a segmented machine, each

segment has kn squares for one square of ordinary TMs. Hence, N

can count the number of successive stationary moves in the segment.

If the count is over kn then N rejects the input.

(2-3) If A4 makes a reversal, then go to Step 3.

Step 3: This step is done when A4 reverses the head. If its reversal is from a right

sweep to a left sweep, then the rightmost symbol in each segment on track 2 is the

latest symbol for the corresponding square of M. Hence, N writes the symbol in the

rightmost square in each segment on track 1 and clears track 2. Similarly, if its reversal

is from a left sweep to a right sweep, then the leftmost symbol in each segment on track

2 is the latest symbol for the corresponding square. Hence, N writes the symbol in the

leftmost square in each segment on track 1 and clears track 2. After this processing,

N again goes to Step 2.

It is clear that the number of reversals made by N is 0(&n)) and N satisfies the

conditions. 0

Lemma 2. Let R(n) be a function, and let M be an R(n) reversal-bounded g1 machine

(~1 machine, respectively) with an end-marker that terminates on any pair (w,cI).

Then there exists an O(R(n)) reversal-bounded ~1 machine (al machine, respectively)

N with an end-marker satisfying the following: for any input string w and any work-

tape string a, M accepts (w, a) if and only if N rejects (w, E).

Proof. We consider the case that M is a gi machine. Then N simulates M by replac-

ing existential states, accepting states and rejecting states of M with universal states,

rejecting states and accepting states, respectively. Note that since M always terminates

148 H. Yamamotol Theoretical Computer Science 180 (1997) 139-154

on all computation paths, the states other than the accepting states can be regarded as

rejecting states. Thus the lemma holds. 0

Lemma 3. Let R(n) be a space and reversal constructible function, and let M be an
R(n) reversal-bounded a1 machine with an end-marker. Then there exists an O(R(n))
reversal-bounded ~1 machine N satisfying the following: for any input string w and

any work-tape string c(with 1~1 <O(R(n) logn), M accepts (w,c() if and only zf N
accepts (w, or).

Proof. The desired N can be obtained as follows. For VW and ‘d’a with lcll <O(R(n)log

n), by Proposition 5, there exists an O(R(n) logn) space-bounded segmented cr1 ma-

chine Ni such that A4 accepts (w, a) iff Ni accepts (w, IX). By Proposition 2, there exists

an O(R(n) log n) space-bounded segmented ~1 machine Nz such that NI accepts (w, a)

iff N2 rejects (w, c1), and therefore M accepts (w, CY) iff N2 rejects (w, a). By Proposition

4, there exists an O(R(n)) reversal-bounded 01 machine NJ with an end-marker such

that N2 accepts (w, c() iff NJ accepts (w, a), and therefore A4 accepts (w, LX) iff N3 rejects

(~,a). By Lemma 2, there exists an O(R(n)) reversal-bounded rri machine N with an

end-marker such that N accepts (w, IX) iff N3 rejects (w,cI), and therefore A4 accepts

(w, a) iff N accepts (w,cI). 0

Lemma 4. Let R(n) be a space and reversal constructible function, and let A4 be an
R(n) reversal-bounded ~1 machine with an end-marker. Then there exists an O(R(n))

reversal-bounded cr1 machine N satisfying the following: for any input string w and
any work-tape string c(with 101) <O(R(n)logn), h4 accepts (~,a) if and only if N
accepts (w, a).

Proof. This is proved in the similar way to Lemma 3 by using Lemma 2, Proposition

5, Proposition 2, and Proposition 4 in this order. q

Theorem 1. Let R(n) be a space and reversal constructible function. Then, for any

k21,

ofirZkreve(R(n)) = ofs_C, reve(R(n)).

Proof. Since an ral machine and a (rl machines are the same, it suffices to show that

an O(R(n)) reversal-bounded rgk machine (k 3 1) is simulated by an O(R(n)) reversal-

bounded ~1 machine. It is proved by induction on the number k of alternations.

