
Theoretical Computer Science 84 (1991) 107-126

Elsevier

107

A pointer-free data structure for
merging heaps and min-max heaps

Giorgio Gambosi and Enrico Nardelli
Istituto di Analisi dei Sistemi ed Informutica, C.N.R., Roma, Italy

Maurizio Talamo
Dipartimento di Matematica Pura ed Applicata, University of L’Aquila, L’Aquila, Italy, and

Istituto di Analisi dei Sistemi ed Informatica, C.N.R., Roma, Italy

Abstract

Gambosi, G., E. Nardelli and M. Talamo, A pointer-free data structure for merging heaps and

min-max heaps, Theoretical Computer Science 84 (1991) 107-126.

In this paper a data structure for the representation of mergeable heaps and min-max heaps

without using pointers is introduced. The supported operations are: Insert, DeleteMax, DeleteMin,

FindMax, FindMin, Merge, NewHeap, DeleteHeap. The structure is analyzed in terms of amortized

time complexity, resulting in a O(1) amortized time for each operation except for Insert, for which

a O(lg n) bound holds.

1. Introduction

The use of pointers in data structures seems to contribute quite significantly to

the design of efficient algorithms for data access and management. Implicit data

structures [131 have been introduced in order to evaluate the impact of the absence

of pointers on time efficiency.

Traditionally, implicit data structures have been mostly studied for what concerns

the dictionary problem, both in l-dimensional [4,5,9, 10, 141, and in multi-

dimensional space [l]. In such papers, the maintenance of a single dictionary has

been analyzed, not considering the case in which several instances of the same

structure (i.e. several dictionaries) have to be represented and maintained at the

same time and within the same array-structured memory.

0304-3975/91/$03.50 @ 1991-Elsevier Science Publishers B.V.

108 G. Gambosi et al.

In this paper, the implicit representation of a different data structure, the mergeable

heap, is studied. Heaps are traditionally considered as the first example of implicit

structures, since they can be used to easily implement a priority queue by means

of an array [18]: this approach can be extended to the implementation of double

ended priority queues (dequeues) by means of min-max heaps [3].

A different solution to the representation of priority queues is offered in [7],

where a pointer-free modification of the binomial queue introduced in [181 is given.

Such a structure, which is fully implicit (that is, it uses the first n + c memory location

to represent a n-element priority queue) makes it possible to efficiently perform the

merge between substructures required in binomial queues, but does not seem to be

extendible to the management of multiple instances of mergeable priority queues.

The extension of the implicit representation of priority queues to support the

merge operation has been considered in [15], where an algorithm is presented for

merging two heaps represented in different arrays. For a general discussion of

mergeable heaps see [2,12,16].

In particular, we are interested to introduce a data structure which makes it

possible to represent different instances of mergeable priority queues and dequeues

within the same array and at the same time. Thus, the major goal of this paper is

to develop a pointer free data structure for mergeable heaps and min-max heaps

under which the basic operations of Insert, Deletemax, Deletemin, Findmax, Findmin,

Merge, Newheup, and Deleteheup can be performed efficiently. The approach intro-

duced to obtain such a result is related to the techniques introduced in [6] for the

dynamization of decomposable searching problems.

Time complexity will be considered within the paper in an amortized sense [171,

i.e. time complexity will be analyzed by averaging a worst case sequence of operations

over time.

We will first consider a data structure for mergeable heaps and then extend it to

manage also mergeable min-max heaps, thus settling, in the amortized analysis

framework, the open question posed in [3], i.e. whether it is possible to devise a

data structure for min-max heaps which allows an efficient management of merge

operations.

The paper is organized as follows: in Section 2 the proposed data structure is

presented; operations on the structure are described in Section 3 and analyzed in

Section 4. In Section 5 extensions and further remarks are given.

2. Description of the data structure

As stated above, we are interested in dynamic data structures, in which the number

of data items represented by the structure may change with time. In particular, we

are interested in extending the approaches introduced in the framework of implicit

data structures design to the simultaneous representation of multiple instances of

dynamic data structures, which are subject to the operations of melding, creation

A pointer-free data structure for heaps 109

and deletion. That is, we are interested to deal at the same time with both a (time

varying) set of instances of a data structure and a (time varying) set of elements to

be represented in such structures. In the following, we will denote as n and m s n

the current number of elements and the current number of instances, respectively.

Our basic model is a l-dimensional array M of locations lUl[11, M[2], . . . , bQ[i], . . . ,

in which the elements of the represented set can be stored. In order to make it

possible to efficiently represent several instances of the same structure at the same

time, we relax the definition in [13] to include also data organizations in which

elements are not stored in a set of contiguous locations.

Given m different instances of the structure containing n items, we represent

them by storing data in n + c, m + cz memory locations, where c, and c2 are suitable

constants, using no additional space for updating the overall structure (i.e., merging

instances and inserting and deleting both items and instances). We do not allow

the presence of pointers, that is, we do not allow explicit representation of structural

information.

Note that, in the approach introduced in [15], updating the structure in the case

of merging heaps, requires a O(n) additional space. Moreover the analysis given

for space complexity does not consider this additional space as space used for the

element representation.

Let us now start with the definition of the structure: let k = [lg n] + 1. (All

logarithms are to base 2 unless stated otherwise.)

A single heap H can be implemented by an array H[1..2k - l] which is partitioned

in k subarrays, called heaptrees. Each subarray implements a heap-structured binary

tree by storing, as usual, the two sons of the element stored in location i in locations

2i and 2i-t 1 [19]. We shall denote the heaptrees as SKY,, Yt’YZ,. . . , Xk_,, SWk,

and they are made as follows: X5, is the subarray indexed by [l..l], SKY1 is the

subarray indexed by [2..3], etc. (see in Fig. 1 an example for k = 5). In general,

heaptree X’.Yi has index bounds [2”..2’ - 11.

