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SUMMARY

Cell-type plasticity within a tumor has recently
been suggested to cause a bidirectional conversion
between tumor-initiating stem cells and nonstem
cells triggered by an inflammatory stroma. NF-kB
represents a key transcription factor within the
inflammatory tumor microenvironment. However,
NF-kB’s function in tumor-initiating cells has not
been examined yet. Using a genetic model of intes-
tinal epithelial cell (IEC)-restricted constitutive Wnt-
activation, which comprises the most common event
in the initiation of colon cancer, we demonstrate that
NF-kB modulates Wnt signaling and show that IEC-
specific ablation of RelA/p65 retards crypt stem cell
expansion. In contrast, elevated NF-kB signaling
enhances Wnt activation and induces dedifferentia-
tion of nonstem cells that acquire tumor-initiating
capacity. Thus, our data support the concept of
bidirectional conversion and highlight the impor-
tance of inflammatory signaling for dedifferentiation
and generation of tumor-initiating cells in vivo.

INTRODUCTION

The transition of an intestinal epithelial cell (IEC) into a fully

transformed metastatic intestinal cancer cell follows a series of

activating and inactivating mutations in various oncogenes and
tumor suppressors, respectively (Fearon, 2011). The initiating

event of intestinal carcinogenesis is most commonly caused

by activating mutations in the Wnt-pathway (i.e., in APC or

CTNNB), that lead to stabilization of b-catenin and subsequent

constitutive transcription by a b-catenin/Tcf complex (Bienz

and Clevers, 2000). This triggers expansion and transformation

of the stem cell compartment and leads subsequently to the

development of adenomatous polyps (van de Wetering et al.,

2002). During the course of tumorigenesis, additional mutations

in other oncogenes and tumor suppressors such as KRAS and

TP53 are usually acquired (Fearon, 2011). In the untransformed

intestine, two types of multipotent stem cells have been identi-

fied: the first comprises a population of rapidly cycling cells at

the crypt base expressing the Wnt-target gene leucine-rich-

repeat-containing G protein coupled receptor 5 (Lgr5) (Barker

et al., 2007). The second pool consists of quiescent Bmi1-

expressing cells that can mostly be found above the crypt

base (Sangiorgi and Capecchi, 2008) and that have the capacity

to regenerate Lgr5+ cells upon tissue injury (Tian et al., 2011).

Because of the frequent observation that very early adenoma-

tous polyps are found at the top of colonic crypts without any

contact to the stem cell compartment (Cole and McKalen,

1963) the so-called ‘‘top-down model of adenoma morphogen-

esis’’ has been suggested (Shih et al., 2001). However, recent

genetic evidence provided support for the ‘‘bottom-up histogen-

esis’’ (Preston et al., 2003) when it was shown that Lgr5+ or

Bmi1+ stem cells can act as the cells of origin of intestinal cancer

in mice (Barker et al., 2009; Sangiorgi and Capecchi, 2008).

Various forms of chronic inflammation increase the risk of

several common cancers (Grivennikov et al., 2010). Moreover,
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Figure 1. Stabilization of b-Catenin in IEC Induces Stem Cell Expansion and NF-kB Activation

(A–H) Representative H&E stained sections (A, B, E, and F) as well as immunohistochemical stainings (C, D, G, and H) of small intestines from unchallenged

wild-type (A–D) or b-catc.a. mice (E–H) 25 days after the first tamoxifen administration.

(I) Kaplan-Meier survival curve of b-catc.a. mice.

(J) Elevated IkB-kinase activity in IEC of b-catc.a. mice 21 days after tamoxifen administration.

(K) NF-kB binding activity in IEC of b-catc.a. mice 15 or 21 days after tamoxifen administration.

(L and M) Immunohistochemical staining of RelA/p65 in wild-type (L) and b-catc.a. mice (M).

(legend continued on next page)
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long-term administration of nonsteroidal anti-inflammatory

drugs (NSAIDs) such as aspirin can be tumor preventive and

significantly reduce incidence of many solid tumor entities,

including colorectal cancer (Rothwell et al., 2011), suggesting a

specific effect of low-grade inflammation in this context. How-

ever, the exact mechanisms by which NSAIDS can provide

chemoprevention remain to be defined. The transcription factor

NF-kB, a master regulator of cell survival, inflammation, and

immunity, has been shown to comprise a key link between

inflammation and cancer (Karin and Greten, 2005). First, genetic

evidence came from a mouse model of colitis-associated

cancer, where IkB-kinase (IKK)b-dependent NF-kB activity in

IEC promoted survival of initiated cells, whereas in myeloid cells

it controlled the transcription of genes encoding proinflamma-

tory cytokines that can stimulate proliferation in a paracrine

manner (Greten et al., 2004). Additional proof for NF-kB’s direct

and indirect effects on tumor promotion and progression has

originated from several animal models of hepatocellular carci-

noma, gastric cancer, and lung cancer (Bollrath and Greten,

2009). The canonical NF-kB activation pathway is triggered by

a variety of stimuli including TNF-a, IL-1b, and pathogen-associ-

ated molecular patterns (PAMPs), which upon binding to their

respective receptors activate the IKK complex. As a conse-

quence, IKK phosphorylates NF-kB-bound IkBs and targets

them for ubiquitin-dependent degradation, thus allowing liber-

ated NF-kB dimers to enter the nucleus. In case of the canonical

NF-kB activation, this mainly depends on the IKKg and IKKb

subunits of the IKK complex (Bollrath and Greten, 2009).

Although there is substantial evidence for a role of NF-kB in

tumor promotion and progression, so far its contribution to tumor

initiation and epithelial tumor stem cell function has not been

addressed. Here, we demonstrate that NF-kB can enhance

Wnt-signaling leading to the dedifferentiation of epithelial non-

stem cells into tumor-initiating cells.