Case k = 1: Obvious.

Case k > 1: Suppose that r@k_i machine is simulated by ~1 machine. Then we can

construct an rok-i machine N simulating an rak machine M as follows.

Step 1: N guesses the number m of squares which A4 uses, and makes m segments

of length cn for a constant c. Moreover, N guesses space enough to simulate M, puts

an end-marker on the work-tape, and computes the value of dR(n) for a constant d.
This value is used by machines in Step 3.

H. Yamamotol Theoretical Computer Science 180 (1997) 139-154 149

Step 2: N behaves as a segmented machine when simulating A4, that is, N uses one

segment per a square of M. During the simulation, N counts the number of alternations

made by M. If M makes the (k - 1)th alternation by a transition, then N also executes

the same transition. This time, however, N does not make the alternation, that is, if

the old state is universal (existential, respectively), then the new state also remains

universal (existential, respectively). After that, N marks the current head position, and

returns the head to the leftmost square. Furthermore N stores the input head position

in the work-tape.

Step 3: Just after Step 2, the rest of the computation of M can be viewed as either a

segmented ~1 machine or a segmented rc1 machine with an end-marker having a work-

tape string 2 with ICC <O(R(n)logn). This is because M is an Xik machine. Hence

if it is a segmented cri machine, then N uses the rri machine in Lemma 3. On the

other hand, if it is a segmented ni machine, then N can use the rri machine in Lemma

4. Because, by Lemma 1, we can construct a ni machine with an end-marker which

always terminates. Thus N becomes an r0k-i machine, and accepts the same languages

as M.

It is easy to show that the number of reversals of N are O(R(n)). Because R(n) is a

space and reversal constructible function, in Step 1, N requires only O(R(n)) reversals.

And in Step 2 and 3, so does N. 0

Corollary 1. Let R(n) be a space and reversal constructible function. Then, jix k 3 2,

off-rnk reve(R(n)) = ofs-zl reve(R(n)).

Proof. It follows from Theorem 1, because rzk machine can be simulated by rCrk+l

machine. 0

5. Equality of of-CIreve(R(n)) and ofS-ZIlreve(R(n))

In the previous section, we showed that the class of languages accepted by O(R(n))

reversal-bounded off-line l-tape ??Zrk machines or O(R(n)) reversal-bounded off-line I-

tape rr& machines equals the class of languages accepted by O(R(n)) reversal-bounded

~1 machines. It follows from this result that ofS_II,reve(R(n)) C ofS_Zlreve(R(n)) since

rci machines and ml machines are the same. However, we do not know whether or not

ofiZ,reve(R(n))CofS-II,reue(R(n)). In this section, we will show that this inclusion

holds. Hence, it follows from this result that ofS_Z,reve(R(n))=ofS-IIlreve(R(n)).

Now, we modify a machine A4 with an end-marker as follows: for any input of

length n, the end-marker is initially put on the n ‘scn)th square, where c is a constant.

The action of A4 is the same as in the previous definition. Throughout this section,

we consider that machines with an end-marker all have the end-marker on the ncR(“fth

square. Then the following holds.

150 H. Yamamoto I Theoretical Computer Science 180 (1997) 139-154

Lemma 5. Let R(n) be a function. Then the class of languages accepted by O(R(n))

reversal-bounded (~1 machines with an end-marker is equal to the class of languages
accepted by O(R(n)) reversal-bounded o1 machines.

Proof. Let M and N be an O(R(n)) reversal-bounded ~1 machine with an end-marker

and an O(R(n)) reversal-bounded ~1 machine, respectively. Then it is obvious that A4

is simulated by N, since N can guess the position of the end-marker and simulates

M. Hence, it suffices to show that N is simulated by M. This can be shown by

crossing sequence argument. The crossing sequences of N are defined as a sequence

of (ihp,q), where ihp and q denote the input head position and the state, respectively,

at crossing a boundary between squares. Since N is O(R(n)) reversal-bounded, the

length of the crossing sequence of each boundary is at most O(R(n)), where the length

of a crossing sequence means the number of pairs (ihp,q) in the crossing sequence.