Fig. 1.

A heaptree XYi has size size(EF,) = 2’-‘. We shall denote as elem(XT,) the

number of elements actually contained in SYTi. If elem(X9!) = size(XT,) we say

that SYi is complete. Given two heaptrees X9, and SYYi we say that %‘Yi is more

signiJcant than 25, if i > j. We assume that each of the non-empty heaptrees is

complete, except for the most significant one (which we denote as the leftmost one).

The leftmost non-empty heaptree may therefore have a number of elements less

than its size (but, as we shall see, greater than half its size).

110 G. Gambosi et al.

We will show later that the following invariant holds.

Invariant 1. If %‘$ is the leftmost non-empty heaptree, then

$ize(XYi) < elem(XYi) S size(SKYi);

otherwise

eZem(X?i) = size(SYYi).

Given a heap Hi, the status of its heaptrees may be coded by a string of bits,

str(Hi) = bib:_, . . . b;bf ,

where bj = 1 means that XYj of Hi is not empty and bj = 0 means that SZ’Yj of Hi

is empty.

We maintain for each heap Hi (see an example in Fig. 2):

- the index max(Hi) of the heaptree whose root is the element of maximum value

in Hi;
- the index Zeft(Hi) of the leftmost non-empty heaptree of Hi (which corresponds

to the most significant “1” in str(Hi));
- the index hleaf(Hi), relative to XY,efr(H,), of its leaf of highest index. Clearly,

Ideaf = size(XF,,f,ccr,j) if and only if ZYleft(,,) is complete.

In the following we will denote a generic heap as H, without any subscript, if no

ambiguity is introduced by such a notation.

The overall structure of m heaps is implemented in the l-dimensional array M

by firstly representing the m’> m heaptress SYY,, then the m’> m heaptrees XYz,

and so on, always keeping adjacent equally ranked heaptrees (see in Fig. 3 an

example with m = 3, m’= 5). The consequence of this approach is that, in general,

max(H)=:!
b , ’ ’ b ’ I ’ I I I
I :8 :14;10:12:29 :34 : : ’ left(H)=4

4 I / I , h , I
4 ;37 9

I I
hleaf@l&6

Fig. 2.

Fig. 3.

A pointer-free data structure for heaps 111

space for a certain number m’- m of heaps will be available in M: this is done in

order to amortize the cost of creating or deleting a heap.

3. Manipulation of the data structure

We define the following operations:

Findmax(H): the value of the element with maximum value in heap H is returned.

Deleteheap(delete an empty heap H. This is only done in correspondence

with the Deletemax operation which leaves H empty.

Newheup(H): create a new heap H. This is only done in correspondence with

the first Insert operation performed on H.

Insert(e, H): a new element e is inserted in heap H.

Deletemax(the element with maximum value is deleted from heap H.

Merge(H,, Hz): a new heap is created from the merging of H, and Hz. The

resulting heap is stored in Hz, while H, is deleted.

Operations are executed as described below. We assume the existence of a

threshold variable T (used by Deleteheap operations) and of a counter variable P

(used by Newheap and accessed also by Deleteheap) which are both initialized to

1. The role of T is to drive the compaction of the structure by signaling that “enough”

Deleteheap has been made, while the role of P is to provide a reference to a place

where a newly created heap can be stored. Moreover, we assume the existence of

a specific value which will be stored in heaptree XY, of a heap H in order to mark

H as unused.

Findmax(H).

- The value of the array cell corresponding to the root of ~~,,,ax~H~ is returned.

Deleteheup(H).
- Mark heap H as unused;

- Set T:= T-l and m:=m-1;
- IF T=O

THEN

- for the heaptree .X7, of each used heap Hi, determine the number & of

heaptrees X9, of deleted heaps contained in locations of smaller index;
- move each element e contained in a heap H,

6i * size(XF(e))+ f * (size(%Y(e))-1)
LJ

positions to the right (i.e. towards smaller indices), where J = m’- m denotes

the number of unused heaps in the structure;

- Set T:= [n/21, P:= m + 1, and m’:= m’- [J/2].

112 G. Gambosi et al.

Newheup(H).
- IF P = m’+ 1 (i.e. there is no space available in M for a new heap)

THEN move each element e in the overall structure n(size(X9(e)) - 1) positions

to the left (i.e. towards greater indices), where SW(e) denotes the heaptree

to which e belongs;
_ set ml:= m’+ n;
- allocate the heap whose first location is M[P];
_ set P:=P+l and m:=m+l.

Insert(e, H).
- IF H does not exist THEN Newheup(H);

- find the index j of the rightmost empty heaptree in H;
- IFj=l

THEN %F,:=[e]

ELSE IF j = left(a) f 1 and X3,ef,Cr(H) is not complete

THEN e is added to XF,eftCH), and its maximum is adjusted

ELSE 2Wj is built from scratch, using element e plus all the elements

contained in SYYj_, . . . X.7,;
_ the new maximum of H is derived by comparing the old maximum with

element e.

DeZetemax(H).
- n:=n-1;

- IF hleuf(H)= 1

THEN

- delete the element in SW, ;

- Deleteheup(H)

ELSE

_ The root of 5Y.Y,,,axCH) is deleted, the element corresponding to hZeuf(H) is

moved from XY,efrCH) to the root of 9W,,,axCH), hZeuf(H) is decreased, and

a new maximum for YfF,,,OxCH) is determined;
- IF eEcm(XYkfi(& = size(xTk,,&/2

THEN IF xF,eftcH)_1 iS empty

THEN ~~,<,,(HJ is moved to SY3,ef,CH)_1 and left(H) is decreased

ELSE zy,efr(~) is rebuilt from scratch using elements in XF,efrCH)_, and

in XY,efrCHJ itself;
- The new overall maximum is decided by comparing roots of non-empty

heaptrees and mux(H) is updated in consequence.