RESULTS

Constitutive Activation of b-Catenin in IEC Results
in Rapid Expansion of Intestinal Crypt Stem Cells and
TNFa-Dependent NF-kB Activation
To directly examine Wnt-dependent tumor initiation, we used a

mouse model with a tamoxifen-inducible and conditional stable

expression of b-catenin in IEC (villin-creERT2/CtnnbloxEx3/WT,

termed b-catc.a.). Upon oral tamoxifen gavage, Cre recombina-

tion was induced in all intestinal epithelial compartments

including stem cells. This led to excision of exon 3 of Ctnnb,

thereby resulting in a stabilized protein, which fails to undergo

GSK3b-mediated degradation (Harada et al., 1999). As a conse-

quence, b-catenin became constitutively active in IEC, which re-

sulted in an almost complete loss of differentiated, absorptive

enterocytes and amassive expansion of highly proliferative crypt

stem cells that expressed high levels of the Wnt target c-myc
(N) Quantification of nuclear RelA/p65-expressing IEC. Data are mean ± SE; n R

(O) NF-kB activity can be blocked by administration of etanercept but not anak

50-fold unlabeled oligonucleotide.

(P) Kaplan-Meier survival curve of b-catc.a./Tnf�/� compound mutant mice (pink

p < 0.0001 by log rank test). Note that survival of b-catc.a./Tnf+/� mice was comp
(Figures 1A–1H). Following tamoxifen administration b-catc.a.

mice showed signs of severe weight loss and succumbed to

the intestinal transformation within 27 days (Figure 1I). Notably,

IkB kinase activity (Figure 1J) as well as NF-kB-binding activity

was markedly elevated in isolated IEC (Figure 1K), whereas

immunohistochemical analysis demonstrated nuclear accumu-

lation of RelA/p65 in expanded crypt cells of b-catc.a. mice

(Figures 1L–1N). TNFa and IL-1b are considered two of the

most common upstream activators of NF-kB signaling in inflam-

matory diseases and tumors (Karin and Greten, 2005). To ex-

amine whether these cytokines were responsible for the

observed NF-kB activation in b-catc.a. mice, we pharmacologi-

cally inhibited TNFa and IL-1b by using etanercept and anakinra,

respectively. Although inhibition of TNFa markedly reduced

NF-kB binding, blockade of IL-1b had no effect (Figure 1O) and

loss of Tnf significantly prolonged survival of b-catc.a. mice

(median survival 23 days in b-catc.a./Tnf+/� mice versus

30 days in b-catc.a./Tnf�/� mice; Figure 1P). Collectively, these

results indicate that extrinsic factors, such as TNFa, that act in

a paracrine and/or autocrine manner induce classical NF-kB

activation in b-catc.a. IEC.

Inhibition of NF-kB in IEC Prolongs Survival and Delays
Crypt Transformation in b-catc.a. Mice
To directly examine whether NF-kB activity in IEC was causally

involved in the expansion of intestinal crypt cells and decreased

survival, we crossed floxed Rela animals to b-catc.a. mice.

Indeed, loss of RelA/p65 function specifically in IEC significantly

prolonged survival of b-catc.a. mice by 50% (median survival

22 days in b-catc.a./Relalox/WT mice versus 33 days in b-catc.a./

RelaDIEC mice; Figure 2A). This effect was even more pro-

nounced than whole-body deletion of Tnf, indicating that apart

from TNFa also other upstream activators can signal to NF-kB

in b-catc.a. mice. Because b-catc.a./RelaDIEC compound mutants

were histologically comparable to single b-catc.a. mice in terms

of proliferation and apoptosis index at their respective time of

death (data not shown), we examined mice of both genotypes

15 days after the first tamoxifen treatment, 5 days before the

death of the first b-catc.a. animal.

Also at this time point, no difference in the number of apoptotic

cells was detected (data not shown); however, expansion of

proliferative crypt stem cells was reduced in b-catc.a./RelaDIEC

mice when compared to b-catc.a. mutants (Figures 2B–2E)

and alkaline phosphatase staining, labeling differentiated, and

absorptive enterocytes confirmed an increased villus-to-crypt

cell ratio in b-catc.a./RelaDIEC mice (Figures 2F and 2G). Con-

sistently, with a more differentiated phenotype, RelA-deficient

b-catc.a. mice retained a significantly higher expression of

mRNAs encoding sucrase-isomaltase, MUC-2, and synapto-

physin, which are markers for enterocytes, goblet cells, and

enteroendocrine cells, respectively (Figure 2H). Furthermore,

comparative gene expression analysis and gene set enrichment
3; ***p < 0.0001 by t test.

inra. Specificity of NF-kB complex was confirmed by competition assay with

solid line; n = 9) compared to b-catc.a./Tnf+/� mice (pink dashed line; n = 13;

arable to b-catc.a. mice (dashed black line).
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Figure 2. Loss of Rela in b-catc.a. IEC Prolongs Survival and Inhibits Stem Cell Expansion

(A) Kaplan-Meier survival curve of heterozygous floxed Rela mice (b-catc.a./Relalox/WT; n = 12) and b-catc.a./RelaDIEC mice (n = 13), p = 0.0001 by log rank test.

(B–E) Representative H&E stained sections (B and C) and immunohistochemical analysis (D and E) of b-catc.a and b-catc.a./RelaDIEC mice on day 15 of the model

showing reduced crypt expansion as well as decreased expression of BrdU in b-catc.a./RelaDIEC mice (C and E) compared to b-catc.a mice (B and D; proliferation

index: 0.31 ± 0.016 in b-catc.a mice versus 0.13 ± 0.006 in b-catc.a./RelaDIEC mice; data are mean ± SE; n = 3 of each genotype; p < 0.0001).

(F and G) Alkaline phosphatase staining of small intestinal sections from b-catc.a. and b-catc.a./RelaDIEC mice on day 15 of the model.

(H) Relative mRNA expression of differentiation markers in IEC of WT and b-catc.a., as well as RelaDIEC and b-catc.a./RelaDIEC mice on day 15. Data are mean ± SE;

n R 3; *p < 0.05 by t test.

(I) GSEA analysis comparing b-catc.a. and b-catc.a./RelaDIEC probe sets with ‘‘stem cell transcripts.’’