Hence the number of different crossing sequences of length O(R(n)) is at most ncR@)
for a constant c. Let w E L(N). Then there is an accepting computation of N on w

such that N uses only ncR@) squares. Because if N uses more than ncRCn) squares, there

is always at least two boundaries having the same crossing sequence. Therefore, N

can accept w not using the squares between these two boundaries. It follows that N is

simulated by M since the position of the end-marker of M is ncR@). 0

This lemma says that it is sufficient to show that cri machines with an end-marker

is simulated by a rci machine. In what follows, we will show this.

Lemma 6. Let R(n) be a reversal constructible function. Let M be an R(n) reversal-
bounded o1 machine with an end-marker. Then, there exists an O(R(n)) reversal-

bounded crl machine N with an end-marker such that N accepts the same language
as M and terminates for any input.

Proof. This lemma can be proved in the same way as Lemma 1. That is, N makes

ncR@) segments of length O(n) on the work-tape, and simulates M using one segment

for one square of M. The way to use the segments is the same as in Lemma 1.

Furthermore, since R(n) is a reversal constructible function, N can count the number

of reversals made by M during the simulation. Thus the lemma holds. 0

Lemma 7. Let R(n) be a function. Let M be an R(n) reversal-bounded o1 machine
with an end-marker, which does terminate for every input. Then, L(M) is accepted
by an O(R(n)) reversal-bounded ~1 machine.

Proof. This lemma is proved in the same way as Lemma 2. 0

Theorem 2. Let R(n) be a space and reversal constructible function. Then,

off-IT, reve(R(n)) = off-Z1 reve(R(n)).

H. Yamamotol Theoretical Computer Science 180 (1997) 135154 151

Proof. It suffices to show that for any L E Zireue(R(n)), L E ZZlreue(R(n)). Let

L E Clreue(R(n)). From Proposition 3, there exists an O(R(n)logn) space-bounded

01 machine which accepts L. From Proposition 1, there exists an O(R(n) log n) space-

bounded CJI machine which accepts 1. From Proposition 3, there exists an 0(&n))

reversal-bounded gi machine which accepts 1. From Lemmas 5 and 6, there exists

an O(R(n)) reversal-bounded ~1 machine with an end-marker which accepts 1. From

Lemma 7, there exists an O(R(n)) reversal-bounded rci machine which accepts L. Thus,

it is shown that L E nireoe(R(n)). Hence, the theorem holds. 0

The next corollary immediately follows from Theorems 1 and 2.

Corollary 2. Let R(n) be a space and reversal constructible junction. Then, for any

k31,

ofS_rCk reue(R(n)) = oflIZ, reue(R(n)), and

ofS_rIIk reue(R(n)) = ofS_IIl reve(R(n)).

6. l-tape models

In this section, we deal with l-tape machines, but not off-line. Hence, we will omit

the word “l-tape” for ok machines and zk machines if any confusion does not occur.

The results for l-tape machines can be obtained more easily than that of off-line l-

tape machines. In this case, we do not need segmented machines and machines having

initially any string. Therefore, we can use the existing results as follows.

6. I. Basic propositions

Proposition 6 (Immerman). Let S(n) >n be a space constructible function. Let M be

an S(n) space-bounded a1 machine. Then there exists an O(S(n)) space-bounded o1

machine N satisfying the following: for any input string w, M accepts w if and only

tf N rejects w.

The following two propositions play the similar role to Propositions 4 and 5 of

off-line l-tape machines. These are modified versions of Proposition 3 in [121, and the

proofs are almost the same as in [12]. Hence, we omit the proofs.