Mew(Hl, Hd.
It can be assumed, without loss of generality, that eZem(H,) s eZem(HJ.

Let zTkf,c H,) (xFleft(Hz)) be the leftmost heaptree in HI (Hz). By hypothesis,

Zeft(H,) s Zeft(Hz). Let h = size(%?ylf,cHIJ) - eZem(XT,,,,,,,) and let S be the set of

items in H2 in locations 2’eti(H2J-’ + hZeuf(H,), . . . , 2’efr(H~)p’ + hZeuf(Hz) -(/I - 1).

A pointer-free data structure for heaps 113

Note that, by hypothesis and by Invariant 1, h < hleaf(HJ and all the items in S

belong to X~,+(H~).
The two strings str(H,) = bLbL_, . . . bib: and str(HJ = bzbz-, . . . bzbf are added.

Let bFbF_, . . . b;br be the resulting string.

The resulting heaptrees are built in H2 according to the result of the addition

above. In particular, for each bit equal to 1 in the resulting string the corresponding

heaptree is built as follows. A value equal to 1 for bit bp may be generated in one

out of four ways:

(a) it comes from bit b: equal to 1, only;

(b) it comes from bit bf equal to 1, only;

(c) it comes from a carry in the addition and bits b: and bf are both equal to 1;

(d) it comes from a carry in the addition, only.

Case (a):

IF i < lefr(H1) or xY,eff(HI) is complete

THEN heaptree %!‘Yi of H, is copied into heaptree XYi of H2

ELSE heaptree 27, of H2 is built from scratch using items in S and in 29, of HI.

Case (b): No operation is performed.

Case (c): No operation is performed, since heaptree %.Yi of H2 remains in its

place while heaptree XYi of H, will be used for building some heaptree X9,, j > i,

in the resulting heap (see case (d)). Note that if i = leff(H1) and XY,eft(H,) is not

complete, then elements from both 2YFi and S will be used for building XT!.

Case (d): The building of heaptree X.Yi from scratch is required, starting from

smaller sized heaptrees in H, and Hz. For building the new heaptree all those

heaptrees XTj, j < i, in H, and Hz will be used such that bits 6: , bf have contributed

to the generation or propagation of a carry in the chain of carries which ends in

position i, except for those heaptrees of H2 which are involved in case (c). Again,

note that if j = left(H,) for some of the heaptrees XYj above and X.Y,e,,(H,) is not

complete, then elements from both XYj and S will be used for building %Yi.

Note that, after all the resulting heaptrees have been built in H2, it may happen

that zy,,f,, H2) does not respect Invariant 1 anymore. In particular, it may happen that

elem(xy,+& G size(xy,efrcHZJ/2.

In such a case, if 2YY,ef,(Hz)_1 is empty, then X9,+,,,, is moved to ZX9,ef,(Hz)_l,

otherwise a new heaptree 5YY,eti(H2) is built from scratch using the elements previously

in xF,cf,(H,J and in X9,eff(Hz,-l.
Finally, DeZeteheup(H,) is invoked.

4. Analysis

4.1. Preliminaries

We shall analyze the complexity of each operation amortized over a sequence of

operations: t, will denote the resulting amortized time complexity.

114 G. Gambosi et al.

We shall use for our analysis the credit-debit technique (banker’s view) [17].

Operations may either (i) directly manage the elements or (ii) consider each heaptree

as a whole or (iii) be concerned with whole heaps or (iv) manipulate the overall

structure. Therefore, for ease of proof, we associate credits to different parts of the

structure: namely we will define element-credits, heaptree-credits, heap-credits, and

structure-credits. Moreover, a pool of credits used to cope with the growing of the

overall structure, denoted pool-credits, is defined.

We shall denote by cred(e) the number of credits owned by element e (element-

credits), with cred (XT) the number of credits owned by heaptree XT (heaptree-

credits), and with cred (H) the number of credits owned by heap H (heap-credits).

Given an element e of heap H, let i, be the index of the bit corresponding to XY(e)

in str(H). Similarly, given a position p of heap H, let i,, be the index of the bit

corresponding to %‘Y(p) in str(H), where XY(p) denotes the heaptree to which p

belongs.

Let c, (1~ c, < 2) be the constant for linear time heap construction [19]. The

following invariants hold (recall that k = [lg n] + 1).

Invariant 2. For each position p in a non-empty heaptree:

kfl

c, C (l-b,)Scred(p).
i>i,

From Invariant 1 this means that:
- each element e has always at least as many element-credits as the number of

empty heaptrees from the one currently containing e up to the one following

%Yk, that is, enough credits to pay for its promotion up to the heaptree following

the currently most significant one;

- the same holds for each empty position in the leftmost non-empty heaptree.

Note that, in general, in presence of different heaps it may easily happen that

Zeft(H) < k for all heaps.

Invariant 3. For each non-empty heaptree RYi in a heap H

2~(si.~e(X~~)-elem(3W~))~cred(X~~).

This means that each heaptree %Yi has always at least as many heaptree-credits as

twice its missing elements.

Invariant 4. For each heap H in M

2k< cred(H).

This means that each heap H has always enough heap-credits to pay for the

execution of two operations, each with cost lg n.

The amortized time complexity is now analyzed for each operation.

4.2. AnaZysis of Findmax(

The time complexity is trivially O(1).

A pointer-free data structure for heaps 115

4.3. Analysis of Deleteheap(H)

We assume that each Insert operation gives 3 structure-credits upon each element

insertion for the purposes of Deleteheap. Moreover, we assume that each Deleteheap

operation gives 7 structure-credits when it is executed.

When the threshold T is not equal to 0 the Deleteheap requires a constant time.

Let us denote as DH,, (i.e. not costly) this kind of Deleteheap.

When the threshold T is equal to 0 all the elements in the structure are moved.

Let us denote as DH, (i.e. costly) this kind of Deleteheap.