(J) Relative mRNA expression of intestinal stem cell markers in IEC of WT and b-catc.a., as well as RelaDIEC and b-catc.a./RelaDIEC mice on day 15. Data are mean ±

SE; n R 3; *p < 0.05 by t test.
analysis (GSEA) on RNA samples isolated from IEC of wild-type,

RelaDIEC, b-catc.a., and b-catc.a./RelaDIEC mice 15 days after

tamoxifen administration revealed a marked downregulation of

a large number of Wnt targets in IEC of b-catc.a./RelaDIEC mice

recently identified as components of an ‘‘intestinal stem cell tran-

scriptome’’ (van der Flier et al., 2009) compared to b-catc.a.

(normalized enrichment score 2.58, p < 0.001; Figure 2I). Differ-

ential expression of several of these stem cell genes, such as

Lgr5, Ascl2, Tnfrsf19, Fstl1, Ephb3, Cd44, Rnf43, Igfbp4,

Zfp503, and Sox9 was validated by quantitative real-time PCR
28 Cell 152, 25–38, January 17, 2013 ª2013 Elsevier Inc.
(Figure 2J). Collectively, these data suggested that NF-kB could

affect the development of a crypt progenitor phenotype and the

initiation of adenomatous cell transformation through the regula-

tion of Wnt-dependent intestinal stem cell gene expression.

NF-kB Directly Interacts with b-Catenin and Modulates
b-Catenin Binding Activity
b-catenin can physically interact with RelA/p50 dimers in various

human cancer cell lines (Deng et al., 2002). In light of the

profound differential regulation of the Wnt-dependent stem cell



signature in RelaA/p65-deficient b-catc.a. mice, we tested

whether NF-kB could possibly complex with b-catenin in primary

IEC as well and whether this interaction might affect b-catenin’s

binding to the Tcf/Lef consensus motif. Indeed, when we pulled

down endogenous b-catenin from IEC of wild-type and b-catc.a.

mice, RelA/p65 was weakly bound to the immunoprecipitated

protein from wild-type IEC, but this interaction was strongly

enhanced upon b-catenin stabilization (Figure 3A). To assess

b-catenin DNA-binding activity in IEC, we performedDNA affinity

precipitation assays (DAPA) by using a biotinylated Tcf/Lef

consensus sequence to precipitate proteins that bind specifi-

cally the Tcf/Lef motif. Immunoblotting of the precipitates

confirmed that stabilization of mutant b-catenin strongly induced

its binding toDNA, which, however, was greatly diminished in the

absence of RelA/p65 and absent when amutant control oligonu-

cleotide was used (Figure 3B). Moreover, a direct association of

RelA/p65 with the promoters of these Wnt-regulated stem cell

genes was confirmed by quantitative chromatin immunoprecip-

itation (ChIP) assay (Figure 3C). Association of b-catenin and

RelA/p65 at these promoter regions was confirmed by Re-

ChIP analysis (Figure 3D). To rule out that changes in DNA

binding were caused by the skewed crypt-villus ratio in mice of

different genotypes, we confirmed that TNFa could increase

binding of b-catenin to the Tcf/Lef motif in 293 cells that had

been transfected with a S33Y mutant of b-catenin along with

wild-type Tcf4 (Figure 3E). Furthermore, a constitutively active

form of IKKb (IKKbEE) also dose dependently induced interaction

of b-catenin and Tcf-4, b-catenin and RelA/p65, and b-catenin

and CREB-binding protein (CBP), a common coactivator of

both NF-kB and b-catenin (Figure 3F) suggesting that NF-kB

could modify Wnt-signaling through recruitment of CBP. Indeed,

siRNA mediated CBP knockdown confirmed that b-catenin/p65

interaction and TNFa-induced increase in Wnt-reporter activity

was dependent on the presence of this coactivator (Figures 3G

and 3H).

Loss of Ikba Accelerates Crypt Transformation and
Suggests Dedifferentiation of IEC in b-catc.a. Mice
To examine whether enhanced NF-kB activation could con-

versely promote crypt stem cell expansion, we crossed b-catc.a.

mice to floxed Ikba mice (Rupec et al., 2005), enabling IEC-spe-

cific constitutive NF-kB activity along with persistent b-catenin/

Tcf4 signaling in b-catc.a./IkbaDIEC compound mutants. Expect-

edly, deletion of IkBa enhanced NF-kB binding in IEC (Figure 4A)

and accelerated IEC transformation, leading to a significantly

shortened survival of b-catc.a. mice by 32% (median survival

was 22 days in b-catc.a./Ikbalox/WT versus 15 days in b-catc.a./

IkbaDIEC mice; Figure 4B). Pronounced NF-kB activation

increased b-catenin binding and recruitment of RelA/p65 to the

Tcf/Lef consensus site and enhanced interaction of b-catenin

with CBP (Figure 4C) further demonstrating that NF-kB can

recruit CBP to interact with b-catenin thus stimulating Wnt-

dependent transcription. Apart from a massive accumulation of

highly proliferative, crypt stem cells expressing c-myc (data not

shown), b-catc.a./IkbaDIEC double mutants frequently displayed

aberrant foci along the villus epithelium resembling crypt struc-

tures (Figure 4D). These foci were actively proliferating and

expressed nuclear b-catenin as well as the crypt marker c-myc
(Figures 4E–4G) and could be detected within 24 hr after tamox-

ifen administration (Figure S1 available online). Furthermore,

in situ proximity ligation assay confirmed direct interaction of

RelA/p65 and b-catenin in these cells (Figure 4H). Previous

reports had demonstrated that Apc-deficient crypt cells fail to

migrate out of the crypt due to maintenance of EphB expression,

which results in subepithelial transformed clones (Batlle et al.,

2002). Similarly, crypt-like foci in b-catc.a./IkbaDIEC mice ex-

pressed EphB3 (Figure 4I) and detached from the surrounding

villus epithelium and invaded into the subepithelium, where

they formed adenomatous crypts (Figure S1). However, these

results seemed to be in apparent contrast to the notion that

intestinal cancers arise from Lgr-5-positive crypt stem cells

rather than postmitotic differentiated enterocytes (Barker et al.,

2009). We therefore asked whether the observed villus crypt-

like foci could have regained stem cell properties, formally

enabling them to initiate formation of adenomatous crypts.