Proposition 7. Let S(n) 3n be a function. Let M be an S(n) space-bounded o1 ma-

chine. Then there exists an O(S(n)) reversal-bounded o1 machine N with an end-

marker satisfying the following: for any input string w, (1) M accepts w tf and only

tf N accepts w, (2) N terminates on w.

152 H. Yamamotoi Theoretical Computer Science 180 (1997) 139-154

Proposition 8. Let S(n) 3 n be a function. Let M be an S(n) reversal-bounded CJ~
machine. Then there exists an O(S(n)) space-bounded ~1 machine N satisfying the
following: for any input string w, M accepts w tf and only tf N accepts w.

6.2. Main results

Lemma 8. Let R(n) be a reversal constructible function, and let M be an R(n)
reversal-bounded 7~1 machine with an end-marker. Then there exists an O(R(n))

reversal-bounded ~1 machine N with an end-marker satisfying the following: for any
input string w, (1) M accepts w tf and only tfN accepts w, (2) N terminates on w.

Proof. The proof is similar to Lemma 1, but we do not need segmented machines.

As in Lemma 1, there are two difficulty to obtain N. One is that M may continue to

move right making no reversal, and the other is that M continues to move on the same

square making no head-movement, that is, it only changes the internal state and the

tape symbol. Since M has an end-marker, the former is easily overcome; namely M
reverses the head if reaching the end-marker. The latter is overcome as follows. The

number of stationary moves M makes successively is at most k x s, where k is the

number of states and s is the number of tape symbols. Since k x s is a constant, N

can count the number of stationary moves with the finite control. The rest of the proof

is the same as Lemma 1. 0

Lemma 9. Let R(n) be a function, and let M be an R(n) reversal-bounded at machine
(~1 machine, respectively) with an end-marker that terminates on any input w. Then
there exists an O(R(n)) reversal-bounded ~1 machine (at machine, respectively) N
with an end-marker satisfying the following: for any input string w, M accepts w tf
and only if N rejects w.

Proof. Similar to Lemma 2. 0

Lemma 10. Let R(n) 2 n be a space and reversal constructible function, and let M
be an R(n) reversal-bounded at machine with an end-marker. Then there exists an
O(R(n)) reversal-bounded ~1 machine N satisfying the following: for any input string
w, M accepts w if and only tf N accepts w.

Proof. Similar to Lemma 3, except for using Propositions 6-8, and Lemma 8. 0

Lemma 11. Let R(n)>n be a space and reversal constructible function, and let M
be an R(n) reversal-bounded ~1 machine with an end-marker. Then there exists an
O(R(n)) reversal-bounded at machine N satisfying the following: for any input string
w, M accepts w tf and only tf N accepts w.

Proof. Similar to Lemma 4, except for using Propositions 6-8, and Lemmas 8 and 9.

0

H. Yamamotol Theoretical Computer Science 180 (1997) 139-154 153

Now we are ready to show the results for l-tape machines.

Theorem 3. Let R(n)>n be a space and reversal constructible jimction. Then, ,fbr
any li31,

rC,reue(R(n)) = Ck reue(R(n)).

Proof. Since an YG~ machine and a cr1 machines are the same, it suffices to show that

an O(R(n)) reversal-bounded rgk machine (k> 1) is simulated by an O(R(n)) reversal-

bounded cri machine. it is proved by induction on the number k of alternations.

Case k = 1: Obvious.

Case k > 1: Suppose that rok-1 machine is simulated by cr1 machine. Then we can

construct an rgk__l machine N simulating an rgk machine M as follows.

Step 1: N guesses space enough to simulate M, puts an end-marker on the work-tape,

and computes the value of R(n). This value is used by machines in Step 3.

Step 2: N behaves as M when simulating M. During the simulation, N counts the

number of alternations made by M. If A4 makes the (k - 1)th alternation by a transition

6, then N also performs the same transition, This time, however, N does not make the

alternation, that is, if the old state is universal (existential, respectively), then the new

state also remains universal (existential, respectively). After that, N marks the current

head position, and returns the head to the leftmost square.