The cost of moving n elements is given by three components. The first one

considers the time required for finding the heaptrees which contain elements to be

moved. The second one considers the time required for executing all the movements.

The last one considers the time required to calculate the value si for all the heaps

in the structure and it is trivially bounded by P. For what regards the first two

components, note that for each heap H the cost of moving all its elements is given

by two terms. The first one considers the time required for scanning the left(H) less

significant bits of str(H) in order to find the non-empty heaptrees of H. The second

one considers the time required for moving all the elements of H. It is easy to see

that for each heap the sum of these two terms is bounded by two times the total

number of the elements in the heap. This leads to an overall bound of 2n + P for

moving the n elements in the structure.

After any DH, the counter P is reset to m. Immediately before any DH, is executed

it is m’ 2 P = m + G, where G denotes the number of deleted heaps in positions

IU[11,. . .) fbn[P].

Suppose we are immediately before the execution of a DH,. Then G indicates

also the number of DH,, which have been done since the last DH,. Let us denote

with nA the number of elements which were in the structure immediately after the

last DH,, and with n, the number of elements added since the last DH,. Considering

that m is always bounded by n, and that the threshold mechanism is such that

G= [n,/2], we have

2n+P~2(n~+n,)+(n,+n,)+G=7G+3n,.

Given the initial assumptions on the number of credits given by Insert and

Deleteheap, it is easily seen that the overall cost of a DH, is always covered by

previously stored credits. This results in the following lemma.

Lemma 4.1. The amortized cost for the Deleteheap operation is O(1).

Proof. Is derived easily from the considerations above. 0

4.4. Analysis of Newheup(H)

We assume that each Insert operation gives 2 structure-credits upon each element

insertion for the purposes of Newheap. Moreover, we assume that each Newheap

and each Deleteheap give 4 structure-credits when it is executed.

116 G. Gambosi et al.

When P < WI’+ 1, Newheup requires a constant time. Let us denote as NH,, (i.e.

not costly) this kind of Newheap.

When P = m’+ 1, all the elements in the structure are moved. Let us denote as

NH, (i.e. costly) this kind of New/reap. Let us call free-positions the space available

for future heap creations by means of (lot’ - P) NH,, operations.

The cost of moving n elements in this case is given by only the first two components

considered in the analysis of Deleteheap. The fact that all the elements are moved

means that the space previously opened by the last NH, has been completely used.

This space can have been used either by the execution of NH,, operations or by

the execution of DH, operations (since DH,, do not create free-positions we shall

not consider them, for the time being).

Suppose we are immediately before the execution of a NH,. Let us denote with

F the number of operations (either NH,, or DH,) executed since the last NH,,

with nC the number of elements in the structure immediately before the last NH,

(which is also the number of free-positions created by the last NH,), with n, the

number of elements still remaining in the structure among the ones which were in

the structure when the last NH, was executed (clearly n, 3 n,), and with nE the

number of elements added since the last NH,.

The number of elements moved by this NH, is n = n, + nE. Under the initial

assumptions on the number of credits given by Insert, Newheup, and Deleteheap,

we have only to show the 4F 32n,, i.e. F 2 nD/2. We consider two subcases,

depending on the number of DH, operations executed.

Suppose that the number of DH, operations is 0. Then, since there were n, free

positions, there have been at least n, NH,,: therefore F 2 n, 2 n,.

Suppose now that at least one DH, has been executed. Since its effect is to halve

the number of free-positions, the worst case for this analysis is when it is executed

immediately after the last NH,. This means that after the execution of this DH,

only nc/2 free-positions remain, which require at least n-/2 NH,, to be filled:

therefore F 2 nc/2+ 13 n,/2.

To complete the analysis let us now take into account the case when DH,,

operations have also been executed. Let us call x,, and x,, respectively, the number

of DH,, and DH, operations which have been executed since the last NH,. Then

the total number F of operations executed since the last NH, cannot be less than

x,, + x, + nc/2. Therefore F 3 x,,+ x, + n,/2 3 n,/2. This results in the following

lemma.

Lemma 4.2. The amortized cost for the Newheup operation is O(1).

Proof. Is derived easily from the considerations above. 0

4.5. Analysis of Znsert(e, H)

Let us assign, upon the insertion of a new element e in heap H, c,(k+ 1) + k+2

element-credits to e, 2 heap-credits to H, and 8 pool-credits.

A pointer-free data structure for heaps 117

The first step requires possibly the execution of a Newheup, which results in a

O(1) amortized complexity by Lemma 4.2.

The second step requires at most k substeps, whose execution is paid by k

element-credits assigned to e upon its insertion.

The time complexity of the third step requires a more detailed analysis:

(a) if the new element is inserted in 3W1ef,CH) then lg(eZem(XY,,rtcH,)) s Zefr(H)

time is spent to insert e in its proper position in 3W,pf1r(HJ. The insertion is paid by

using left(H) G k credits assigned to e upon its insertion. Therefore an amortized

complexity of O(1) results.

(b) if a new heaptree YWi is built from scratch, the time complexity is

c, . size(XTi). The cost of the operation is covered by letting each element involved

in heaptree building pay c, credits. Again, an amortized complexity of 0(1) results.

The fourth step requires only 1 comparison.

Let us then state the following lemma.

Lemma 4.3. If invariants 1,2, 3, and 4 hold just before the execution of an Insert

operation, then

(a) the Znsert operation has amortized time complexity O(lg n),

(b) the invariants hold also after such an operation.

Proof. If all invariants hold, it is easy to verify that there are enough credits to

perform the Insert operation. Since c, (k + 1) + k + 2 element-credits are assigned to

e (plus a constant number of credits for other operations), this results in a O(lg n)

amortized complexity.