Indeed, Ikba-deficient villus crypt-like foci expressed Ascl-2

and SOX9 (Figures 4J and 4K) as well as the stem cell markers

Lgr5 and Rnf43 (Figures 4L and 4M). These data suggested

that NF-kB mediated enhancement of b-catenin signaling in

villus cells allowed a dedifferentiation program and occurrence

of crypt stem cells in an aberrant position. Re-expression of

the stem cell marker Lgr5 in these newly formed crypts sup-

ported the hypothesis that these cells could initiate adenoma-

tous crypt formation. Interestingly, however, loss of IEC IkBa

alone was not sufficient to enhance transcription of crypt stem

cell markers in b-catenin wild-type mice (Figure S1).

Villus Cells Can Dedifferentiate Ex Vivo and Form
Spheroids that Have the Capacity to Form Tumors
To confirm that villus cells have the capacity to dedifferentiate

and to regain stem cell properties when b-catenin signaling

is hyperactivated, we employed a recently developed orga-

noid culture system (Sato et al., 2009) by using IEC from

villin-creERT2/Apclox/lox (ApcDIEC) or villin-creERT2/Apclox/lox/

K-rasG12D/+ mice (ApcDIEC/K-rasG12D) mice. Oncogenic K-ras

strongly cooperates with deregulated Wnt signaling conferred

by Apc loss or activating Ctnnb mutations (Bennecke et al.,

2010; Janssen et al., 2006; Sansom et al., 2006), although it

can also induce NF-kB activation (Perkins, 2012). In contrast to

wild-type crypts that maintained dependence on the presence

of R-spondin in the culture medium, cultured crypts derived

from both ApcDIEC and ApcDIEC/K-rasG12D formed spheroids,

histologically resembling adenomas, even in the absence of

R-spondin because of constitutively active Wnt signaling when

crypts were isolated 2 days after a single tamoxifen administra-

tion (Figures 5A and 5B). ApcDIEC/K-rasG12D crypt cells were

characterized by markedly elevated NF-kB activation compared

to cells from Apc single mutants (Figure 5C). Next, we examined

whether villi isolated from ApcDIEC and ApcDIEC/K-rasG12D mice

would convert into R-spondin-independent spheroids when iso-

lated 2 days after tamoxifen administration. At this time point villi

of mice of both genotypes appeared histologically comparable

and did not contain any Lgr5+ cells (Figure S2). Although villi

from wild-type or ApcDIEC mice did not survive in culture, villi iso-

lated from ApcDIEC/K-rasG12D compound mutants formed

spheroid structures that could indeed be maintained without
Cell 152, 25–38, January 17, 2013 ª2013 Elsevier Inc. 29
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Figure 3. NF-kB and b-Catenin Interact via CBP to Modulate b-Catenin DNA Binding

(A) Immunoblot analysis of proteins that were immunoprecipitated from lysates from WT and b-catc.a. mice on day 15.

(B) DNA affinity precipitation assay (DAPA) and immunoblot analysis (WB) of lysates prepared from isolated IEC from WT and b-catc.a., as well as RelaDIEC and

b-catc.a./RelaDIEC mice on day 15.

(C) Quantitative chromatin immunoprecipitation (ChIP) assay on DNA isolated from IEC ofWT and b-catc.a. mice on day 15. Precipitated DNA or 10%of chromatin

input was amplified with gene-specific primers amplifying promoter regions, which contain b-catenin/Tcf consensus motifs (Yochum et al., 2007) but no classical

kB-binding sites. Data are mean ± SE; n R 4.

(D) Re-ChIP assay on DNA isolated from IEC of a b-catc.a. mouse on day 15 with a b-catenin antibody for the first precipitation followed by a second immu-

noprecipitation after DNA isolation with p65 antibody. In negative control second immunoprecipitation was omitted.

(legend continued on next page)
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Figure 4. Increased NF-kB Activity Shortens Survival and Induces Dedifferentiation of Villus Cells in b-catc.a. Mice

(A) NF-kB binding activity in IEC isolated from Ikba-deficient b-catc.a. mice on day 10.

(B) Kaplan-Meier survival curve of b-catc.a./IkbaDIEC mice (n = 11) and b-catc.a. Ikbalox/WT mice (n = 12); p < 0.0001 by log rank test.

(C) Immunoblot analysis (WB) and DAPA of lysates prepared from isolated IEC from b-catc.a and b-catc.a./Ikba DIEC mice on day 10.

(D) Representative H&E stained section of a b-catc.a./IkbaDIEC villus on day 10. The arrowheads indicate crypt-like cell structures in an aberrant localization.

(E–G) Immunohistochemical analysis of b-catc.a./IkbaDIEC villus crypt-like structures.

(H) Duolink proximity ligation assay demonstrating close proximity of b-catenin and RelA/p65 suggesting interaction in b-catc.a./IkbaDIEC villus crypt-like struc-

tures. Dashed white line marks aberrant crypt structure, arrowheads denote regions of signal amplification (red). Nuclei are stained with DAPI.

(I–K) Aberrant villus crypts express stem cell markers EphB3 (I), ASCL-2 (J) and SOX9 (K).

(L and M) In situ hybridization with probes specific for Lgr5 and Rnf43 reveals stem cell properties of b-catc.a./IkbaDIEC villus crypt-like structures.

See also Figure S1.
R-spondin (Figure 5D). Similar results could be obtained with

villus cells derived from b-catc.a./IkbaDIEC mice (data not shown).

Importantly, the specific IKKb inhibitor ML120B (Nagashima

et al., 2006) completely abolished spheroid formation in ApcDIEC/

K-rasG12D villus cells and reduced sphere formation of ApcDIEC/

K-rasG12D crypts by more than 60% (Figures 5D and 5E). Spher-

oids originating from ApcDIEC/K-rasG12D villus or crypt cells were

morphologically comparable (Figures 5F–5I) and both retained

their size over several passages (Figure 5J), supporting the

notion that they both comprised cancer stem cells. Indeed,
(E and F) DNA affinity precipitation assay (DAPA, [E]), and immunoblot analysis (W

and Tcf-4, that were either stimulated with TNF-a (10 ng/ml) for 60 min (E) or cot

(G) Immunoblot analysis of protein lysates prepared from 293 cells transfected wit

siRNA pool.