Step 3 Just after Step 2, the rest of the computation of M can be viewed as either a

cii machine with an end-marker or a 7~1 machine with an end-marker having an input

1x1 <R(n). This is because M is an rck machine. Hence if it is a crl machine, then N

uses the r-t1 machine in Lemma 10, and if it is a rci machine, then N can use the (rl

machine in Lemma 11. Because, by Lemma 8, we can construct a ~1 machine with an

end-marker which always terminates. Thus N becomes an ?-ok__1 machine, and accepts

the same languages as M.

It is easy to show that the reversals of N are O(R(n)). Because, in Step 1, N requires

only O(R(n)) reversals, and in Steps 2 and 3, so does N. C

Remark. Lemmas 10 and 11 have the condition R(n) > n. Hence, to use these lemmas

in the proof of the above theorem, we need to have the condition 1~1 <R(n) in Step 3.

This is why we introduced a restrict machine for a l-tape machine.

Corollary 3. Let R(n) 3 n be a space and reversal constructible flmction. Then, .fi)r

k32,

rflk reve(R(n)) = c1 reve(R(n)).

Proof. It follows from Theorem 3, because rnk machine can be simulated by r(Tk+i

machine. P

Similarly, we can get the similar results to Theorem 2 and Corollary 2 as follows.

We omit these proofs because they are almost the same as Theorem 2 and Corollary 2.

154 H. Yamamotol Theoretical Computer Science 180 (1997) 139-154

Theorem 4. Let R(n)>n be a space and reversal constructible function. Then,

IZlreve(R(n)) = Z,reve(R(n)).

Corollary 4. Let R(n)2n be a space and reversal constructible function. Then, for
any k21,

r,Ck reve(R(n)) = n, reve(R(n)),

and

rflk reve(R(n)) = nl reue(R(n)).

References

[l] B.S. Baker and R.V. Book, Reversal bounded multipushdown machines, J. Comput. System Sci. 8

(1974) 315-322.

[2] A.K. Chat&a, D.C. Kozen and L.J. Stockmeyer, Alternation, J. Assoc. Comput. Mach. 28 (1981)

1 l&133.

[3] S.A. Greibach, Visits, crosses and reversal for nondetemrinistic off-line machines, Inform. and Control

36 (1978) 174-216.

[4] J.E. Hopcroft and J.D. Ullman, Introduction to Automata Theory, Languages and Computation

(Addison-Wesley, Reading, MA, 1979).

[5] N. Immerman, Nondeterministic space is closed under complementation, SIAM J. Comput. 17 (1988)

935-938.

[6] M. Kutylowski, M. Liskiewicz and K. Lorys, Reversal complexity classes for alternating Turing

machines, SIAM J. Comput. 19 (1990) 207-221.

[7] M. Liskiewicz and K. Lorys, On reversal complexity for alternating Turing machines, Proc. 30th IEEE

WCS (1989) 618-623.

[8] M. Liskiewicz, K. Lorys and M. Piotrow, Note on reversal bounded alternating Turing machines,
Theoret. Comput. Sci. 54 (1987) 331-339.

[9] L.J. Stockmeyer, The polynomial-time hierarchy, Theoret. Comput. Sci. 3 (1977) l-22.

[lo] S. Toda, &SPACE(n) is closed under complement, J. Comput. System Sci. 35 (1987) 145-152.

[l l] H. Yamamoto, Reversal-space trade-offs for simultaneous resource-bounded nondeterministic Turing

machines, ZCALP’93 Proc., Lecture Notes in Computer Science, Vol. 700 (Springer, Berlin 1993)

203-214.

[12] H. Yamamoto and S.Noguchi, Comparison of the power between reversal-bounded ATMs and reversal-

bounded NTMs, Znform. and Comput. 75 (1987) 144-161.

[13] C. Wrathall, Complete sets and the polynomial-time hierarchy, Theoret. Comput. Sci. 3 (1977) 23-33.