For what concerns invariants maintenance, let us consider them case by case:

Invariant 1: If X9, is empty the invariant is maintained, since element e is

inserted in X9,, which is then complete. If X9, is not empty, then either e is added

to X9,$, (H) or some complete heaptree %Y, is built: in both cases it is easy to see

that the invariant is still maintained.

Invariant 2: The number of element-credits assigned to e which are spent during

the first, second and fourth step is bounded by k + 2.

For what the third step concerns, if 9W, is empty the invariant is maintained,

since the insertion of element e in XT1 requires one credit and thus maintains a

number of element-credits cred (e) 2 c,(k + 1) - 12 c,k 2 (c, times the number of

empty heaptrees from XYZ to 5Wk+, ,) while other elements do not spend their

element-credits.

If X3, is not empty, two cases are possible:

(a) e is added to %‘51ef,C,,J: the invariant is maintained since Zeft(Zf) s k element-

credits are spent for the insertion of e in XY,efiCHJ, resulting in a number of remaining

element-credits cred(e)sc,(k+l)-t’eft(H)~c,(k+l-left(H))z(c, times the

number of empty heaptrees from 3Y5,E,iCHj to 9Wk+,), while other elements do not

spend their element-credits.

(b) some complete heaptree XYj is built from elements in X’Yj_r, . . . , XT, plus

element e: in such a case, the cost c, . size(EFj) for building 9Wj is covered by

118 G. Gambosi et al.

letting each involved element pay c, element-credits. For what e concerns, this

results in a number of remaining element-credits cred(e) 2 c,k 2 c,(k + 1 -j) 2 (c,

times the number of empty heaptrees from XYj to XTktl); for the other elements

in %?Yj, note that, while each element spends c, credits, the corresponding term

c, C~~~~ (1 - bi) is decreased by at least one, thus the invariant will still hold.

In case the insertion of the new element makes k increase by one, let us prove

that each element in H may receive the one additional element-credit to pay for its

(possible) promotion to a position one higher than before.

In order to do that, we will prove, assuming all elements in H have enough credits

to pay for their promotion up to heaptree %‘.J Ck+, that if k is increased by one, then

they may obtain the additional credits from the credit pool. Note that in order to

increase k by one, Insert has been performed at least n/2 times after the last time

k was increased: hence, at least 4n pool-credits are available and an amount n of

them can be distributed among elements. Note that at least 3n credits are still

available: 2n of them will be used to maintain Invariant 4 under the Insert operation,

while n more are associated to the

empty positions in the most significant heaptrees of all heaps: this is done, as we

will show, to maintain Invariant 2 under the Merge operation.

Invariant 3: If a new complete heaptree X.Yj (j > 1) is built as a result of the

operation, by merging heaptrees X9,, . . . , %‘Fj-, and element e, then the condition

in this invariant is true for RTj(both terms in the expression are = 0), but does not

apply anymore to XY1, . . . , %?Yj-l (since they are now empty). The condition

remains true for all other heaptrees (they are not modified).

If e is added to SKY,eflCH), then the condition in this invariant is true for %‘Y,eft(H)

(the left term is decreased by two, while the right term is not modified) and remains

true for all other heaptrees (they are not modified).

Invariant 4: The invariant is maintained, since the operation adds 2 heap-credits

to cred(H), without spending any heap-credit. In case the insertion of the new

element makes k increase by one, let us now prove that each element in H may

receive the two additional heap-credits required to maintain this invariant.

In order to do that, we will prove that, if all heaps in M have enough credits to

make the condition in Invariant 4 true, then, if k is increased by one, they may

obtain the additional credits from the credit pool. Note, again, that in order to

increase k by one, Insert has been performed at least n/23 m/2 times after the last

time k was increased: hence, at least 2n pool-credits are still available, after the

ones to maintain Invariant 2 are used and a number 2m s 2n of them can be

distributed among the heaps. 0

4.6. Analysis of Deletemax

We assume that each Deletemax operation assigns 2c, heaptree-credits to heaptree

x%e,t(H).

A pointer-free data structure for heaps 119

The THEN branch requires possibly the execution of a Deleteheap, which results

in a O(1) amortized complexity by Lemma 4.1.

The first step of the ELSE branch has a time complexity O(1) for identifying

HTWl,X(H) and for moving the element corresponding to hleuf(H) from X!7,efrCH) to

~~fW(H). Finding a new maximum of XYmaxCH) requires at most k comparisons.

The second step of the ELSE branch requires a more detailed analysis. For the

sake of shortness during the analysis of this step let j = left(H). The operation

requires either (i) the moving of 2jm2 elements into XYj-, or (ii) the building from

scratch of a heaptree of 2’-’ elements.

(i) Moving all the elements requires 2J-2 steps and moreover, since after comple-

tion of the operation YWj will be completely empty, each element moved to XYj_,

requires, in order to maintain Invariant 2, c, additional credits. That results in

c, . 2J-2 overall credits. Note that only elements in XFj_, require such additional

credits, since from the point of view of elements in %‘Fj_, . . XT, there is still the

same number of empty heaptrees. A total of (c, + 1) . 2J-2 credits is therefore needed

and these are provided by the 2je2 Deletemax operations that have half emptied

9fYj and have increased the total amount of heaptree-credits of X’Yj by exactly

2c, . 2jP2 > (c, + 1) . 2jP2 credits. Therefore, an amortized complexity t, = 0(1)

results.

(ii) Building the heaptree XYj from scratch requires c, . 2’-’ steps and moreover,

since after completion of Deletemax RTj_, will be completely empty, elements in

XTj_, . . . ET1 require in order to maintain Invariant 2, c, additional credits each.

That is, a number of credits bounded by

j-2 j-2

c, C size(XYi)= c, C 2” = C,(2jP2- 1)
i=l i=l

which gives a total of c, . (2’-’ +2’-* - 1) credits needed. The 2JP2 Deletemax

operations provided 2c, . 2jm2 credits, which balance the first term in the total above,

while c, . 2jP2 credits are provided by the elements of XTj_,, which have been

moved one position towards the more significant end of the heap. Therefore we

have t, = 0(1).