(H) Relative luciferase activity with a Tcf/Lef reporter (TOPFLASH) in protein lysat

scramble siRNA control or a CBP targeting siRNA pool untreated or stimulated w
when we injected ApcDIEC/K-rasG12D villus-derived spheroids

subcutaneously into nude mice, they formed tumors with growth

characteristics similar to those of the crypt-derived spheroids

(Figure 5K). Tumors from both crypt and villus-derived spheres

were highly proliferative, strongly expressed Lgr5 (Figure 5L),

and developed independently of spheroid passage number (Fig-

ure S2). Lysozyme+ Paneth cells were detectable in tumors of

either origin (Figure 5L), further underscoring the pluripotent

potential of spheroids derived from both crypts and villi. When

we separated Lgr5+ and Lgr5� cells from villus-derived spheres,
B) (F) of protein lysates prepared from 293 cells transfected with b-cateninS33Y

ransfected with increasing amounts (0, 0.5, and 1 mg) of IKKbEE (F).

h b-cateninS33Y and Tcf-4 alongwith scramble siRNA control or a CBP targeting

es prepared from 293 cells transfected with b-cateninS33Y and Tcf-4 along with

ith TNF-a (10 ng/ml) for 8 hr. Data are mean ± SE; n R 3.
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Figure 5. Oncogenic K-ras Cooperates with

Wnt Signaling to Dedifferentiate Villus Cells

into Intestinal Tumor Stem Cells in a NF-kB

Dependent Manner

(A and B) Morphology of R-spondin-independent

spheroids generated of crypts from ApcDIEC mice.

(C) Elevated NF-kB activity in crypts from ApcDIEC/

K-rasG12D compared to ApcDIEC mice.

(D) Quantification of R-spondin-independent

spheroids derived from villi of mice of indicated

genotypes in the presence or without the specific

IKKb inhibitor ML120B (n = 5/genotype; n.d.: not

detectable).

(E) Inhibition of crypt-derived spheroids by

ML120B.

(F–I) Morphology of crypt or villus-derived

spheroids from ApcDIEC/K-rasG12D mice after 4

(F and H) and 8 days (G and I) in culture.

(J) Sphere formation assay comparing crypt

and villus-derived spheres derived from ApcDIEC/

K-rasG12D mice. Data are mean ± SE; n R 3.

(K) Tumor growth in CD1 athymic mice after

subcutaneous injection of crypt or villus-derived

spheroids originating from mice of indicated

genotypes. Data are mean ± SE; n R 3.

(L) Comparative histological analysis of a re-

presentative tumor grown in CD1 athymic mice

22 days after the subcutaneous injection of

spheroids originating from ApcDIEC/K-rasG12D

crypts or villi. Lgr5 expression was detected

by in situ hybridization.

(M) FACS plot of villus-derived spheroids from

an ApcDIEC/K-rasG12D/Lgr5-EGFP-IRES-creERT2

compound mutant. Absence of Lgr5 in the GFP�

population was confirmed by PCR (data not

shown).

(N) Tumor growth in CD1 athymic mice after

subcutaneous injection of equal number of Lgr5+

or Lgr5� cells from villus-derived spheroids

plotted in (M). Data are mean ± SE; n R 3.

(O) Immunohistochemical analysis of EGFP indi-

cating expression of Lgr5 in tumors originating

from Lgr5+ or Lgr5� villus cells.

(P) Incidence of subcutaneous tumor growth in

CD1 athymic mice after injection of 10, 1 3 103,

1 3 104 or 4.5 3 104 GFP+ (indicating Lgr5+) or

GFP� (indicating Lgr5�) cells from villus-derived

spheroids.

(Q and R) Tumor growth kinetics in CD1 athymic

mice after subcutaneous injection of indicated

number of Lgr5+ (Q) or Lgr5� cells (R) from villus-

derived spheroids. Data are mean ± SE. See also

Figure S2.
both populations retained the capacity to initiate subcutaneous

tumor growth with similar kinetics (Figures 5M and 5N) even

when we performed serial transplantations over several

passages (data not shown), and tumors from initially Lgr5� pop-

ulation re-expressed Lgr5 (Figure 5O). Moreover, limiting dilution

experiments did not reveal any differences in the ability to initiate

subcutaneous tumors between Lgr5+ and Lgr5� cells from villus-

derived spheres (Figures 5P–5R). Collectively, these results

strongly support the notion that villus cells can reacquire cancer
32 Cell 152, 25–38, January 17, 2013 ª2013 Elsevier Inc.
stem cell properties by dedifferentiation when Wnt signaling is

elevated in a NF-kB-dependent manner.

Hyperactivation of b-Catenin Signaling in Lgr5� Cells
Induces Dedifferentiation and Initiation of
Tumorigenesis
Because villin-creERT2 mice recombine in both Lgr5� differenti-