The third step of the ELSE branch requires at most k comparisons.

Let us now state the following lemma.

Lemma 4.4. If invariants 1,2,3, and 4 hold just before the execution of a Deletemax

operation, then:

(a) the Deletemax operation has amortized time complexity O(lg n),

(b) the invariants hold also after such an operation.

Proof. If all invariants hold, it is easy to verify that there are enough credits to

perform the Deletemax operation. Since 2c, . k credits are assigned to some heaptree

and at most 2k comparisons are performed during the first and third steps of the

ELSE branch, this results in a O(lg n) amortized complexity.

120 G. Gambosi et al.

For what invariants maintenance concerns, let us consider them case by case:

Invariant 1: If, just before the execution of the operation,

then the invariant remains true after the operations, since no heaptree is affected

except xT1,,,, . Otherwise, in both cases, a new complete most significant heaptree

~~,eft(H) is built, thus maintaining the invariant.

Invariant 2: Derives from the considerations above, regarding the analysis of

time complexity of the second step of the ELSE branch.

Invariant 3: If, just before the execution of the operation,

then Deletemax modifies both sides of the invariant by the same amount, thus

maintaining the invariant true. Otherwise, in both cases a new complete most

significant heaptree %YJefr(H) is built, and this maintains the invariant.

Invariant 4: The invariant terms are not affected by the operation. q

4.7. Analysis of Merge(H, , Hz)

Let us assign, upon execution of a Merge operation, 2 structure-credits to m/o.

Time complexity for scanning str(H,) and str(H,) is 2k and is paid by 2k

heap-credits, taken from the smaller heap.

Analysis of cases (b) and (c) is trivial since no operation is performed.

Case (d) requires the building of a heaptree XYj, starting from the elements of

smaller sized heaptrees in H, and Hz. Each one of these elements pays one

element-credit and it is moved towards the more significant end of the heap by at

least one position: this maintains Invariant 2 true, and gives an amortized time

complexity of O(1).

Case (a) is slightly more complicated and involves some technicalities. In the

analysis of this case, whenever we refer to credits we shall mean element-credits.

We shall now introduce some notation. Let us denote with str(H,) the string

resulting from the addition between str(H,) and str(Hz) and with str(C) the string

of carries generated during the addition itself. Hence, we denote with b: the bits

of str(H,) and with bc the bits of str(C). Given a sequence S of bits, we will

denote as sum(S) the number of bits equal to 1 in S. Let us indicate with q the

index of the most significant bit involved in case (a). Then b: = 1, b’, = 0, b,” = 1,

bc = 0. Since str(H,) < str(Hz), there exists an index p (p > q) such that b: = bf for

i >p, and b: < bf for i =p. Let us denote with (Y the sequence of indexes k, k -

1 . . 3 p+l,andwithpthesequencep,p-l,...,q+l.LetusdenoteSt,,SZ,,and

s’i the subsequences of bits of str(H,), str(HJ and str(H,), respectively, whose

indices belong to (Y.

Suppose now, for the sake of simplicity, that other patterns like that involved in

case (a) either do not exist or exist at each one of the positions q - 1, q -2, . . . , 1.

It is clear that either sum(SE) = sum(Sk) (when bz = 0) or sum(SE) = sum(St)+ 1

A pointer-free data structure for heaps 121

(when bz = 1). In any case, the number of zeros in str(SE) does not increase with

respect to str(SL), thus maintaining Invariant 2.

Consider now St3 and SF. Invariant 2 is maintained if it happens that either

sum(Si) > sum(SL), which means that the number of zeros in ~tr(S:) decreases,

or cred(b,F) > cred(b!) (1 sj s q), which means that the number of credits of

XYq, XYq-,) . . .) 33, in the resulting heap increases for balancing the increase of

zeros in str(SpR).
Table 1 shows which are the feasible patterns of bits in the addition between

str(H,) and str(H*) forpositionsp-l,p-2,...,q+l.

Table 1

Operands Result

b: b; b; bl” b& by-b;

A 0 1 1 0 1 0

B 0 1 0 1 0 +1

C 0 0 1 1 0 +1

D 0 0 0 0 0 0

E 1 1 1 1 1 0

F 1 1 0 0 1 -1

G 1 0 1 0 1 -1

Rows A, B, C, D, E make the number of ones in str(H,) either greater than or

equal to the number of ones in str(H,). Therefore they maintain Invariant 2 by

decreasing zeros.

Rows F and G cause an increase of zeros in str(H,) with respect to str(H,) and

therefore we have to show that, for each occurrence of such patterns, there is a

corresponding increase of credits for the heaptrees of the resulting heap in positions

q,q-l)...) 1.

This can be shown as follows: Since in position q no carry is generated, the

right-most pattern between F and G (let us remember that we are interested only

in patterns which induce an increase of zeros in str(HR)) at the left of q may only

be pattern F. The reason is the following:

Consider the indices among p - 1, p - 2, . . . , q + 1 where patterns corresponding

either to row F or to row G occur. Let us denote with s the smallest of such indices.

We claim that at index s only pattern F can be found. In fact, assume the pattern

at index s corresponds to row G: this means that at index s - 1 either pattern E or

pattern A is found, since these are the only rows different from F and G that may

generate a carry. Both rows A and E correspond to situations where a carry is

received from the right. This means that, again, only patterns A and E can be found

in positions s-2, s-3,. . . , q + 1. This fact leads to an inconsistency, for neither

pattern A nor pattern E may be in position q + 1, since no carry is generated in

position q. Then 6: = b: = 1, bp= 0, b: = 0, bF+, = 1.

122 G. Gambosi et al.

Let us now focus on the generated carry bF+‘,, . Either it propagates without

interruption up to b,’ (hence to bF+,, since bi = 0 and bz = l), that is b,” = bF_, =
. . .= b:+Z = b,C,, = 1, or it stops somewhere between p (included) and s +2

(included): that is, there exists an index t (1~ t s p - s - 1) such that bF+,+, = 0, and
b,C,,=. . .=b,C+,= 1. Note that t = 1 is a trivial case, since no increase of zeros occurs.

In the former case, possible patterns for position p - 1, p -2, . . . , s + 1 are only

those which both involve a carry and generate a carry (rows A, E, and G). Among

them, the only one which causes an increase of zeros is G. Suppose therefore that

there are L such patterns. This means an increase of L+ 1 zeros (L for patterns G

and 1 for the pattern at index s) in positions between p- 1 (included) and s

(included). Each one of the patterns in such positions contains bits which correspond

either to heaptrees which are moved to position p + 1 (the heaptrees relative to

patterns A and G, and the heaptrees of H, relative to pattern E) or to heaptrees

which remain in their position (the heaptrees of Hz relative to pattern E). Therefore,

there are at least Lt2 heaptrees moved (L heaptrees relative to pattern G and 2

heaptrees at index s), and all of them are moved at least 2 positions upward.

Therefore, each of them may release a number of credits equal to its size, which is

at least twice the size of 3Wq, for a total amount of 2(L+2) . size(XFq) released

credits. Note that, in order to cover the additional request of credits for all heaptrees

in positions q, . . . , 1, due to the L+ 1 additional zeros, at most 2(Lt 1) * size(SWq)

are required.

In the latter case, since we have by+, = 1 and b:+,+, = 0, this implies b:,, = bf,, = 0

and bF+,= 1. Possible patterns for position s + t - 1, . . . , s + 1 are only those which

both involve and generate a carry (rows A, E, and G). Among them, the only one

which induces an increase of zeros is G. Suppose therefore that there are M such

patterns. This means an increase of M + 1 zeros (M for patterns G and 1 for the

pattern with index s) in positions between s + t - 1 (included) and s (included) and

a decrease of one zero in position s + t. Therefore, it is necessary to provide for M

additional zeros.

Each one of the patterns in positions s + t - 1, . . . , s contains bits which correspond

either to heaptrees which are moved to position s + t (the heaptrees relative to

patterns A and G and the heaptrees of H, relative to pattern E) or to heaptrees

which remain in their position (the heaptrees of Hz relative to pattern E). Thus,

there are at least M + 2 heaptrees moved (M heaptrees relative to pattern G, and

2 heaptrees relative to patterns with index s) and all of them, except the leftmost

one in H,, are moved at least two positions upward.

Therefore, each of them may release a number of credits equal to its size. There

are M + 1 such heaptrees (M in H, and one in Hz) and each of them has size at

least twice the size of X.Yq, thus releasing a total of 2(M + 1) . size(XFq) credits.

Note that, in order to cover the additional request of credits for all heaptrees in

positions q, . . . , 1, due to the M additional zeros, at most 2M= size(%Yq) credits

are required.

Let us now state the following lemma.

A pointer-free data structure for heaps 123

Lemma 4.5. If invariants 1,2,3, and 4 hold just before the execution of a Merge

operation, then

(a) the Merge operation has amortized time complexity O(l),

(b) the invariants hold also after such an operation.

Proof. If all invariants hold, it is easy to verify, from the analysis of the four cases

above, that there are enough credits to perform the Merge operation, thus resulting

in a O(1) amortized complexity.

For what invariants maintenance concerns, let us consider it case by case:

Invariant 1: To prove the invariant maintenance, note that the Merge operation,

when moving the most significant heaptree from the smaller heap to the greater

one, always completes it. All other moving or merging of heaptrees starts from

complete heaptrees and generates complete heaptrees.

Invariant 2: If %YJefiCH,) is complete, the maintenance of the invariant follows

from the considerations above, where it is shown that enough element-credits are

released to maintain the invariant itself. In case YfY,efrCH,J is not complete, the same

considerations apply: note moreover that elements in S, which are moved to a less

significant position, have to leave in ~~,efr~HZ~ their element-credits (since the empty

positions they leave must be equivalent to empty positions left by moved or deleted

elements in 3Y91efiCHz,) but can take from XY,ef,CH,j the element-credits left by the

ISI elements which were moved or deleted from X’Y1;efrCH,j itself.

Invariant 3: The invariant is easily maintained for all heaptrees except, possibly,

~~,eftCHIj and xyleffCHz), since neither the number of elements nor the number of

heaptree-credits is modified by the Merge operation. For what concerns XY,ef,C,,Ij

and ~~w,w~), note that, in case 3YY,efrCH,j is not complete, a number (SI of elements

is moved from 5YY,eftC,,Zj to XY,eftCH,J : the invariant is maintained for both heaptrees

by moving 21S heaptree-credits from EKY,ef,CH,J to 5YY,eflC,,2j.

Invariant 4: Is derived easily, since k is not increased by the operation, and the

heap-credits of the larger heap-which is the one remaining after the operation-are

not used. 0

4.8. Main results

It is now possible to state the main theorem:

Theorem 4.6. The structure described above makes it possible to represent a set of

mergeable heaps without using pointers and with the following amortized time bounds:

l Insert, Deletemax: O(lg n);

l Newheap, Deleteheap, Findmax, Merge: O(1).

Proof. The proof follows from Lemmas 4.1 and 4.2, for what Deleteheap and

Newheup concerns. For the remaining operations the Theorem is proved by induc-

tively showing that there are always enough credits in the whole structure to perform

all the operations with the time bounds above. This can be done by proving that

the invariants are always true.