ated and Lgr5+ stem cells, crypt-like foci in b-catc.a. and b-catc.a./

IkbaDIEC mice could theoretically have originated from the



Lgr5+ cells at the base of the crypt andmigrated upward. Thus, in

order to formally prove that dedifferentiated villus cells can

initiate tumorigenesis in vivo, we generated a Cre-expressing

mouse that allowed recombination in Lgr5� cells only. Based

on the observation that splicing and thus activation of the tran-

scription factor X-box-binding protein 1 (XBP1), a key compo-

nent of the endoplasmatic reticulum (ER) stress response,

constitutively occurs under physiologic unchallenged conditions

in Lgr5� IEC, but not Lgr5+, stem cells (J.H. and G.R.v.d.B.,

unpublished data, and Figure S3), we hypothesized that

Xbp1s-creERT2 mice would permit recombination specifically

in Lgr5� IEC. Indeed, lack of recombination in Lgr5+ and Bmi1+

stem cells was confirmed by lineage tracing in Xbp1s-creERT2-

Rosa26R-dtTomatomice (Figures 6A–6C). Within 24 hr, red fluo-

rescence indicating recombination was detectable in IEC above

the crypt villus junction as well as in Paneth cells, a cell type in

which XBP splicing confers important functions (Kaser et al.,

2008) (Figures 6A and 6B). Importantly, PCR on FACS-sorted

RFP-positive and -negative IEC confirmed absence of Lgr5+ or

Bmi1+ expression in RFP+ cells. Consequently, 33 days after

tamoxifen administration, red fluorescent IEC were completely

absent. Lack of recombination by Xbp1s-Cre in Lgr5+ or Bmi1+

stem cells was further functionally confirmed and considered

the missing adenomatous transformation or stem cell expansion

in mice with single activation of b-catenin only in Lgr5� IEC of

Xbp1s-creERT2/CtnnbloxEx3/WT compound mutants (Figures

6E–6G). In contrast, loss of a Ctnnb exon 3 in Lgr5+ stem cells

using Lgr5-EGFP-IRES-creERT2/CtnnbloxEx3/WT mice resulted

in massive transformation and death of the animals within

45 days (Figure 6E) similar to the results of previously reported

Bmi1-creERT2/CtnnbloxEx3/WT mice (Sangiorgi and Capecchi,

2008). However, when b-catenin activation was enhanced by

the concomitant loss of IkBa in homozygous Xbp1s-creERT2/

CtnnbloxEx3/loxEx3/Ikbalox/lox mice or the simultaneous activation

of oncogenic K-ras in Xbp1s-creERT2/CtnnbloxEx3/KrasG12D

compound mutants, tumor initiation commenced and adenoma-

tous polyps occurredwithin 30 days (Figures 6H and 6J), recapit-

ulating the phenotype we had observed in the organoid culture

system. These polypswere highly proliferative and characterized

by elevated NF-kB activation when compared to IEC of b-catc.a.

mice (Figure S3). Most importantly tumors re-expressed stem

cell markers Lgr5 and Rnf43 (Figures 6H and 6J) and displayed

increased expression of genes encoding members of the

‘‘stem cell signature’’ (Figure 6I) providing direct genetic

evidence for dedifferentiation of Lgr5� IEC in vivo. In agreement

with the lineage tracing data (Figure 6A), expression of nuclear

b-catenin and Ki-67 could be observed in cells above the

crypt-villus junction 24 hr after tamoxifen administration in

mice (Figures 6K and 6L), suggesting that these comprised

the cells of origin of tumors in Xbp1s-creERT2/ CtnnbloxEx3/

KrasG12D mice.

DISCUSSION

Cell-type plasticity as it can be observed during epithelial-

mesenchymal transition (EMT) has been suggested to be an

important prerequisite for the metastatic spread of solid tumors

during the tumor progression stage (Polyak and Weinberg,
2009). EMT correlates with b-catenin expression in colorectal

cancer and has been associated with dedifferentiation of

invading cells (Brabletz et al., 2005). Accordingly, it was recently

suggested that dedifferentiation of nonstem cells triggered by

signals from the inflammatory microenvironment may also lead

to the generation of cancer stem cells (Gupta et al., 2009;

Hanahan and Weinberg, 2011). So far, in vivo evidence for the

existence of dedifferentiation has been limited to mouse differ-

entiating spermatogonia that can generate germinal stem cells

(Barroca et al., 2009) as well as mammary luminal cells that

can convert into mammary stem cells upon overexpression of

Sox9 and Slug (Guo et al., 2012). In the context of tumorigenesis

a subpopulation of basal-like human mammary epithelial cells

recently was shown to spontaneously convert into cancer-

stem-cell-like cells in vitro (Chaffer et al., 2011). Here, we demon-

strate in a genetic model of intestinal tumor initiation that

epithelial nonstem cells can re-express stem cell markers and

can be converted into tumor-initiating cells. This phenomenon

is strictly dependent on the degree of Wnt activation and can

only be observed when Wnt signaling is markedly elevated.

Two models for the histopathogenesis of colorectal cancer

have been proposed: a ‘‘top-down’’ model suggesting that

dysplastic cells spread laterally and downward to form new

crypts (Shih et al., 2001) and a ‘‘bottom-up’’ model that is based

on transformation and expansion of crypt stem cells (Preston

et al., 2003). Recently, it was demonstrated that Lgr5+ cells

comprise the tumor-initiating cell population (Barker et al.,

2009), whereas they can be repopulated by Bmi1+ cells after

tissue damage (Tian et al., 2011). Because under physiological

circumstances these cells reside exclusively at the bottom of

intestinal crypts (Barker et al., 2007), the ‘‘bottom-up’’ model

seemed to represent the prevailing concept. We now provide

genetic evidence that Lgr5� enterocytes have the potential to

dedifferentiate and to reacquire stem cell properties including

Lgr5 expression lending support for a ‘‘top-down’’ model.

Thus, we suggest that these models do not exclude each other

and that tumor-initiating mutations can occur in both Lgr5+ crypt

stem cells or in more differentiated Lgr5� cells, as long as these

initially negative cells dedifferentiate and re-express Lgr5

(Figure 7).

Reprogramming of differentiated cells into induced pluripotent

cells (iPS) ex vivo can be achieved through the combined activa-

tion of selective transcription factors (Jaenisch and Young,

2008). Thus, it is reasonable that IEC also may have the capacity

to dedifferentiate in vivo as long as the required transcriptional

program for such process, in this case Wnt signaling, is strongly

enough activated. Our results agree with previous findings and

show that neither in vitro nor in vivo single stabilization of

b-catenin nor loss of Apc alone is sufficient to drive dedifferenti-

ation (Barker et al., 2009). However, concomitant activation of

cooperating oncogenes, such as K-ras, as well as cytokine-

triggered activation of NF-kB enhances b-catenin/Tcf-mediated

transcriptional activity that provides initial nonstem cell IEC with

tumor stem cell properties. This may suggest that induction of

a single pathway may be sufficient to induce dedifferentiation

toward a tissue-specific stem cell compared to the activation

of several factors required for pluripotency (Jaenisch and Young,

2008). However, we cannot entirely rule out additional direct
Cell 152, 25–38, January 17, 2013 ª2013 Elsevier Inc. 33
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Figure 6. Dedifferentiation of Nonstem Cells Allows Initiation of Tumorigenesis In Vivo

(A and B) RFP expression in Xbp1s-creERT2-Rosa26R-dtTomatomice 24 hr after tamoxifen administration indicating recombination in cells above the crypt villus

junction (A) and in Paneth cells (B).

(C) PCR indicates expression of stem cell markers Lgr5 and Bmi1 only in nonrecombined RFP� stem cells.

(D) Absence of RFP expression in IEC of Xbp1s-creERT2-Rosa26R-dtTomato mice 33 days after tamoxifen administration.

(E) Kaplan-Meier survival curve of Lgr5-IRES-EGFP-creERT2/CtnnbloxEx3/WT (n = 7) and Xbp1s-creERT2/CtnnbloxEx3/WT (n = 8) mice that were given the same

amount of tamoxifen (53 1 mg), p < 0.0001 by log rank test. Note that differences in survival between b-catc.a.mice (Figure 1A; villin-creERT2/CtnnbloxEx3/WT) and

Lgr5-IRES-EGFP-creERT2/CtnnbloxEx3/WT mice is due to a lower recombination efficiency in Lgr5-IRES-EGFP-creERT2 mice causing a lower frequency of actual

stem cell hits (P.C. and O.J.S. et al., unpublished data).

(F and G) Immunohistochemical staining of b-catenin (F) and BrdU (G) in intestines of Xbp1s-creERT2/CtnnbloxEx3/WT mice 50 days after the first tamoxifen

administration confirms only sporadic positively stained cells outside the crypt compartment.

(H) Representative H&E staining, immunohistochemical analysis of BrdU incorporation and c-myc as well as in situ hybridization of Rnf43 in the proximal small

intestine from a Xbp1s-creERT2/CtnnbloxEx3/loxEx3/Ikbalox/lox mouse 29 days after tamoxifen administration confirming re-expression of stem cell markers.

(legend continued on next page)
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Figure 7. ‘‘Bottom-Up’’ and ‘‘Top-Down’’ Models of Intestinal Tumorigenesis Do Not Exclude Each Other

(A) Model summarizing the proposed signaling mechanism in IEC: TNFa or oncogenic K-ras enhance b-catenin activation through induction of canonical NF-kB

activation, which leads to recruitment of CBP and binding to b-catenin/Tcf to enhance transcription of Wnt-dependent stem cell genes.

(B) Schematic presentation of two possible ways of polyp formation that depend on the extent of Wnt activation: in case of modest Wnt activation caused by loss

of Apc or Ctnnb mutation stem cell expansion and tumorigenesis is initiated only when Lgr5+ crypt stem cells (red) are mutated otherwise cells are shed off.

Mutated Lgr5+ cell invaginate around the crypt villus junction and invade into the subepithelium representing the ‘‘bottom-up’’ model. The lower model suggests

that initially Lgr5� cells reacquire Lgr5-expression upon enforced b-catenin signaling, therefore providing these dedifferentiated cells with the same properties as

crypt stem cells (i.e., Lgr5 expression) to invade into the subepithelium thus providing evidence that the top-down model and the bottom-up model of adenoma

morphogenesis do not exclude each other.

See also Figure S4.
effects of K-ras and NF-kB on some of the essential stem cell

genes considering that NF-kB has recently been reported to

control expression of Ascl-2 (Vlantis et al., 2011).

Various modes of cross-regulation between NF-kB and

b-catenin signaling pathways have been proposed in different

tumor cell lines (Deng et al., 2002; Spiegelman et al., 2000).

We propose that in primary IEC, NF-kB enhances Wnt-signaling

by binding of RelA/p65 to b-catenin via CBP. Although it was

suggested that b-catenin activation inhibits NF-kB in colon

cancer cells (Deng et al., 2002), we show that stabilization of

mutant b-catenin is associated with elevated NF-kB activation

in primary IEC in vivo. This is at least in part dependent on

TNFa that acts in a paracrine or presumably autocrine manner

because most TNFa in intestine originates from IEC (Chen

et al., 2003; Guma et al., 2011). Interestingly, not only TNFa

but also oncogenic K-ras can induce NF-kB activation in IEC,

and both enhance thereby interaction of b-catenin and CBP

(Figure 7 and Figure S4). Accordingly, the capacity of oncogenic

K-ras to dedifferentiate Apc-deficient villus cells in vitro depends

on NF-kB activation.

Cell-type plasticity during tumor development such as trans-

differentiation has also been suggested in other tumor entities

including pancreatic cancer (Gidekel Friedlander et al., 2009;

Guerra et al., 2007; Wagner et al., 2001). Interestingly, during
(I) Relative mRNA expression of intestinal stem cell markers in IEC of WT and

application. Data are mean ± SE; n R 3.

(J) Representative H&E staining, immunohistochemical analysis of Ki-67 and c-m

a Xbp1s-creERT2/CtnnbloxEx3/K-rasG12D mouse 29 days after tamoxifen administ

(K and L) Immunohistochemical staining of b-catenin (K) and Ki-67 (L) in mice 24

crypt-villus junction.

See also Figure S3.
pancreatic carcinogenesis this frequently occurs in the context

of tissue inflammation and allows tumor initiation from otherwise

refractory cell types (Gidekel Friedlander et al., 2009; Guerra

et al., 2011; Guerra et al., 2007). Similarly, in ulcerative colitis

patients we found massive expansion of OLFM4-expressing

epithelial cells in aberrant positions (Figure S4). In the absence

of oncogenic mutations this may represent a physiological

wound healing response and may allow de novo crypt formation

thereby providing an attractive possible explanation how large

ulcerations can be reconstituted in addition to crypt fission.

However, at the same time this suggests that chronic inflamma-

tion may increase the number of potentially tumor-initiating cells

by dedifferentiation thus providing an additional explanation of

why such patients have an elevated risk of developing colon

cancer. However, our data may not only be relevant for tumor

initiation in the context of chronic inflammation but could also

have an impact for the therapy of advanced cancers such as

strategies aiming at the eradication of tumor stem cells. Particu-

larly in colorectal tumors harboring both APC and KRAS

mutations we speculate that tumor stem cells could easily be

replenished by dedifferentiation. However, inhibition of IKKb/

NF-kB may be a potent strategy to prevent such effects.