124 G. Gambosi et al.

It is trivial to show that all invariants hold at the beginning, when the structure

is empty, while the inductive steps have been separately proved for each operation

in Lemmas 4.3,4.4, and 4.5. 0

Note that the amortized complexity of Deletemax can be easily reduced to 0(1)

by assigning 2k more element-credits to each element, in correspondence to its

insertion in the structure. Such element-credits are not affected by any operation

but the Deletemax, where they can be spent during the first and third step of the

ELSE branch-at most k element-credits are required for each step, since at most k

comparisons are made in each step, see also Section 4.6-thus resulting in a constant

amortized complexity. This result is not surprising, since the number of Deletemax

operations is upper-bounded by the number of Insert operations, and therefore

complexity of Deletemax can be amortized over Insert.

Therefore, the following theorem can be stated.

Theorem 4.1. The structure described above makes it possible to represent a set of

mergeable heaps without using pointers and with the following amortized time bounds:

l Insert: O(lg n);

l Deletemax, Newheap, Deleteheap, Findmax, Merge: 0(1).

Proof. From Theorem 4.6 and the considerations above. 0

5. Extensions

The presented data structure may be used for managing min-max heaps with the

same amortized time complexity. In fact, since min-max heaps are essentially

standard heaps and have the same dynamics, they can be represented by our structure

by simply treating heaptrees as min-max heaptrees. One additional index, min(H),

is only necessary for each heap to record the index of the heaptree which contains

the element of minimum value in H. Operations Insert, Findmax, Deletemax, and

Merge are exactly the same, while two new operations Findmin and Deletemin are

defined, whose execution is symmetric to Findmax and Deletemax,

It is then possible to state the following theorem:

Theorem 5.1. The structure above described makes it possible to represent a set of

mergeable min-max heaps without using pointers and with the following amortized

time bounds:

l Insert, Deletemax, Deletemin: O(lg n);

l Newheap, Deleteheap, Findmax, Findmin, Merge: O(1).

Proof. Is derived easily from Theorem 4.6 and the considerations above. 0

The considerations given above on the Deletemax operation can be applied also

to min-max heaps, thus resulting in the following theorem.

A pointer-free data strucfure for heaps 125

Theorem 5.2. The structure above described makes it possible to represent a set of

mergeable min-max heaps without using pointers and with the following amortized

time bounds:

l Insert: O(lg n);

l Deletemax, Deletemin, Newheap, Deleteheap, Findmax, Findmin, Merge: 0(1).

Proof. Is derived easily from Theorem 5.1 and the considerations above. 0

The data structure introduced makes it possible to manage also other operations

such as Delete(e, H), Decreasekey(e, A), Increasekey(e, A). It can easily be seen

that these operations can be performed on the structure above in O(lg n) time. It

seems interesting to investigate whether the application of a lazy deletion technique

[8,11] can lead to improvements of such bounds.

Acknowledgment

We thank J&g-R. Sack for useful discussions on these topics. Comments from

the referees greatly helped in improving the presentation. We thank also Marinella

Gargano and Albert0 Postiglione for a careful and helpful reading of the final

version of the paper.

References

[l] H. Alt, K. Mehlhorn and J.I. Munro, Partial match retrieval in implicit data structures, Inform.

Process. Lert. 19 (1984) 2.

[2] A.V. Aho, J.E. Hopcroft and J.D. Ullman, 7’he design and analysis of computer algorithms (Addison-

Wesley, Reading, Ma., 1974).

[3] M.D. Atkinson, J.R. Sack, N. Santoro and T. Strothotte, Min-Max heaps and generalized priority

queues, Comm. ACM 29 (1986) 10.

[4] A. Borodin, L.J. Guibas, N.A. Lynch and A.C. Yao, Efficient searching using partial ordering,
Inform. Process. Lett. 12 (1981) 2.

[5] A. Borodin, F.E. Fich, F. Meyer auf der Heide, E. Upfal and A. Wigderson, A tradeoff between

search and update time for the implicit dictionary problem, 13th ICALP, Rennes, France (1986).

[6] J.L. Bentley and J.B. Saxe, Decomposable searching problems 1. Static to dynamic transformation,

J. Algorithms 1 (1980).

[7] S. Carlsson, J.I. Munro and P.V. Poblete, An implicit binomial queue with constant insertion time,

Proc. SWAT 88, LNCS 318 (Springer-Verlag, Berlin, 1988).

[E] D. Cheriton and R.E. Tarjan, Finding minimum spanning trees, SIAM J. Comput. 5 (1976) 4.

[9] G.N. Frederickson, Implicit data structures for the dictionary problem, J. Assoc. Comput. Mach.
30 (1983) 1.

[lo] G.N. Frederickson, Recursively rotated orders and implicit data structures: a lower bound, Theoret.

Compur. Sci., 29 (1984) 1.
[1 l] M.L. Fredman and R.E. Tarjan, Fibonacci heaps and their uses in improved network optimization

algorithms, J. Assoc. Comput. Mach. 34 (1987) 3.

[12] D.E. Knuth, 7%e art of cornpurer programming, Vol. 3: sorting and searching (Addison-Wesley,

Reading, Ma. 1973).

126 G. Gambosi et al.

[13] J.I. Munro and H. Suwanda, Implicit data structures for fast search and update, J. Compur. System
Sci. 21 (1980) 2.

[14] J.I. Munro, An implicit data structure supporting insertion, deletion and search in O(lg’ n) time,

J. Compur. System Sci. 33 (1986) 1.

[15] J.R. Sack and T. Strothotte, An algorithm for merging heaps, Acta Inform. 22 (1985).

[16] R.E. Tarjan, Data Structures and Network Algorithms, CBMS-NSF Regional Conf: Ser. in Appl.
Math. 44 (1983).

[171 R.E. Tarjan, Amortized Computational Complexity, SIAM J. Algebraic Discrefe Methods 6 (1985)

[181 _? Vuillemin, A data structure for manipulating priority queues, Comm. ACM 21 (1978)

[19] J.W.J. Williams, Algorithm 232: Heapsort, Comm. ACM 7 (1964).