In summary, we provide direct genetic evidence that dediffer-

entiation can lead to the formation of tumor-initiating cells that
Xbp1s-creERT2/CtnnbloxEx3/loxEx3/Ikbalox/lox mice 29 days after first tamoxifen

yc as well as in situ hybridization of Lgr5 in the proximal small intestine from

ration.

hr after tamoxifen administration indicating recombination in cells above the
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questions a strict unidirectional model of the stem-differentiation

hierarchy but rather lends support to a model of bidirectional

interconvertibility (Gupta et al., 2009).

EXPERIMENTAL PROCEDURES

Mice

To delete exon 3 of Ctnnb in IEC, we crossed CtnnbloxEx3/WT (Harada et al.,

1999) with villin-creERT2 mice (kindly provided by S. Robine), Lgr5-EGFP-

IRES-creERT2 (Barker et al., 2007), or Xbp1s-creERT2 mice. To delete Apc

and to activate oncogenic K-Ras in IEC, we crossed mice carrying the condi-

tional Apc580S allele (Shibata et al., 1997) or LSL-K-rasG12D (Jackson et al.,

2001) with villin-creERT2 mice. Xbp1s-creERT2 transgenic mice were gener-

ated by replacing the venus coding sequence in the pCAX-F-XBP1DDBD-

venus plasmid (Iwawaki et al., 2004) with the sequence encoding creERT2.

Tnf�/� and Rosa26R-tdTomato reporter mice were purchased from the

Jackson Laboratories. All mice were on a mixed C57BL/6 3 129Sv x FVB

background, and in all experiments littermate controls were used. Cre-recom-

binase was induced by five daily oral administrations of 1 mg tamoxifen

(Sigma) in an ethanol/sunflower oil mixture. All experiments were performed

under the UK Home Office guidelines as well as reviewed and approved by

the Regierung von Oberbayern.

Villus Isolation and Propagation

Small intestines were washed with PBS and opened longitudinally. Villi were

removed with a glass coverslip, washed in PBS, and centrifuged at 100 g for

3 min to separate villi from single cells. One hundred to 150 villi, mixed with

50 ml of Matrigel (BD Bioscence), were plated in 24-well plates and cultured

as described (Sato et al., 2009). For transplantation experiments, 50 spheres

(containing around 100 cells/sphere) were suspended in 100 ml Matrigel and

injected s.c. into 6-week-old female athymic (CD1) mice.

Protein Analysis

Isolation of enterocytes, immunoblot analysis, immunecomplex kinase assay,

and electrophoretic mobility shift assay (EMSA) were performed as described

previously (Greten et al., 2004). In DAPA protein lysates were incubated with

2 mg of 50 biotin labeled double-stranded oligonucleotides containing two

Tcf/Lef binding sites (50-CCCTTTGATCTTACCCCCTTTGATCTTACC-30) or a
scrambled control oligonucleotide (50-TTTCCCCTTGATACCTTTCCCCTTGA

TACC-30) in the presence of excess herring sperm DNA for 90 min at room

temperature (RT) prior to pull down with Streptavidin-agarose beads (Pierce).

The following antibodieswere used in immunoblot analysis: a-b-catenin (Santa

Cruz, SC-1496), a-RelA/p65 (SC-372), a-IkBa (SC-371), a-CBP (SC-369),

a-IKKb (Upstate 05-535), a-IKKa (IMG-136A), and a-b-actin (A4700, Sigma).

Histological Procedures and In Situ Hybridization

For alkaline phosphatase staining paraffin sections (3.5mm) were incubated for

2 hr at RT in nitroblue tetrazolium/5-bromo-4-chloro-3-indolyl phosphate

solution. Nuclei were counterstained with Nuclear Fast Red (Vector). Standard

immunohistochemical procedures were performed with following antibodies:

a-p65 (Neo-Markers, RB-1638), a-c-myc (SC-788), a-b�catenin (SC-1496),

a-BrdU (Amersham Bioscience RPN201), a-EphB3 (R&D Systems, AF432),

a-ASCL-2 (Aviva Systems Biology, QC6671), a-SOX-9 (Chemicon Millipore,

AB 5535). To detect protein interaction on paraffin sections, a Duolink

Proximity Ligation Assay in situ kit (Olink Bioscience) was used according to

the manufacturer’s instructions and in situ hybridization was essentially

performed as described previously (Barker et al., 2007).

Chromatin Immunoprecipitation Analysis

ChIP assays were performed with antibodies against b-catenin, RelA/p65, and

EGFR (negative control) according to published procedures (Saccani et al.,

2003). In brief, IEC were crosslinked with 1% formaldehyde for 10 min at

room temperature and quenched by adding glycine (0.125 M final concentra-

tion). IEC were homogenized in lysis buffer and chromatin was fragmented by

sonication. Lysates were precleared with salmon sperm/protein A agarose

(Upstate) for 1 hr. Chromatin IP was performed overnight with 1.5 mg of
36 Cell 152, 25–38, January 17, 2013 ª2013 Elsevier Inc.
antibody and protein G magnetic beads (Active Motif). Precipitates were

washed and eluted in TE containing 2% SDS. Crosslinking was reversed for

a minimum of 4hrs at 65�C and DNA was purified with a QiaAmp DNA Micro

Kit (QIAGEN) prior to real-time PCR.

RNA Analysis

Total RNA extraction, cDNA synthesis, real-time PCR and gene expression

profiling was performed as described previously (Bennecke et al., 2010). In

gene set enrichment analysis (GSEA) we matched 94 ‘‘stem cell transcripts’’

(van der Flier et al., 2009) to all transcripts from the Affymetrix Mouse Genome

430A 2.0 Array, respectively. GSEA software is provided by Broad Institute of

MIT and Harvard University (http://www.broad.mit.edu/gsea). We acknowl-

edge the use of GSEA software (Subramanian et al., 2005) to validate correla-

tion between molecular pathways signatures in any phenotype of interest. For

analysis of gene sets we changed default parameters as follows: permutation

number to 1,000; collapse data set to gene symbols if ‘‘false’’; gene sets

smaller than 1 and larger than 2,000 were excluded.

Statistical Analysis

Data are expressed as mean ± SEM. Differences were analyzed by log-rank or

Student’s t test with Prism4 (GraphPad Software). p values % 0.05 were

considered significant.
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